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Abstract

Motivation: Accurate prediction of protein contact-map is essential for accurate protein structure and function
prediction. As a result, many methods have been developed for protein contact map prediction. However, most
methods rely on protein-sequence-evolutionary information, which may not exist for many proteins due to lack of
naturally occurring homologous sequences. Moreover, generating evolutionary profiles is computationally inten-
sive. Here, we developed a contact-map predictor utilizing the output of a pre-trained language model ESM-1b as an
input along with a large training set and an ensemble of residual neural networks.

Results: We showed that the proposed method makes a significant improvement over a single-sequence-based pre-
dictor SSCpred with 15% improvement in the F1-score for the independent CASP14-FM test set. It also outperforms
evolutionary-profile-based methods trRosetta and SPOT-Contact with 48.7% and 48.5% respective improvement in
the F1-score on the proteins without homologs (Neff¼ 1) in the independent SPOT-2018 set. The new method pro-
vides a much faster and reasonably accurate alternative to evolution-based methods, useful for large-scale
prediction.

Availability and implementation: Stand-alone-version of SPOT-Contact-LM is available at https://github.com/jas-
preet/SPOT-Contact-Single. Direct prediction can also be made at https://sparks-lab.org/server/spot-contact-single.
The datasets used in this research can also be downloaded from the GitHub.

Contact: jaspreetsingh2@griffithuni.edu.au or k.paliwal@griffith.edu.au or zhouyq@szbl.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The past two decades have seen many developments in the field of
protein structure prediction (Cheng et al., 2019; Hanson et al., 2020;
Liu et al., 2021). Significant headway has been observed specifically
for protein secondary structure prediction and contact- and distance-
map prediction (Fang et al., 2018; Hanson et al., 2019; Li et al.,
2019; Wang et al., 2016; Wu et al., 2020). These improvements have
ultimately led to a considerable improvement in protein tertiary struc-
ture prediction, as observed in CASP13 (Cheng et al., 2019).

Protein contact maps have been predicted by statistical inference
based on Potts model and deep learning-based predictors. The pre-
dictors based on statistical inference are CCMpred (Seemayer et al.,
2014), Gremlin (Ovchinnikov et al., 2014), EVFold (Sheridan et al.,

2015), plmDCA (Ekeberg et al., 2014), FreeContact (Kaján et al.,
2014) and MetaPSICOV (Jones et al., 2015). These methods were
further improved by supervised deep learning-based methods such
as RaptorX-Contact (Wang et al., 2017), DeepCov (Jones and
Kandathil, 2018), SPOT-Contact (Hanson et al., 2018) and
trRosetta (Wu et al., 2020).

A common trait among these methods is the use of multiple se-
quence alignment (MSA) and other homology-based profile infor-
mation. However, many proteins have very few or no homologs to
generate MSA and homology profiles (Ovchinnikov et al., 2017). In
this case, their performance drops significantly (Chen et al., 2020).
Thus, it becomes essential to develop a method that predicts protein
contact maps without using homologous information.
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SSCpred (Chen et al., 2020) is a recently published method that
predicts contact maps using the one-hot encoding of the fasta se-
quence and the predicted one-dimensional structural properties of
SPIDER3-Single (Heffernan et al., 2018). The method uses a fully
convolutional model with 30 ResNet blocks. The method performs
adequately for proteins with few homologs but relatively poorer for
those proteins with more effective homologs when compared to
MSA-based techniques (Chen et al., 2020). This limitation is
expected as single-sequence-based method provides less information
for the neural network to learn.

To improve the performance of single-sequence-based methods
for the proteins with few homologs, there is a need for exploring
other possible features beyond one-hot encoding. Recently, unsuper-
vised deep learning methods were introduced to extract features
inspired by Natural Language Processing’s language models (LM)
(Elnaggar et al., 2020; Heinzinger et al., 2019; Rao et al., 2019;
2020). These methods are trained on protein reference libraries such
as UniRef (Suzek et al., 2007), Uniclust (Mirdita et al., 2017), Pfam
(Bateman et al., 2004) and BFD (Steinegger et al., 2019b; Steinegger
and Söding, 2018). Recently published protein LM ESM-1b trained
on UniRef50 used a Transformer-34 model to generate unsupervised
embedding and attention map (Rao et al., 2020). ESM-1b’s embed-
ding was further used to predict the secondary structure and its at-
tention map to train a downstream contact map prediction.
However, a single layer regression model may not fully utilize the
capability of the LM. Using an attention map for contact map pre-
diction is intuitive because of natural 2D mapping.

In this work, we examined the use of ESM-1b’s attention map as
an input feature for our model to improve the contact-map predic-
tion of our single-sequence-based method. We demonstrated that
unsupervised learning features concatenated with one-hot encoding
and SPOT-1D-Single’s outputs (Singh et al., 2021b) outperform the
single-sequence-based SSCpred and the MSA-based predictors for
proteins with a low effective number of homologous proteins (Neff).
We also showed that an ensemble of models trained through differ-
ent training approaches and different feature combinations adds to
this improvement.

2 Materials and methods

2.1 Datasets
The datasets obtained here are same as those used in SPOT-1D-
Single (Singh et al., 2021b). Briefly, to curate a dataset, we utilized
the benchmark dataset prepared by ProteinNet (AlQuraishi, 2019).
It consists of 50 914 proteins submitted to PDB before 2016 with
high resolution (< 2.5 Å) crystal structures and clustered at sequence
identity cut-off at 95% according to MMseqs2 tool (Steinegger and
Söding, 2017). ProteinNet provides a number of datasets at different
sequence identity cut-offs, but we chose the dataset with the se-
quence identity cut-off of 95% for training to obtain as much data
as possible to harness the full capabilities of recent deep learning
algorithms.

To efficiently validate models during training and minimize pos-
sible over-fitting, we separated 100 proteins from the ProteinNet set
and compared their Hidden Markov Models generated by HHblits
with the Hidden Markov Models of other proteins in the training
dataset and validation set using HHblits. Any proteins, which had
hits with these 100 validation proteins at an e-value cut-off of less
than 0.1, were removed. This left us with the final 39 120 proteins
for the training set. After removing any proteins with a length more
than 500 from both the training and validation sets, the final train-
ing and validation sets have 34 691 and 88 proteins, respectively.

For independent testing and comparison, we downloaded all
protein structures released between May 2018 and April 2020. As it
can be insufficient to remove homologous sequences, we removed
any potential homologs in the training set to the test data by com-
paring the Hidden Markov Models of all post-2018 proteins to the
Hidden Markov Models of all pre-2018 proteins using the HHblits
tool at an e-value cut-off of less than 0.1 (Steinegger et al., 2019a).
This led to 669 proteins as a stringent test set named SPOT-2018.

To test how predictors perform on de-novo proteins and proteins
without homologs, we separated 46 proteins from SPOT-2018
which have Neff¼1 forming a test set called Neff1-2018. This pro-
vides a reliable, stringent and completely independent benchmark to
compare the performance of different predictors on sequentially

Fig. 1. Overview of the model pipeline

Table 1. A description of feature combinations for the ensemble of trained models

Models Features Training strategy

Model1 Attention map (last layer) Direct inter-residue contact prediction

Model2 Attention map (all layers) Direct inter-residue contact prediction

Model3 Attention map (all layers) þ one-hot encoding þ SPOT-1D-Single Direct inter-residue contact prediction

Model4 Attention map (last layer) Inter-residue distance bin prediction

Model5 Attention map (all layers) Inter-residue distance bin prediction

Model6 Attention map (all layers) þ one-hot encoding þ SPOT-1D-Single Inter-residue distance bin prediction
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isolated proteins. Neff is calculated with respect to the reference
Uniclust30 dataset (Published February 2020).

Apart from SPOT-2018 and Neff1-2018, we used an additional
independent test set CASP14-FM. This test set includes 15 free mod-
eling targets released at CASP14 (Liu et al., 2021). Free modeling
targets are those proteins without known structural templates in the
protein databank at the time of release. Supplementary Table S1
provides a brief description of the test sets utilized in this study.

2.2 Input features
To train an ensemble of neural networks proposed in this method,
we used multiple combinations of several features, including one-
hot encoding of amino acids, the output of SPOT-1D-Single (Singh
et al., 2021b) and attention maps from ESM-1b (Rao et al., 2020).
One-dimensional features of one-hot encoding and the output of
SPOT-1D-Single were converted into two-dimensional features
using an outer concatenation. From SPOT-1D-Single, we obtained
the probabilities of three-state-secondary-structure (SS3) and
eight-state-secondary structure (SS8), Solvent Accessible Surface
Area (ASA), Half-Sphere-Exposure (HSE) and protein backbone
torsion angles w, /, h and s (Singh et al., 2021b). Please note that
the training, validation and test sets used here were originated
from the same sets in SPOT-1D-Single except for those proteins
with their sequence lengths of more than 500 amino acid residues
were removed in this work. Thus, the possibility of overtraining is
avoided. Attention maps from ESM-1b were gathered by using all
twenty attention heads from the last layer of the transformer as
well as twenty attention heads from every layer of the ESM-1b
model. For both cases, we symmetrized and applied average prod-
uct corrections to the extracted attention maps as done by (Rao
et al., 2020).

2.3 Performance evaluation
The aim of this research is to predict which amino acid pairs in a
protein are in contact. Following the standard CASP definition
(Ezkurdia et al., 2009), protein residues are considered to be in
contact when there is an inter-residue distance of �8.0 Å between
two Cb atoms. A contact between two residues is classified into
three types: long (at least 24 residues apart), medium (between 12
and 23 residues apart) and short (between 7 and 11 residues apart)

ranges. For these three types of contacts, we calculated top L/10,
L/5, L/2 and L/1 highest-ranked predictions in terms of precision.
For further assessment in this work, we also calculated the overall
F1-score, Matthews Correlation Coefficient (MCC) (Chicco and
Jurman, 2020), Sensitivity, Area Under Curve of Precision–Recall
Curve (AUC) and Area Under Curve of Receiver Operating
Characteristic (ROC) of short-, medium- and long-range contacts,
together. We also obtained the F1-score, MCC, sensitivity for our
model and all other predictors at the maximum F1-score cut-off
for the dataset.

2.4 Neural networks
Our deep neural network architecture was inspired by the success of
the ResNet architecture in protein contact-map and RNA secondary
structure prediction (Singh et al., 2021a; Wang et al., 2017). In this
article, we use a 12 block ResNet, which is the maximum depth that
we could train on the available GPU. Instead of using vanilla
ResNet models, we used a recently published version of ResNet
(Duta et al., 2020). This improved version of ResNet was shown to
perform better than vanilla and pre-act ResNet for both image and
video-based tasks. Here, we applied this architecture for the inter-
residue contact prediction problem.

As shown in Figure 1, we used convolutional layers with a
channel size of 64 and kernel size of 3. We trained six models
with the same architectural specifications but different input fea-
ture combinations as described in Table 1. The first three models
in Table 1 were trained to predict the inter-residue contacts as a
binary classification, while for the last three models, we pre-
dicted inter-residue distances as distance bins, and then we
added the probabilities within the bins for the distances between
0 and 8 Å.

The direct contact-map prediction models were trained using
Binary Cross-Entropy loss, while the distogram-based prediction
models were trained using Cross-Entropy loss. Apart from this
major difference, other model hyperparameters and specifications
are the same. This includes using the Adam optimizer with a learn-
ing rate of 0.001 and a batch size of 1. To avoid overfitting, all mod-
els were trained with early stopping of 3.

Table 2. Comparison of model precision by using ResNet12 trained on different feature combinations for long-range contacts on the

SPOT-2018 test set

Model Medium range contacts Long range contacts

L/10 L/5 L/2 L/1 L/10 L/5 L/2 L/1

1 One-hot encoding 20.79 17.39 13.04 9.98 7.02 6.15 5.04 4.40

2 One-hot encoding þ SPOT-1D-Single 21.40 18.00 13.90 10.20 10.00 8.12 7.06 5.40

3 ESM-1b attention map (last layer only) 39.17 31.84 21.75 14.84 35.14 30.34 22.75 17.02

4 ESM-1b attention map (all layers) 40.03 32.83 22.49 15.26 36.03 30.92 23.75 18.13

5 All features 42.03 34.38 23.32 15.65 38.75 33.23 25.22 18.94

Table 3. Precision comparison of two training strategies: direct con-

tact prediction, and distogram contact prediction for medium-, and

long-range contacts on the SPOT-2018 set

Model Medium range contacts Long range contacts

L/10 L/5 L/2 L/1 L/10 L/5 L/2 L/1

Direct

Contact

Prediction

42.03 34.38 23.32 15.65 38.75 33.23 25.22 18.94

Distogram

Contact

Prediction

40.52 33.37 22.59 15.33 37.43 32.22 24.31 18.44

Table 4. Comparison of individual model precision to the precision

of the ensemble of models for long-range and medium-range con-

tacts on the SPOT-2018 test set

Model Medium range contacts Long range contacts

L/10 L/5 L/2 L/1 L/10 L/5 L/2 L/1

Model1 39.17 31.84 21.75 14.84 35.14 30.34 22.75 17.02

Model2 40.03 32.83 22.49 15.26 36.03 30.92 23.75 18.13

Model3 42.03 34.38 23.32 15.65 38.75 33.23 25.22 18.94

Model4 38.52 31.53 21.86 14.85 35.32 30.19 22.80 17.20

Model5 40.16 32.85 22.13 14.93 37.34 31.82 23.87 17.77

Model6 40.52 33.37 22.59 15.33 37.43 32.22 24.31 18.44

Ensemble 42.43 34.41 23.63 15.88 39.60 34.35 25.94 19.62
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2.5 Method comparison
We compared SPOT-Contact-LM with LM’s supervised regression
contact-map predictor ESM-1b, single-sequence-based SSCpred,
profile-based-predictors trRosetta and SPOT-Contact. The above-
stated methods trRosetta, SPOT-Contact and ESM-1b have stand-
alone programs available online from https://github.com/gjoni/
trRosetta, https://sparks-lab.org/server/spot-contact/ and www.github.
com/facebookresearch/esm, respectively. Input to all profile-based
methods including trRosetta was obtained from SPOT-Contact MSA
generation pipeline for benchmarking purposes. For SSCpred, we uti-
lized the web-server available online from http://csbio.njust.edu.cn/bio
inf/sscpred/ due to lack of its stand-alone version.

3 Results

3.1 Feature importance
To understand the effect of different features, we trained a
ResNet12 architecture on different input features and compared

their performance on the test (SPOT-2018) set. For example,
Table 2 shows that the model trained on the one-hot encoding of the
fasta sequence only predicts the contact-map with top L/5 precision
of 17% and 6% on medium- and long-range contacts. Adding the
output of SPOT-1D-Single (a single-sequence-based predictor) to
one-hot encoding improved the L/5 long range precision by 32%
but only 3% for medium range contacts. By comparison, using the
attention map output from the unsupervised learning method, ESM-
1b significantly boosted the performance. The attention maps
extracted from the last layer of the ESM-1b lead the L/5 precision to
31.8 and 30.3 on the medium and long-range contacts, respectively.
These two results are 177% and 373% improvement over the model
trained on SPOT-1D-Single þ one-hot encoding. Using the attention
maps extracted from all layers of ESM-1b further improves over
using last layer only. Similar trends in terms of F1, MCC, precision
and AUC of ROC are observed for using all ESM-1b attention maps
as shown in Supplementary Table S2. As expected, concatenating all
features together [one-hot encoding þ SPOT-1D-Single þ ESM-1B
attention maps (all layers)] further showed a noticeable increase of

L/10 L/5 L/2 L/1 L/10 L/5 L/2 L/1 L/10 L/5 L/2 L/1
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7.4% for L/5 precision of long-range contact over using ESM-1b at-

tention maps only. Similar trends were observed for precision at
other length cut-offs. Thus, a combination of one-hot encoding,

SPOT-1D-Single and ESM-1b attention maps (all layers) was used
for this work.

3.2 Direct versus distance contact-map prediction
To predict protein contact maps, we examined two different
training strategies: direct contact-map prediction and distogram-
based contact-map prediction by training a ResNet12 on one-hot

encoding, SPOT-1D-Single’s output and ESM-1b’s attention
maps concatenated together. Table 3 and Supplementary Table

S3 shows that direct contact-map prediction performs slightly
better, but the difference between the two training strategies is

small. Thus, both strategies were used in different models for our

final ensemble.

3.3 Ensemble learning performance
We further trained six different models with three best feature com-

binations using both distogram and direct contact prediction. We
then ensembled the results of all six models to gain improvement

over individual models by taking the mean of individual models. To
understand the improvement gained, Table 4 presents the results of
the selected six individual models and the ensemble of the six models

on the validation set. The performance of the ensemble (SPOT-
Contact-LM) is the highest among all individual models. For

example, there is 2.1%, 3.3%, 2.8% and 3.5% improvement in pre-
cision over the best performing individual model for top L/10, L/5,
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L/2 and L long-range predictions, respectively. This performance
gain is consistent across all other measures as shown in
Supplementary Table S4.

3.4 Method comparison
Because our method does not use MSA, it is of interest to compare
all methods (MSA-based and single-sequence-based) on the proteins
without homologous sequences (Neff¼1). Figure 2 compares
SPOT-Contact-LM (this work) with ESM-1b (LM), SPOT-Contact
(MSA-based) and trRosetta (MSA-based) for those proteins with
Neff¼1 in the SPOT-2018 set (Neff1-2018). The evolution-based
techniques (SPOT-Contact and trRosetta) achieve similar perform-
ance as ESM-1b with long-range L/5 precision around 16%. By
comparison, the long-range L/5 given by SPOT-Contact-LM is 47%
improvement with 24%. The improvement is consistently observed
for other length cut-offs for medium- and long-range precision.
Similar trends are also found across other performance measures,
including F1-score, MCC, Sensitivity, AUC and ROC, as shown in
Supplementary Table S5. To further confirm that the Neff1 proteins
are not artifacts caused by a sequence library mismatch, we recalcu-
lated Neff for all protiens in Neff1-2018 using UniRef50 2018-03
release, the dataset that was used for training ESM-1b. Forty one
proteins of the 46 proteins in the Neff1-2018 still have Neff¼1 and
the trends are the same as shown in Supplementary Table S6.

The above comparison, however, is not made on the same net-
work. To examine the impact of profile and LM-based features on
the same network, we trained the single ResNet12’s model using the
features used by SPOT-Contact and by PSSM and HMM alone. The
models were trained following the same training strategy as SPOT-
Contact-LM. The results of the models tested on Neff1-2018 is
shown in Supplementary Table S7. Again, SPOT-Contact-LM sig-
nificantly outperforms the models based on the features used by
SPOT-Contact and by PSSM and HMM alone for the dataset of
Neff1-2018.

To illustrate the effect of homologous sequences, we plotted the
F1-score of different predictors as a function of the Neff values in
Figure 3. The performance of the profile-based predictors improves
over SPOT-Contact-LM as Neff increases. In other words, SPOT-
Contact-LM is not yet as competitive as evolution-based methods.
This is because MSA of homologous sequence can provide co-
mutation information more effectively than unsupervised learning.

The native and predicted contact-maps from SPOT-Contact-LM,
SPOT-Contact, trRosetta and ESM-1b on an example protein
(5YKZ_A) from Neff1-2018 are presented in Figure 4, which shows
SPOT-Contact-LM provided a more accurate prediction of the
contact-map for this low Neff protein, with the F1-scores of 0.215,
0.235, 0.252 and 0.388 for SPOT-Contact, trRosetta, ESM-1b and
SPOT-Contact-LM, respectively.

3.5 Comparison with SSCpred
SSCpred is a single-sequence-based contact-map predictor that used
the proteins released till 2019 April for training. To make a fair
comparison, we compared SSCpred to other predictors on the
CASP14-FM dataset. Table 5 shows that SPOT-Contact-LM per-
forms much better than ESM-1b and SSCpred with long-range preci-
sion of 19%, 19%, 15% and 12% for length cut-offs of L/10, L/5,
L/2 and L/1, respectively. These improvements are 50–110% better

than SSCpred at different length cut-offs. The difference perform-
ance is smaller for medium-range. Supplementary Table S8 shows
that the F1-score of SPOT-Contact-LM is higher than SSCpred.

4 Discussion

In this article, we have developed a new protein contact-map pre-
dictor which uses the pretrained features from a transformer LM as
input to predict contact maps without using homologous sequences.
We used an ensemble of ResNet-based architectures trained on mul-
tiple combinations of several features and a large training set of
almost 35 000 proteins with validation and test sets that are non-
redundant to all training proteins according to HHsearch. The
accuracy of SPOT-Contact-LM is higher than the evolutionary-
profile-based SPOT-1D and trRosetta when the number of effective
homologous sequence is low. This highlights that SPOT-Contact-
LM can be used as a reasonably accurate screening tool for protein
contact map prediction.

Using ESM-1b attention map in SPOT-Contact-LM makes it not
possible to directly predict contact maps for proteins with more
than 1024 amino acids. This should not prevent the use of SPOT-
Contact-LM for large proteins because proteins are usually made of
domains with less than 1000 residues.

A point of interest could be to profile our method (SPOT-
Contact-LM) against a profile-based method (trRosetta) in terms of
computational time. As shown in Supplementary Table S9, while
running inference on CPU for CASP14-FM dataset of 15 proteins,
SPOT-Contact-LM makes the prediction in 116 seconds which is 22
times faster than trRosetta. Also, on GPU, trRosetta took
1926 seconds which 42 times slower than SPOT-Contact-LM. As
expected, the sequence profile generation takes significantly longer
than the proposed method making the latter more suitable for gen-
omic scale prediction.

Finally, SPOT-Contact-LM predicts the protein contact-map
without using evolutionary features. The further improvement in
protein contact-map prediction without evolutionary information
may come from using more advanced architectural models such as
Transformer (Vaswani et al., 2017) or Performer (Choromanski
et al., 2020) for downstream supervised training.
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SSCpred 26.13 24.50 17.17 12.61 9.91 9.13 7.66 7.69

ESM-1b 22.97 19.82 15.58 10.85 17.12 12.47 9.42 7.38

SPOT-Contact (profile) 41.44 36.08 26.41 17.09 25.23 21.16 19.28 16.21

SPOT-Contact-LM 1893

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac053#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac053#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac053#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac053#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac053#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac053#supplementary-data
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