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Abstract

Objective

We used targeted next-generation sequencing to investigate whether genetic variants of

lipid metabolism-related genes are associated with increased susceptibility to nonalcoholic

fatty liver disease (NAFLD) in obese children.

Methods

A cohort of 100 obese children aged 6 to 18 years were divided into NAFLD and non-

NAFLD groups and subjected to hepatic ultrasound, anthropometric, and biochemical analy-

ses. We evaluated the association of genetic variants with NAFLD susceptibility by investi-

gating the single nucleotide polymorphisms in each of 36 lipid-metabolism-related genes.

The panel genes were assembled for target region sequencing. Correlations between single

nucleotide variations, biochemical markers, and clinical phenotypes were analyzed.

Results

97 variants in the 36 target genes per child were uncovered. Twenty-six variants in 16 genes

were more prevalent in NAFLD subjects than in in-house controls. The mutation rate of

MTTP rs2306986 and SLC6A2 rs3743788 was significantly higher in NAFLD subjects than

in non-NAFLD subjects (OR: 3.879; P = 0.004; OR: 6.667, P = 0.005). Logistic regression

analysis indicated the MTTP variant rs2306986 was an independent risk factor for NAFLD

(OR: 23.468, P = 0.044).

Conclusions

The results of this study, examining a cohort of obese children, suggest that the genetic vari-

ation at MTTP rs2306986 was associated with higher susceptibility to NAFLD. This may
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contribute to the altered lipid metabolism by disruption of assembly and secretion of lipopro-

tein, leading to reducing fat export from the involved hepatocytes.

Introduction

Nonalcoholic fatty liver disease (NAFLD) includes a range of liver diseases from simple fatty

liver to nonalcoholic steatohepatitis (NASH), which can lead to fibrosis, cirrhosis, and hepato-

cellular carcinoma [1]. NAFLD is one of the most prevalent liver diseases among pediatric

patients in developed countries owing to the increasing prevalence of obesity [2].

The precise pathogenesis of NAFLD remains poorly understood. Steatosis occurs when a

rate of lipid influx or synthesis by hepatocytes exceeds the rate of export or catabolism [3]. The

hepatic lipid metabolism pathways include hepatic de novo lipogenesis, lipolysis, transmem-

brane lipid flux, lipid oxidation, and peroxidation. An increasing number of studies identify

genes that contribute to the high risk for developing pediatric NAFLD. Studies on the offspring

of participants suggest a genetic predisposition to developing NAFLD [4], and heritability

studies [5, 6] showed that nonalcoholic fatty liver disease is heritable. Moreover, familial ag-

gregation studies [7] found that familial clustering of NAFLD was common. Genome-wide

association studies (GWAS) of NAFLD subjects in Western countries identified several gene

variants associated with NAFLD [8]. Gene expression studies reported that some genetic vari-

ants were associated with NAFLD [9].

Although insulin resistance, unhealthy diet, and sedentary lifestyle have been strongly asso-

ciated with hepatic steatosis, accumulated evidence suggests that genetic background (specifi-

cally genetic polymorphisms) could be a critical factor for NAFLD predisposition in children

[10, 11].

It is estimated that NAFLD affects 2.6–9.6% of pediatric patients and up to 38–53% of mor-

bidly obese children worldwide [12]. The prevalence of NAFLD in children population is 2.1%

and 68.2% among obese children in China [13]. Therefore, not every obese child develops

NAFLD. We hypothesized that variants of genes in hepatic lipid metabolism pathways may

contribute to increased susceptibility to pediatric NAFLD.

This study aimed to investigate the association of genetic variations with NAFLD suscepti-

bility. We employed an approach of next-generation sequencing (NGS) and analyzed poly-

morphisms of 36 genes involved in hepatic lipid metabolism pathway in a cohort of children

with or without NAFLD. The results of this study suggest that the genetic variation at MTTP
rs2306986 was associated with higher susceptibility to pediatric NAFLD.

Methods

Study subjects

A total of 2236 children (of Han Chinese ethnicity) aged 6 to 18 years underwent regular phys-

ical examinations in 3 elementary and middle schools located in Shenzhen City, China.

Among these children, 368 (16.5%) were considered obese according to the criteria adjusted

with age and gender described by Cole et al [14].

100 of the 368 obese subjects were randomly selected and divided into a NAFLD group

(group A) and a non-NAFLD group (group B). Individuals with a history of chronic liver

disease (i.e., chronic hepatitis B and C, autoimmune disease, Wilson disease) as well as long-

term drug consumption producing hepatic steatosis (i.e., corticosteroids), anemia, and hypo-

thyroidism were excluded. The study protocol was approved by the Ethics Committee of

MTTP gene variants and pediatric NAFLD

PLOS ONE | https://doi.org/10.1371/journal.pone.0185396 September 27, 2017 2 / 14

https://doi.org/10.1371/journal.pone.0185396


Shenzhen Children’s Hospital, and written informed consent was obtained from all partici-

pants’ parents.

Childhood assessments and biochemical analyses

Weight, height, waist circumference, and blood pressure of each participant were measured.

The length tape measure and digital scale were accurate at 0.1 cm and 0.1 kg, respectively. BMI

was calculated as body weight (kg)/height (m2). Adjusted BMI = (BMI of study subject)—

(median of age- and gender-specific standard BMI values).

Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase

(ALP), total serum bilirubin (TB), direct bilirubin (DB), fasting glucose, insulin, triglyceride

(TG), total cholesterol (TC), high-density lipoproteins cholesterol (HDL-C), low-density lipo-

proteins cholesterol (LDL-C), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB) were

determined with routine biochemical assays. Insulin resistance was evaluated through the

homeostasis model assessment of insulin resistance (HOMA-IR) and calculated using the for-

mula fasting insulin (mmol/L) × fasting glucose (mmol/L)/22.5.

Ultrasonography and magnetic resonance imaging (MRI)

All participants underwent an ultrasonographic scan of the liver, performed by a single sonog-

rapher (Siemens Antares ultrasound machine with a CH 2- to 5-MHz convex probe). Then, a

radiologist (specialized in liver imaging and blinded to the clinical and laboratory findings of

the subjects) interpreted the ultrasound images. NAFLD was diagnosed using ultrasono-

graphic scoring for liver steatosis and the findings of fatty infiltration (liver echotexture, echo

penetration, and clarity of vessel structures) [15].

Subjects with the suggested NAFLD by ultrasonography were confirmed by MR imaging

with a standard torso phased-array coil centered over the liver at 3-T MR imager (Signa Excite

HD; GE Medical Systems, Milwaukee, WI; eight-channel coil). Two experienced radiologists

reviewed images through Osirix and estimated the liver proton density fat fraction (PDFF),

which is a measure of liver fat content [16].

Targeted capture and next-generation sequencing

Genomic DNA was extracted from 2 ml of ethylenediaminetetraacetic acid (EDTA) anticoagulated

peripheral blood using a Qiagen DNA isolation kit (Qiagen, Valencia, CA), fragmented and used

for sample library construction (Illumina Hiseq) according to the manufacturer’s instructions.

Briefly, 1 μg of genomic DNA in 100μl of TE was fragmented to a pool 150–250 bp by Bior-

uptor (Diagenode, Belgium), and then adapters (Invitrogen, USA) were ligated to both ends of

the resultant fragments. The adapter-ligated templates were purified by the MagPure A3 XP

beads (Magen, China). The purified DNA was amplified by ligation-mediated polymerase

chain reaction, purified, and hybridized to lipid metabolism-related genes (LMRG) panel (iGe-

neTech, China) for enrichment. The target genes in LMRP panel including: TM6SF2, ACSS1,

GCKR, ACSS3, ACACB, NR1I2, SREBF1, SREBF2, DGAT2, DGAT1, TNF, LPL, FASN, APOB,

NCAN, FDFT1, PEMT, FATP2 (SLC27A2), DLAT, SLC6A2, MTTP, PPP1R3B, ADIPOQ,

CYP2E1, PPARG, LEP, CPT1, UCP3, UCP1, PPARA, LIPE (HSL), SLC25A20 (CACT), LIPC
(HL), PNPLA3, PNPLA2 (ATGL), CPT2. The hybridized fragments were bound to Streptavidin

Dynabeads (Invitrogen, USA) and washed with proper stringent buffers (iGeneTech, China).

The captured products were quantified with the Qubit dsDNA HS Assay Kit (Invitrogen,

USA). Paired-end sequencing, which reads 150 bases from each end of the fragment for tar-

geted libraries, was performed using Illumina HiSeq Xten and Illumina MiSeq instrumenta-

tion (Illumina, San Diego, CA).
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Genetic variation detection and verification

Generated sequences in the clean reads were mapped the NCBI human reference genome

(hg19/GRCh37) with Burrows-Wheeler Aligner, after using a quality filter (Trimmomatic) to

remove reads containing sequencing adapters and low-quality reads. A low-quality read was

defined as quality score less than 20 or a read shorter than 40 bases. Duplicates were marked

using Picard (v1.54) software (http://picard.sourceforge.net/). GATK (Genome Analysis

Toolkit) was used for calling SNPs and InDels. Annotation and classification for SNPs and

InDels were obtained through ANNOVAR. The data was identified by dbSNP database

(http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi), 1000 human genomes data-

base (www.1000genomes.org/), and iGeneTech database (a database that is built on Whole

Exome Sequencing based study of genetic risk for NAFLD, consisting of 2000 healthy Chinese

people across China). Among the iGeneTech database, the 800 Han Chinese subjects were

used as in-house controls. The inhouse controls were confirmed without NAFLD, metabolic

disorders, diabetes mellitus, obesity, autoimmune hepatitis, dyslipidemia, or any family history

of above diseases.

The variants were then selected using additional filter as following steps. First, the muta-

tions in untranslated regions and splicing sites were removed. Then, the variants without func-

tional prediction in at least one of the 4 algorithms (SIFT23, PolyPhen-2, Mutation Taster, and

GERP++) that we used to investigate disease-causing potentials were discarded. Furthermore,

the alterations that had more than 15% minor allele frequency (MAF) in one of the three data-

bases of 1000 genomes, ESP6500si, and iGeneTech, or without MAF reported in the three

databases were filtered. Finally, mutations without identification were excluded. The selected

mutations were verified by Sanger sequencing.

Statistical analysis

SPSS v19.0 statistical software (StataCorp) was used for all the statistical analyses. Continuous

variables were represented as the means ± SD. The two-tailed t-test was used for comparison

of continuous variables across groups, while the Chi-squared (χ2) test and 1-factor ANOVA

were used for comparisons of categorical variables. A P-value <0.05 was considered statisti-

cally significant. Potential associations between each single nucleotide variations (SNV) and

NAFLD were tested using a χ2 test for single SNP associations. The pair of the two SNVs was

entered as a logistic regression model using Enter selection, and adjusted for the appropriate

demographic variables and metabolic covariates.

Results and discussion

Subject characteristics

Thirty-nine (39%) of the 100 randomly selected obese participants were diagnosed with

NAFLD. Age, sex, height, and systolic blood pressure (SBP) were not significantly different

between the two groups (each P> 0.05). However, compared to the non-NAFLD group,

NAFLD group subjects had higher waist circumference (WC), weight, BMI, and adjusted BMI

values as well as higher levels of ALT, ALP, TG, TC, FFA, LDL-C, and ApoB (P < 0.05 for all

parameters). However, there was no significant difference between the two groups in the levels

of glucose, insulin, HOMA-IR, AST, TB, DB, HDL-C, and ApoA1 (P> 0.05 for all parame-

ters). The demographic and biochemical characteristics of the study groups are described in

Table 1.
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Mutational analysis of genes

The variants that were not on target were excluded, resulting in 494 variants within the 36 target

genes per subject (S1 Table). After completion of analysis steps by the functional filter described

in Methods, 97 nonsynonymous exonic variants per patient were verified (S2 Table). All the

mutations were scored as ’damaging’ by at least 1 of the 4 algorithms (SIFT23, PolyPhen-2,

Mutation Taster and GERP++). Mutation rates in the NAFLD subjects, non-NAFLD subjects

and the in-house controls were compared, using Fisher’s Exact Test (S3 Table). Twenty-six

SNVs were found to be enriched in the subjects with NAFLD when compared with in-house

controls (all P< 0.05) (S3 Table). The 26 SNPs were located in 16 genes; MTTP rs2306986 and

SLC6A2 rs3743788 were significantly higher in subjects with NAFLD compared to non-NAFLD

(OR: 3.879; P = 0.004; OR: 6.667, P = 0.005, respectively), see Table 2.

Table 1. Anthropometric and biochemical characters in NAFLD and non-NAFLD groups (of Han Chinese ethnicity).

Variables NAFLD (N = 39) Non-NAFLD (N = 61) T P value

Sex, M/F 19/20 37/24 1.376 0.241

Age at diagnosis (years) 13.41 ± 2.26 13.54 ± 2.41 0.271 0.787

Systolic BP (mmHg) 123.15 ± 17.62 120.21 ± 12.00 -0.981 0.329

Height (cm) 162.79 ± 12.61 162.07 ± 13.29 -0.266 0.791

Weight (kg) 78.78 ± 16.84 68.27 ± 13.94 -3.225 0.002

BMI (kg/m2) 29.64 ± 3.76 26.19 ± 2.63 -5.343 <0.001

Adjusted BMI (kg/m2) 4.66 ± 0.59 0.71 ± 0.39 -5.794 <0.001

WC (cm) 98.07 ± 9.31 87.41 ± 8.37 -5.380 <0.001

TC (3.1–5.8 mmol/L) 4.58 ± 0.98 3.61 ± 0.71 -5.715 <0.001

TG (0.23–1.7 mmol/L) 1.75 ± 0.74 1.08 ± 0.47 -5.531 <0.001

FFA (2.07–4.1 mg/dL) 0.63 ± 0.20 0.53 ± 0.17 -2.558 0.013

HDL-C (0.9–1.8 mmol/L) 1.08 ± 0.28 1.06 ± 0.19 -0.151 0.709

LDL-C (2.07–4.1 mmol/L) 3.03 ± 0.68 2.45 ± 0.49 -4.617 <0.001

ApoA1 (1.05–2.05 g/L) 1.23 ± 0.25 1.19 ± 0.23 -0.744 0.459

ApoB (0.55–1.3 g/L) 1.04 ± 0.18 0.85 ± 0.24 -4.549 <0.001

ApoB/ApoA1 0.786 ± 0.037 0.779 ± 0.038 -0.118 0.906

Glucose (3.1–5.6 mg/dL) 5.42 ± 0.43 4.92 ± 0.15 -1.104 0.275

Insulin (1.9–23 μU/mL) 20.94 ± 2.90 31.65 ± 7.55 0.602 0.549

HOMA-IR 4.79 ± 0.72 3.43 ± 0.68 -1.364 0.176

TB (0.9–17.1 μmol/L) 10.54 ± 0.84 9.57 ± 0.53 -0.969 0.336

DB (0–6.08 μmol/L) 3.07 ± 0.48 2.38 ± 0.147 -1.623 0.108

ALT (0–40 IU/L) 65.44 ± 10.83 17.93 ± 1.05 -5.439 <0.001

AST (0–40 IU/L) 40.77 ± 4.79 32.44 ± 6.31 -1.562 0.120

ALP (40–500 IU/L) 246.90 ± 13.56 264.92 ± 7.85 2.921 0.005

Lipid content 21.60 ± 3.19 11.25 ± 1.63 -3.169 0.002

WC, waist circumference; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; TB, total serum bilirubin; DB,

direct bilirubin; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoproteins cholesterol; LDL-C, low-density lipoproteins cholesterol; ApoA1,

apolipoprotein A1; ApoB, apolipoprotein B.

https://doi.org/10.1371/journal.pone.0185396.t001

Table 2. Comparison of mutation rate in MTTP rs2306986 and SLC6A2 rs3743788 between NAFLD group and non-NAFLD group (of Chinese Han

ethnicity).

SNV NAFLD (n = 39) Non-NAFLD (n = 61) χ2 value OR P-value

MTTP rs2306986 19/20 12/49 9.331 3.879 0.004

SLC6A2 rs3743788 10/29 3/58 7.294 6.667 0.005

https://doi.org/10.1371/journal.pone.0185396.t002
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We further compared physical and biochemical findings between the subjects with and with-

out variants of the two genes, and found that WC and the levels of ALT, TC, LDL, lipid content,

and ApoB were significantly higher in the subjects with MTTP rs2306986 variant (P = 0.025,

0.001, 0.001, 0.005, 0.002, and<0.001, respectively), as shown in Table 3. The level of TG, TC,

and ApoB was significantly higher in the subjects with SLC6A2 rs3743788 variant (p = 0.007,

0.029, and 0.003, respectively), as shown in Table 4. Binary logistic regression analysis indicated

the MTTP rs2306986 was a risk factor for NAFLD (OR: 3666.537, P = 0.043), as shown in Table 5.

Discussion

This study revealed several interesting findings in phenotypes and genotypes of children with

NAFLD.

NAFLD was detected in 39% of the obese children in this study—lower than the 68.7%

reported by Kodhelaj et al [17], 55.1% by Lin et al [18], and 42.9% by Duarte et al [19], but

higher than the percentages reported by Pozzato et al (34.6%) [20] and Guijarro et al (30%)

[21]. The difference in NAFLD may reflect the differences among the ethnic populations.

Table 3. The comparison of anthropometric and biochemical characteristics based on the presence of variation of MTTP rs2306986 (subjects of

Han Chinese ethnicity).

Variables MTTP rs2306986 T-test or χ2 test

A (N = 69) B (N = 31) T or F P value

Sex (M/F) 25/44 9/22 0.494 0.482

Age 13.23 ± 2.55 14.06 ± 1.67 1.662 0.100

Height 160.98 ± 13.91 165.33 ± 10.21 1.530 0.129

Weight 71.15 ± 16.63 75.36 ± 14.24 1.216 0.227

BMI 27.38 ± 3.63 27.86 ± 3.31 0.625 0.534

Adjusted BMI 1.844 ± 0.46 3.15 ± 0.66 1.588 0.116

WC 90.04 ± 10.63 95.38 ± 8.02 2.284 0.025

SBP 120.58 ± 14.06 123.13 ± 15.52 0.807 0.422

Glucose 5.14 ± 0.28 5.09 ± 0.17 -0.111 0.912

Insulin 31.96 ± 15.49 17.51 ± 2.81 -0.626 0.533

HOMA-IR 4.02 ± 0.68 3.85 ± 0.59 -0.151 0.881

TB 9.90 ± 0.54 10.05 ± 0.87 0.145 0.885

DB 2.38 ± 0.15 3.25 ± 0.58 1.958 0.053

ALT 25.48 ± 2.30 60.90 ±13.91 3.585 0.001

AST 24.35 ± 9.91 49.90 ± 18.78 2.023 0.046

ALP 277.90 ± 80.95 272.39 ± 81.19 -0.315 0.754

TG 1.32 ± 0.08 1.38 ± 0.12 0.435 0.664

Cholesterol 3.77 ± 0.87 4.46 ± 0.94 3.593 0.001

FFA 0.56 ± 0.02 0.58 ± 0.03 0.277 0.783

HDL 1.05 ± 0.03 1.12 ± 0.05 1.533 0.129

LDL 2.55 ± 0.60 2.93 ± 0.62 2.894 0.005

ApoA1 1.18 ± 0.24 1.25 ± 0.23 1.175 0.243

ApoB 0.84 ± 0.03 1.11 ± 0.02 6.044 0.000

ApoB/ApoA1 0.778 ± 0.035 0.792 ± 0.041 -0.257 0.798

Lipid content 12.82 ± 2.00 20.77 ± 2.80 -0.125 0.026

Diagnosis (N/n) 20/49 19/12 10.148 0.002

A, without variation; B, with variation; N, NAFLD; n, non-NAFLD; WC, waist circumference; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; ALP, alkaline phosphatase; TB, total serum bilirubin; DB, direct bilirubin; TG, triglyceride; TC, total cholesterol; HDL-C, high-density

lipoproteins cholesterol; LDL-C, low-density lipoproteins cholesterol; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B.

https://doi.org/10.1371/journal.pone.0185396.t003
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We found that the BMI was significantly higher in the NAFLD group than in the non-

NAFLD group, thus demonstrating that BMI may have significantly contributed to pediatric

NAFLD development. This finding was consistent with the report that BMI was an indepen-

dent risk factor for the formation of fatty liver [22].

On the other hand, we found no significant difference between the two groups in levels of

insulin, glucose, and HOMA-IR. As previously reported, NAFLD was not associated with insu-

lin secretion and insulin sensitivity in young obese children with strictly matched sex, age,

pubertal status, and BMI [23]. These findings further supported our focus on hepatic lipid

metabolism in this study [24].

Selecting candidate genes is challenging in the study of genetic polymorphism of NAFLD.

To avoid arbitrariness, we selected the 36 genes involved in hepatic lipid metabolism in various

ways including lipid synthesis, transmembrane lipid transport, lipolysis, and lipid oxidation.

Table 4. The comparison of anthropometric and biochemical characters between subjects with and without the SLC6A2 rs3743788 variant (sub-

jects of Han Chinese ethnicity).

Variables SLC6A2 rs3743788 T-test or χ2 test

A (N = 87) B (N = 13) T or F P value

Sex (M/F) 56/31 10/3 0.333 0.564

Age 13.43 ± 2.42 13.84 ± 1.67 -0.587 0.559

Height 161.58 ± 13.41 167.26 ± 8.46 -1.479 0.143

Weight 71.36 ± 16.08 79.84 ± 13.43 -2.062 0.054

BMI 27.41 ± 3.61 28.26 ± 2.94 -0.983 0.360

Adjusted BMI 2.08 ± 0.41 3.33 ± 1.05 -1.106 0.285

WC 91.19 ± 10.21 94.64 ± 9.71 -1.132 0275

SBP 121.19 ± 13.63 122.69 ± 19.92 -0.263 0.797

Glucose 5.13 ± 0.22 5.04 ± 0.33 0.224 0.825

Insulin 28.33 ± 12.26 21.47 ± 6.06 0.502 0.617

HOMA-IR 3.77 ± 0.52 5.23 ± 1.80 -0.777 0.450

TP 71.09 ± 4.14 70.38 ± 3.99 0.600 0.557

ALB 42.21 ± 3.48 41.84 ± 2.87 0.433 0.670

TB 10.12 ± 0.58 8.78 ± 1.00 1.197 0.246

DB 2.70 ± 0.23 2.32 ± 0.43 0.780 0.445

ALT 33.06 ± 4.83 59.23 ± 17.71 -1.426 0.176

AST 31.98 ± 6.78 34.23 ± 5.39 -0.260 0.796

ALP 279.32 ± 82.05 255.23 ± 69.74 1.134 0.272

TG 1.27 ± 0.07 1.80 ± 0.18 -2.793 0.013

TC 3.91 ± 0.92 4.52 ± 0.98 -2.108 0.052

FFA 0.57 ± 0.02 0.56 ± 0.05 0.083 0.935

HDL-C 1.08 ± 0.02 1.04 ± 0.05 0.514 0608

LDL-C 2.64 ± 0.63 2.89 ± 0.62 -1.354 0.195

ApoA1 1.21 ± 0.23 1.20 ± 0.26 0.119 0.906

ApoB 0.89 ± 0.22 1.10 ± 0.26 -2.747 0.015

ApoB/ApoA1 0.787 ± 0.029 0.751 ± 0.069 0.477 0.640

Lipid content 15.19 ± 1.85 15.89 ± 3.33 -0.180 0.859

Diagnosis (N/n) 29/58 10/3 9.033 0.003

A, without variation; B, with variation; N, NAFLD; n, non-NAFLD; WC, waist circumference; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; ALP, alkaline phosphatase; TB, total serum bilirubin; DB, direct bilirubin; TG, triglyceride; TC, total cholesterol; HDL-C, high-density

lipoproteins cholesterol; LDL-C, low-density lipoproteins cholesterol; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B.

https://doi.org/10.1371/journal.pone.0185396.t004
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494 variants in the 36 genes per subject were detected in this cohort, and 97 of them were iden-

tified in each patient after functional filtration. Twenty-six variants in 16 genes were more

prevalent in NAFLD subjects than in-house controls, but did not differ from non-NAFLD

subjects.

Among the 16 genes, ACACB, SREBF1, FASN, ACSS3, and DGAT2 involve lipid synthesis;

APOB, SLC27A2, MTTP, TNF, and SREBF1 participate in lipid influx and export from liver

cells; LIPE (HSL), PNPLA2 (ATGL), and PNPLA3 are involved in lipolysis; and ACACB, DLAT,

PPARG, ADIPOQ, and CPT2 are involved in lipid oxidation. Thus, 16 genes could be associ-

ated with obesity in children. For instance, several of them have been identified in previous

obesity studies including ACACB, ACSS, ADIPOQ, DGAT2, HSL, FASN, PNPLA2, PNPLA3,

PPAR-γ, SREBP1 SNP17 and TNF [25–37].

Furthermore, we found that the mutation rate of MTTP rs2306986 (c.294G>C, p.E98D)

and SLC6A2 rs3743788 (c.1646T>C,p.I549T) was significantly higher in subjects with NAFLD

than that without NAFLD. Our results suggested that the two SNVs were associated with

NAFLD in obese children. Triglycerides are either incorporated into VLDL particles for export

or stored within the hepatocyte. Variations in lipid metabolism may lead to different rates of

lipid accumulation in the hepatocyte.

The human microsomal triglyceride transfer protein (MTTP or MTP) carries lipid transfer

function and is critical for the assembly and secretion of very-low-density lipoprotein (VLDL)

to remove lipid from liver. Thus, changes in the liver lipid secretion efficiency (mediated by

MTTP) can lead to hepatic steatosis [38]. Several lines of evidence have shown that MTTP
polymorphisms may modulate the lipid homeostasis and may eventually lead to a high risk for

NAFLD if such function is compromised because of genetic variation.

A large number of genetic polymorphisms in the MTP gene have been identified. In

MTTP-knockout mice, there was a striking reduction in VLDL triglyceride accompanied by

hepatic steatosis [39, 40]. The MTP -493G/T and GG polymorphism (rs1800591) have been

implicated in the pathogenesis of NAFLD [41–44]. The GG genotype was associated with

increased steatosis and histological NASH grade in NASH patients [45–48]. The 297H

(rs2306985) variant increased the NAFLD risk by interaction with age, insulin resistance, and

BMI [49]. The SNP -164 T/C (rs1800804) was associated with an increased risk of NAFLD in

the Han Chinese population according to Peng et al [50].

Table 5. Logistic regression for the two significant variants in subjects with and without NAFLD (subjects of Han Chinese ethnicity).

Model term B S.E. Wald OR 95% C.I. P value

Constant -137.113 62.971 4.741 0.000 0.029

Ajusted MBI 1.822 0.881 4.275 6.185 1.099, 34.794 0.039

WC 0.749 0.350 4.588 2.115 1.066, 4.196 0.032

HOMAIR 0.321 0.230 1.952 1.378 0.879, 2.162 0.162

TG 4.300 2.602 2.732 73.736 0.450, 12090.635 0.098

FFA 26.608 13.050 4.157 3.595E11 2.802, 4.613E22 0.041

TC 4.578 2.430 3.551 97.335 0.832, 11383.280 0.060

LDL-C 2.151 4.610 0.218 8.593 0.001, 72201.079 0.641

ApoB 14.032 8.067 3.026 1241762.292 0.169, 9.130E12 0.082

MTTP rs2306986 8.207 5.605 2.144 3666.537 0.062, 2.165E8 0.043

SLC6A2 rs3743788 0.608 2.298 0.070 1.837 0.020, 165.875 0.791

SLC6A2 rs3743788* MTTP rs2306986 -4.628 4.862 0.906 0.010 0.000, 134.467 0.341

BMI, body mass index; HOMA-IR,homeostasis model assessment of insulin resistance; WC, waist circumference

https://doi.org/10.1371/journal.pone.0185396.t005
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These studies reasoned that common functional polymorphism in the human MTP gene

may result in decreased protein production and inefficient regulation of hepatic lipid metabo-

lism, thus contributing to the development of NAFLD [38, 51]. The mutation identified at

rs2306986 in this study represents a new MTP variant and the impact on the function, as was

predicted by PolyPhen-2, ranked as “possible damaging” with a score of 0.712 (sensitivity:

0.86; specificity: 0.92). This variant may alter gene expression to impair the function of MTP

protein, contributing to the development of NAFLD.

Possible involvement of SLC6A2 in NAFLD pathogenesis has not been investigated.

SLC6A2 gene encodes the norepinephrine transporter (NET), which is responsible for reup-

take of norepinephrine into presynaptic nerve terminals and is a regulator of norepinephrine

homeostasis. NET exerts a fine regulation of norepinephrine-mediated behavioral and physio-

logical effects including mood, depression, feeding behavior, and cognition [52]. Individual

variations in this gene were implicated in susceptibility to abnormal human behavior includ-

ing depression and attention deficit [53]. Different combinations of T-182C and the G1287A

polymorphisms of NET gene might increase morbidity risk in major depressive subpopula-

tions [54]. In patients with major depressive disorder, there seemed to be a relationship

between the volume of the dorsolateral prefrontal cortex and polymorphism of the SLC6A2
G1287A gene [54]. Furthermore, there was a correlation between the NET T1-82C polymor-

phism and the susceptibility to depression [55–57].

Depression was reported to be a risk factor for NAFLD [58]. The major depressive disorder

was associated with more severe liver steatosis and poor treatment outcomes in patients with

NAFLD [59]. In patients with NAFLD, depression was associated with more severe ballooning

changes in hepatocytes [60]. Childhood obesity was associated with depression as reported

by an Australia study [61]. Taken together, SLC6A2 polymorphisms may indirectly impact

hepatic lipid metabolism by swinging psychological mood in obese children.

Moreover, the Reactome study (www.reactome.org) indicated that SLC6A2 (NET1) was

associated with transport of hexose (glucose, fructose, metal ions), which correlated with

coronary artery disease, height, glucose, and blood pressure according to the genome-wide

association study. Furthermore, reactome reports that norepinephrine and epinephrine

inhibit insulin secretion and they are the substrate of NET1; NET1 function is inversely regu-

lated by insulin [62]. NAFLD is closely associated with insulin resistance and type 2 diabetes.

The association of SLC6A2 polymorphisms with NAFLD may be mediated through insulin

resistance.

There are limitations in this study. First, this cohort consisted of a relatively small sample

and therefore our results need to be verified in multicenter-based large cohorts. Second, genetic

variants detected in NAFLD should also be compared with well-matched normal healthy sub-

jects, not just with in-house controls. Third, MTP appeared to be an important gene and its var-

iants may have altered lipid metabolism, leading to NAFLD in obese children. However, we

were not able to analyze MTP expression at mRNA and protein levels in this cohort. Finally, the

ethnicity limitation was that only Han Chinese subjects were included in the present study and

the genetic risk factor for NAFLD may differ among different ethnicities.

Conclusions

In this study, we analyzed genetic variants of 36 genes involved in lipid metabolism in 100 obese

children. We found that the MTTP rs2306986 (p< 0.05) and SLC6A2 rs3743788 (p< 0.05) var-

iants were significantly associated with NAFLD. The presence of SNV (rs2306986) in the MTTP
gene was an independent risk factor for the susceptibility to NAFLD in obese children while the

SLC6A2 polymorphism may exert indirect effect on the development of NAFLD. The identified
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association of gene polymorphism and NAFLD may point to a more effective treatment

strategy.
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