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Objectives: To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing
low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion
coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model.
Materials and methods: With approval from the institutional review board and written informed consents from
the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven
brain tumors (30 low-grade and 40 high-grade). Multi-b-value diffusion images were acquired and analyzed
using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, Dfm, φ, ψ (non-Gaussian dif-
fusion statistical measures), and the CTRW parameters, Dm, α, β (non-Gaussian temporal and spatial diffusion
heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-
Whitney-WilcoxonU test. The performance of the FMmodel for differentiating between low- and high-grade tu-
morswas evaluated and comparedwith that of the CTRWand themono-exponentialmodels using a receiver op-
erating characteristic (ROC) analysis.
Results: The FM parameters were significantly lower (p b 0.0001) in the high-grade (Dfm: 0.81 ± 0.26, φ: 1.40 ±
0.10, ψ: 0.42 ± 0.11) than in the low-grade (Dfm: 1.52 ± 0.52, φ: 1.64± 0.13, ψ: 0.67± 0.13) tumor groups. The
ROC analysis showed that the FM parameters offered better specificity (88% versus 73%), sensitivity (90% versus
82%), accuracy (88% versus 78%), and area under the curve (AUC, 93% versus 80%) in discriminating tumor ma-
lignancy compared to the conventional ADC. The performance of the FMmodel was similar to that of the CTRW
model.
Conclusions: Similar to the CTRWmodel, the FMmodel can improve differentiation between low- and high-grade
pediatric brain tumors over ADC.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Among all pediatric cancers, brain tumors are the secondmost com-
mon, accounting for approximately 21–26% of cases (Ward et al., 2014;
Kaatsch, 2010; American Cancer Society, 2016). Although the initial di-
agnosis of pediatric brain tumors is typically done by conventionalmag-
netic resonance imaging (MRI), such as contrast-enhanced T1-weighted
imaging and unenhanced FLAIR, its role for accurately assessing tumor
type, grade, and malignancy has not been fully established due to inad-
equate specificity (Kondziolka et al., 1993; Law et al., 2003). As such, in-
vasive surgical biopsy followed by histopathological analysis continues
to be the method of choice for tumor grading. For pediatric patients
with brain tumor, however, surgical biopsy may not be always feasible
because of the tumor locations (e.g., the brain stem), and biopsy always
entails risks to the developing brain (Manoj et al., 2014; Albright et al.,
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1993). Therefore, it would be highly desirable to have a noninvasive
means of grading brain tumors.

Over the past decades, diffusion-weighted imaging (DWI) has been
investigated for brain tumor gradingbased on the apparent diffusion co-
efficient (ADC) (Kono et al., 2001; Tien et al., 1994; Provenzale et al.,
2006; Cha, 2006;Maier et al., 2010). This parameter, which is computed
using a mono-exponential model (i.e., the Gaussian model), has been
found to be sensitive to tissue cellularity changes associated with the
neoplastic as well as other pathologic processes (Stadnik et al., 2001;
Schaefer et al., 2000; Rowley et al., 1999; Moffat et al., 2005). This ap-
proach, however, has been increasingly challenged in recent years be-
cause water diffusion in tissues does not follow a Gaussian model,
particularly at high b-values (e.g., b ≥ 1500 s/mm2). The mismatch be-
tween the mono-exponential model and the actual diffusion process is
believed to be responsible, as least partially, for the substantial overlap
in ADC values between low- and high-grade brain tumors (Kono et al.,
2001; Maier et al., 2010; Yamasaki et al., 2005; Poretti et al., 2012).

Recognizing the limitations of conventional DWI with ADC, a num-
ber of researchers have developed more sophisticated diffusion models
to better characterize “anomalous” (non-Gaussian) diffusion in biologi-
cal tissues (Niendorf et al., 1996; Bennett et al., 2003; Yablonskiy et al.,
2003; Assaf et al., 2000; Jensen et al., 2005; Magin et al., 2008; Zhou et
al., 2010; Zhang et al., 2012; Assaf et al., 2004; Özarslan et al., 2006;
Hall and Barrick, 2008; Alexander et al., 2002; De Santis et al., 2011;
Karaman et al., 2015; Bai et al., 2016). Among these models, the contin-
uous-time random-walk (CTRW) model and fractional motion (FM)
model are of particular interest because they are regarded as the
major “archrivals” by the biophysics community for describing the com-
plex diffusion process in biological systems (Eliazar and Shlesinger,
2013). The CTRWmodel recognizes intra-voxel diffusion heterogeneity
in both time and space, as characterized by diffusion waiting time and
jump length, respectively (Karaman et al., 2015; Ingo et al., 2014). The
FM model, on the other hand, describes the complex diffusion process
based on the intricate statistical properties of water diffusion (Eliazar
and Shlesinger, 2013; Fan and Gao, 2015). The properties obtained
from these models can be related to the underlying microstructural
and topological features of biological tissue either spatiotemporally, as
in the CTRW model, or statistically, as in the FM model. These anoma-
lous diffusion models provide new possibilities for improving tumor
grading by probing the complexity, heterogeneity, and/or stochastic
characteristics of the neoplastic tissues.

Several recent studies have shown that the CTRWmodel or its asso-
ciated fractional order calculus (FROC) model offers substantial advan-
tage over the mono-exponential diffusion model for differentiating
low- versus high-grade brain tumors in both adult and pediatric pa-
tients (Karaman et al., 2015; Sui et al., 2015; Sui et al., 2016). Built
upon this success, the present study aims at investigating whether the
diffusion statistical properties revealed by the FMmodel can also be ap-
plied to differentiating low- from high-grade pediatric brain tumors,
and whether the FM model offers an advantage over the mono-expo-
nential and the CTRWmodels.

2. Materials and methods

2.1. Patient characteristics

Under the approval by the institutional review board of the
performing hospital and with written informed consents from the
legal guardians of all participating subjects, this prospective study en-
rolled a total of 73 children under the age of 18 years old. Inclusion
criteria were: (a) presence of a newly diagnosed brain tumor without
treatment; (b) availability of subsequent histopathological confirma-
tion through biopsy; and (c) absence of neurologic disorders unrelated
to the tumor. The exclusion criteria consisted of (a) contraindication to
MRI examination; (b) excessive motion during the MRI scans; or (c)
poor image quality due to hardware failure. Based on these criteria,
three patients (n = 3) were excluded because of data corruption from
excessive motion (N2 mm), resulting in a final patient group of 70 chil-
dren, including 20 girls (4months to 9 years old) and 50 boys (4months
to 13 years old). According to the World Health Organization (WHO)
criteria (Louis et al., 2007), the 70 patients were divided into the low-
grade (WHO grade I or II; n = 30; age range: 4 months to 13 years
old; 7 girls) and high-grade (WHO grade III or IV; n = 40; age range:
4 months to 10 years old; 13 girls) tumor groups. Histopathologic anal-
ysis of the low-grade group revealed 10 pilocytic astrocytomas, 11 as-
trocytic astrocytomas, 3 ependymomas, 3 dysembryo plastic neuro
epithelial tumors (DNET), and 3 choroid plexus papillomas. Histopa-
thologies of the high-grade tumor group included 19medulloblastomas,
4 teratoid/rhabdoid tumors (AT/RT), 2 glioblastoma multiformes
(GBM), 4 germinomas, 2 pineoblastomas, 3 anaplastic ependymomas,
2 ependymoblastoma, 2 primitive neuroectodermal tumors (PNET), 1
anaplastic astrocytoma, and 1 malignant teratoma.

2.2. Image acquisition

MRI was performed on a 3-T scanner (Signa HDxt, GE Healthcare,
Milwaukee, WI, USA) equipped with an 8-channel phased-array head
coil (Invivo Corp., Gainesville, FL). All patients underwent conventional
MRI, including pre- and post-contrast T1W imaging with FLAIR (TR/
TE = 2200/22 ms, flip angle = 90°, TI = 860 ms, matrix size =
320 × 224, FOV= 22 cm× 22 cm, slice thickness= 5mm), T2W imag-
ing with fast spin echo (TR/TE= 3000/117 ms, echo train length = 24,
matrix size = 320 × 224, FOV = 22 cm × 22 cm, slice thickness =
5 mm), and T2W FLAIR (TR/TE = 8000/120 ms, TI = 2250 ms, echo
train length = 24, matrix size = 320 × 224, slice thickness = 5 mm,
FOV = 22 cm × 22 cm). Before contrast administration, DWI with 12
b-values of 0, 10, 20, 50, 100, 200, 400, 800, 1200, 2000, 3000, and
4000 s/mm2 was carried out using a single-shot spin-echo echo planar
imaging (EPI) sequence (TR/TE = 4700/100 ms, acceleration factor =
2, separation between the Stejskal-Tanner gradient lobes (Δ) =
38.6 ms, duration of each diffusion gradient lobe (δ) = 32.2 ms,
FOV= 22 cm × 22 cm, k-space matrix size = 128 × 128, image matrix
size=256 × 256, slice thickness=5mm, and the scan time ~3min). In
order to minimize the effect of diffusion anisotropy, trace-weighted im-
ages were obtained by successively applying the Stejskal-Tanner diffu-
sion gradient along the x, y, and z directions at each non-zero b-value.

2.3. Diffusion models

The multi-b-value diffusion-weighted (DW) images were first ana-
lyzed by using the FMmodel in which the diffusion-attenuated MR sig-
nal was simplified as

S=S0 ¼ exp −η0Dfmb
φ
2 Δ−

δ
3

� �−φ
2

Δφþψδ−φ

 !
; ð1Þ

based on the equations in (Fan and Gao, 2015). In Eq. (1), Dfm is an
anomalous diffusion coefficient in mm2/s, φ and ψ are the parameters
governing the fluctuation and correlation properties of the increments
of the diffusion process (Fan and Gao, 2015), δ and Δ are defined previ-
ously, and η′ is a dimensionless factor to maintain nominal units (i.e.,
mm2/s) for Dfm. The physical origins of the new statistical parameters,
φ and ψ, are further explained in the Discussion section.

For comparison, the same DW images were also analyzed with the
CTRWmodel whose diffusion-attenuatedMR signal takes the following
form:

S=S0 ¼ Eα − bDmð Þβ
� �

; ð2Þ

where Dm is an anomalous diffusion coefficient similar to Dfm, the pa-
rameters α and β are temporal and spatial fractional orders that are



;
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related to temporal and spatial diffusion heterogeneities, respectively,
and Eα is a Mittag-Leffler function (Karaman et al., 2015). For additional
comparison, the conventional ADC values were also computed from a
mono-exponential model given by

S=S0 ¼ exp −b ADCð Þ; ð3Þ

using b-values of 0 and 1200 mm2/s, similar to what is done clinically.

2.4. Image analysis

The FM model parameters, Dfm, φ, and ψ, and the CTRW model pa-
rameters,Dm,α, andβ, were estimatedbyfitting Eqs. (1) and (2) respec-
tively to the same set of DW images on a voxel-by-voxel basis using a
nonlinear least-squares estimation with an iterative Levenberg-
Marquardt method in Matlab (MathWorks, Inc., Natick, MA). To filter
out the pixels with low signal-to-noise ratio (SNR), a noise threshold
was set at n + 2σ, where n and σ are the mean and standard deviation
of the noise in the background, respectively (Zhou et al., 2010). Pixels
with intensity below the thresholdwere not included in the calculation.
The diffusion images, Mraw, were also corrected for Rician noise using

Mrc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

raw−2σ2
n

q
, where Mrc is the Rician noise corrected signal and

σn is standard deviation of the real or imaginary components of the
noise. The noise bias, 2σn

2, can be calculated as the average value of the
magnitude squared signal of the background (Miller and Joseph,
1993). After filtering out the noise and correcting for Rician noise distri-
bution, the anomalous diffusion coefficients, Dfm or Dm, were estimated
by an exponential model using the diffusion images at b-values up to
3000 s/mm2. With the estimated value of Dfm or Dm at each voxel, φ
and ψ for the FMmodel, or α and β, for the CTRWmodel, were simulta-
neously estimated through a non-linear fitting, using all data with b-
values from 0 to 4000 s/mm2. This approach equalizes Dfm and Dm,
allowing us to focus on comparison of the remaining anomalous diffu-
sion parameters between the two models. The computation times of
the FM (~1min) and CTRWmodels (~2 min) were similar for one slice.

Guided by the high-resolution T1W, T2W, and FLAIR images, regions
of interest (ROIs) were placed on the solid region of tumors in the im-
ages with b=0, by excluding hemorrhage, cystic change, and/or necro-
sis on the T2W EPI images (i.e., images with b = 0). Solid-appearing
non-enhancing tumor was also included in ROI selections. The selected
ROIswere propagated to the correspondingDfm (Dm),φ,ψ,α,β, and ADC
maps for statistical analyses.

2.5. Statistical analyses

The mean Dfm (or Dm), φ, ψ, α, β, and ADC values in the tumor ROIs
across all tumor-containing slices for each patient were obtained. For
each patient group, the individual mean values were combined over
all patients in the group to compute the descriptive statistics. The low-
and high-grade tumor groupswere then compared by a non-parametric
Mann-Whitney-Wilcoxon U test.

The group comparison was performed using a receiver operating
characteristic (ROC) analysis to evaluate the FM, CTRW, and mono-ex-
ponential models for differentiating low- and high-grade tumors. In ad-
dition to evaluating the performance of each individual parameter,
different combinations of the FM parameters, (Dfm, φ), (Dfm, ψ), (φ, ψ),
(Dfm, φ, ψ), and CTRW parameters, (Dm, α), (Dm, β), (α, β), (Dm, α, β),
were evaluated using a multivariate logistic regression analysis
(Gortmaker et al., 1994). This method estimates the probability of
being a high-grade tumor, P0, by using the following logistic functions
for the FM model,

P0 ¼ exp a0 þ a1Dfm þ a2φþ a3ψ
� �

= 1þ exp a0 þ a1Dfm þ a2φþ a3ψ
� �	 


ð4Þ
where a0 is a constant and ai (for i = 1,2,3) are the regression coeffi-
cients of the corresponding FM parameters. The probability P0 for the
CTRW model can be expressed analogously. These probability values
were used as the test variables in the ROC analysis where the state var-
iable was considered to be the ‘true’ tumor category obtained from his-
topathology. The best cut-off sensitivity and specificity values of the
ROC curves were determined by using Youden's index that maximizes
the sum of sensitivity and specificity. The performance of the models
for tumor grade differentiation was subsequently compared by these
sensitivity and specificity cut-off values aswell as the diagnostic accura-
cy and the area under the curve (AUC).

3. Results

3.1. Comparison of representative patients from each group

Fig. 1 shows a set of representative parametermaps (FMparameters,
φ andψ, CTRWparameters,α andβ, and diffusion coefficients,Dfm orDm

and ADC) obtained from a low-grade patient (3 year-old girl, WHO
grade I, pilocytic astrocytoma; top two rows) and a high-grade patient
(7 year-old boy, WHO grade IV, medulloblastoma; bottom two rows).
All FM model parameters of the high-grade tumors (Fig. 1c, d, and k)
were substantially lower than those of the low-grade tumors (Fig. 1a,
b, and i) whereas the parametric values in the background brain paren-
chyma were essentially identical between the low- and the high-grade
brain tumor patients. This result was consistent with the comparison
of the ADCmap between the low-grade (Fig. 1j) and the high-grade pa-
tient (Fig. 1l). Similar contrastswere observed in the parametermaps of
the CTRWmodel inwhich the voxel values in the high-grade parameter
maps (Fig. 1g, h, and k) are lower than those in the low-grade ones (Fig.
1e, f, and i).

3.2. Group comparison for tumor differentiation

Table 1 summarizes the descriptive statistics, including means and
standard deviations, of the FM, CTRW, andmono-exponentialmodel pa-
rameters computed over the tumor ROIs from all patients in each tumor
group. All model parameters were found to be significantly lower in the
high-grade than in the low-grade tumor group (p-values b 0.0001). The
group separation is further demonstrated by the box and whisker plots
of themean FM (Fig. 2a, d, e) and CTRW (Fig. 2a, b, c) model parameters
aswell as the ADC value (Fig. 2f). Compared to the FM and CTRWmodel
parameters, ADC value yielded more overlap between the two tumor
groups (Fig. 2f). The statistically significant difference in the FM param-
eters (Fig. 2a, d, e) between the low- and high-grade tumor groups as
well as the individual subject-level comparison in Fig. 1a–d, i, and k in-
dicates that the FM model is useful for tumor differentiation. The com-
parisons in Table 1 as well as Figs. 1 and 2 suggest that the FM model
and the CTRW model produced comparable results.

The ROC curves, which illustrate the performance of the individual
and combination of FM or CTRW model parameters for differentiating
low-grade (negative) and high-grade (positive) pediatric brain tumors,
are given in Figs. 3 and 4, respectively. The best cut-off sensitivity and
specificity values of the ROC curves are indicated by the filled circles.
For comparison, the ROC curve for ADC is included in both figures. The
performance metrics are summarized in Table 2 for the individual pa-
rameters, and in Tables 3 and 4 for the combined model parameters.

In the individual parameter analysis shown in Fig. 3 and Table 2, it
was observed that both models outperformed the ADC value. Impor-
tantly, the relatively low specificity of ADC (0.733), which was also re-
ported in other studies (Kono et al., 2001; Maier et al., 2010; Yamasaki
et al., 2005; Poretti et al., 2012), was improved by several new model
parameters (0.766 for ψ; 0.800 for α or β).

The performance for differentiating low- versus high-grade tumors
was further improved by the use of combinations of the FM or CTRW
model parameters. For the FM model shown in Fig. 4a and Table 3, the



Fig. 1.Parametermaps fromone representative low-gradepatient (3 years old,WHOgrade I, pilocytic astrocytoma) in the top two rows andone representativehigh-gradepatient (7 years
old,WHO grade IV, medulloblastoma) in the bottom two rows. First column: the FM parametersφ (a and c) and ψ (b and d); second column: the CTRW parameters α (e and g) and β (f and
h); third column: anomalousdiffusion parameters of the FMandCTRWmodels,Dm orDfm (i and k) andADC (j and l). The solid tumorROIs, initially drawnon theT2WEPI imagewith the aid
of T1W images, are shownwith black contours in all images. All the parameter values within the ROIs are higher in the low-grade patient compared to those from the high-grade patient
given.

Table 1
Descriptive statistics, showing samplemean and standarddeviation, (�x±σ), of the FM andCTRWmodel parameters and theADC values for the low-grade (LG) and high-grade (HG) tumor
groups.

Dfm or Dm

(in μm2/ms)
φ ψ α β ADC

(in μm2/ms)

LG
(n = 30)

1.52 ± 0.52 1.64 ± 0.13 0.67 ± 0.13 0.94 ± 0.03 0.91 ± 0.06 0.92 ± 0.32

HG
(n = 40)

0.81 ± 0.26 1.40 ± 0.10 0.42 ± 0.11 0.90 ± 0.03 0.81 ± 0.05 0.60 ± 0.18

p-Value p b 0.0001 p b 0.0001 p b 0.0001 p b 0.0001 p b 0.0001 p b 0.0001
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Fig. 2. Box and whisker plots of mean values of the FM and CTRW parameters, Dfm or Dm in a), α in b), β in c), φ in d), ψ in e), and of the ADC value in f) for low- and high-grade pediatric
brain tumors. The central boxes represent the values from the lower to upper quartile whereas the middle line represents the median. The red “+” symbol denotes the outliers that are
N1.5 times the interquartile range from the quartiles. Both the FM and CTRW parameters exhibited a statistically significant difference between the low- and high-grade pediatric brain
tumor groups with p-values b 0.0001.
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combination of (Dfm, φ, ψ) yielded the best specificity (0.885), sensitiv-
ity (0.900), accuracy (0.885), and AUC (0.934). For the CTRW model,
both (Dm, α, β) and (Dm, α) yielded the best specificity (0.866), sensitiv-
ity (0.850), accuracy (0.857), and AUC (0.924) compared to the other
combinations of the CTRW parameters as shown in Fig. 4b and Table
4. Overall, the FM and the CTRW models produced comparable perfor-
mance that was superior to the mono-exponential model with ADC,
particularly in specificity (0.733 versus 0.885 and 0.866), accuracy
(0.785 versus 0.885 and 0.857), and AUC (0.801 versus 0.934 and
0.923) as given in the last column of Table 2.

4. Discussion

In this study, we have demonstrated that a novel diffusion model,
the FMmodel, can provide a set of parameters (Dfm,φ, ψ) that improved
Fig. 3. The ROC curves of using individual FM parameters, Dfm,φ, and ψ, in a), and the CTRWpar
tumors. The best cut-off sensitivity and specificity values for each ROC curve are indicated by th
0.897 (ψ) for the FMmodel and 0.913 (Dm), 0.855 (α), and 0.875 (β) for the CTRW model. For
MR-based differentiation between low- and high-grade pediatric brain
tumors as compared to conventional ADC. Furthermore, comparison be-
tween the FMmodel with another recently introduced diffusion model,
the CTRW model, showed that the performance of the two models is
similar for distinguishing low- versus high grade pediatric brain tumors.
The improvements achieved by the FM and CTRW models over the
mono-exponential model may be important for pediatric brain tumors
where surgical biopsy can be difficult to perform due to the tumor loca-
tions (e.g., the brain stem) with elevated risks to the developing brain.

The need for non-invasive, image-based tumor grading and the sub-
optimal performance of conventional MRI have led to an increasing
number of DWI studies on brain tumor characterization. While the
ADC values from the popular mono-exponential diffusion model have
been found useful (Stadnik et al., 2001; Schaefer et al., 2000; Rowley
et al., 1999), a number of studies have also reported significant overlap
ameters,Dm, α, and β, in b) for differentiating between low- and high-grade pediatric brain
e filled circles. The AUCs for the corresponding ROC curves are 0.913 (Dfm), 0.864 (φ), and
comparison, the ROC curve of ADC is included in both a) and b).



Fig. 4. TheROC curves of using the different combinations of the FMparameters (Dfm,φ,ψ) in a), and the CTRWparameters (Dm,α, β) in b) for differentiating between low- and high-grade
pediatric brain tumors. The best cut-off sensitivity and specificity values for each ROC curve are indicated by thefilled circles. The AUCs for the corresponding ROC curves are 0.927 (Dfm and
φ), 0.933 (Dfm and ψ), 0.921 (φ and ψ), 0.934 (Dfm, φ, and ψ) for the FMmodel, 0.924 (Dm and α), 0.921 (Dm and β), 0.895 (α and β), 0.923 (Dm, α, and β) for the CTRWmodel, and 0.801
(ADC). For comparison, the ROC curve of ADC is included in both a) and b).
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in ADC values between different tumor grades, reducing the overall
specificity and accuracy (Kono et al., 2001; Maier et al., 2010;
Yamasaki et al., 2005; Poretti et al., 2012; Bai et al., 2016).

To overcome the limitation, a number of non-Gaussian diffusion
models have been developed over the last decades (Niendorf et al.,
1996; Bennett et al., 2003; Yablonskiy et al., 2003; Assaf et al., 2000;
Jensen et al., 2005; Magin et al., 2008; Zhou et al., 2010; Zhang et al.,
2012; Assaf et al., 2004; Özarslan et al., 2006; Hall and Barrick, 2008;
Alexander et al., 2002; De Santis et al., 2011; Karaman et al., 2015; Bai
et al., 2016; Ingo et al., 2014; Sui et al., 2015; Sui et al., 2016; Winfeld
et al., 2013; Jiang et al., 2015). For example, diffusion kurtosis imaging
(DKI) has been applied to brain tumor grading for both pediatric
(Winfeld et al., 2013) and adult patients (Jiang et al., 2015). A recent
study by Bai et al. (Bai et al., 2016) demonstrated excellent performance
of an empirical heterogeneity index from the stretched-exponential
model for glioma grading in adults. The underlying premise is that
high-grade gliomas have an elevated level of tissue heterogeneity. This
result reinforces an earlier study on characterizing high-grade gliomas
using the empirical heterogeneity index (Kwee et al., 2010). However,
both studies relied on the empirical stretched-exponential model. The
empirical nature is eliminated by the CTRW model where structural
heterogeneity is directly related to two different aspects of the anoma-
lous diffusion process: diffusion heterogeneity in time (represented by
α) and space (represented by β) (Magin et al., 2008; Zhou et al., 2010;
Karaman et al., 2015; Gao et al., 2011). Several recent studies have indi-
cated that the CTRWmodel and its associated FROCmodel can improve
the specificity and diagnostic accuracy over ADC in differentiating brain
Table 2
Sensitivity, specificity, diagnostic accuracy, and the AUC of the ROC analysis for the indi-
vidual FM and CTRW model parameters and the ADC value for tumor differentiation.

Dfm or Dm φ ψ α β ADC

Specificity
cut-off

0.833 0.733 0.766 0.800 0.800 0.733

Sensitivity
cut-off

0.825 0.975 0.950 0.875 0.900 0.825

Accuracy 0.828 0.871 0.871 0.842 0.857 0.785
AUC 0.913 0.864 0.897 0.855 0.875 0.801
tumor grades because of their ability to probe diffusion heterogeneities
(Karaman et al., 2015; Sui et al., 2015; Sui et al., 2016).

In parallel to the CTRW and FROC models, the FM model has
attracted an increasing attention in the biophysics community over re-
cent years (Eliazar and Shlesinger, 2013; Weiss, 2013; Szymanski and
Weiss, 2009; Magdziarz et al., 2009; Ernst et al., 2012). Several studies
(Weiss, 2013; Szymanski and Weiss, 2009; Magdziarz et al., 2009;
Ernst et al., 2012) have concluded that fractional motion is more likely
the underlying process in biological systems; and water diffusion does
not follow the dynamics of CTRW. These studies, however, were con-
ducted either in cell culture or on individual molecules. The validity of
their conclusions remains unexplored for DWIwhere diffusion behavior
at a scale of an image voxel (e.g., 2 × 2 × 3 mm3) must be considered.
The present study is among the first of such effort. Our study has
shown that the FM and CTRWmodels performed equally well in differ-
entiating between low- and high-grade pediatric brain tumors. This
seemingly surprising result can be attributed to the fact that voxel-
level averaging, instead of individual molecular or cellular behavior,
dominates water diffusion behavior in DWI. At the voxel level, tissue
heterogeneity and structural complexity provide a completely different
diffusion environment than that for individual molecules in cell cul-
tures. This environmental difference is further pronounced in brain tu-
mors where extensive tissue heterogeneity (necrosis, cyst,
hemorrhage, edema, and/or calcification) and structural complexity
(capillaries, different cell types, and/or cellularity) exist. The tissue het-
erogeneity in a DWI voxel is primarily related to these tissue features
which have typical dimensions much larger than the maximum diffu-
sion path length probed by the diffusion time in a DWI pulse sequence.
Themeasured average diffusion parameters in the tissue culture, on the
Table 3
Sensitivity, specificity, diagnostic accuracy, and the AUC of the ROC analysis for the differ-
ent combinations of the FM parameters for tumor differentiation.

(Dfm, φ) (Dfm, ψ) (φ, ψ) (Dfm, φ, ψ)

Specificity cut-off 0.866 0.866 0.800 0.885
Sensitivity cut-off 0.875 0.875 0.950 0.900
Accuracy 0.871 0.871 0.885 0.885
AUC 0.927 0.933 0.921 0.934



Table 4
Sensitivity, specificity, diagnostic accuracy, and the AUC of the ROC analysis for the differ-
ent combinations of the CTRW parameters for tumor differentiation.

(Dm, α) (Dm, β) (α, β) (Dm, α, β)

Specificity cut-off 0.866 0.866 0.833 0.866
Sensitivity cut-off 0.850 0.850 0.875 0.850
Accuracy 0.857 0.857 0.857 0.857
AUC 0.924 0.921 0.895 0.923
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other hand, reflect the diffusion environment at a much smaller spatial
scale. Therefore, it is not surprising that the drastic difference between
the FM and CTRW models reported by the biophysical community
were not observed in this DWI study.

Our simplification of the FMmodel has yielded two newparameters,
φ and ψ. The φ parameter governs the fluctuations of the diffusion pro-
cess by determining the variance properties of the increments which
can be finite (mild fluctuations) or infinite (wild fluctuations). Thus, φ
characterizes the diffusion as either a Gaussian or a Levy process accord-
ing to the FM theory (Eliazar and Shlesinger, 2013). Theψ parameter, on
the other hand, describes the correlation properties of the diffusion in-
crements as positively correlated (long-range), negatively correlated
(short-range), or not correlated (no memory). As such, ψ determines
whether the underlying anomalous diffusion process is a Gaussian/
Levy or fractional Gaussian/Levy process (Eliazar and Shlesinger,
2013). As both aspects originate from intra-voxel diffusion heterogene-
ity, it is plausible that the FM and CTRWmodels would produce similar
results. Their similar performance observed in this study suggests that
both the FM parameters (Dfm, φ, ψ) and the CTRW parameters (Dm, α,
β) can be sensitive to changes in tissue structures as the degree of ma-
lignancy progresses. High-grade tumors exhibited lowerφ andψ values,
indicating an increased degree of structural complexity (e.g., increased
capillaries, presence of edema, necrosis, hemorrhage, etc.) that led to el-
evated non-Gaussian diffusion characteristics. This increased tissue
complexity was also captured by the CTRW model parameters (α, β),
as shown in this study as well as an earlier study (Karaman et al.,
2015). The FMparametersmay reflect either similar diffusion heteroge-
neity to the CTRWparameters or other complementary aspects of tissue
structural complexity. The exact relationship between the FM parame-
ters and tissue structure complexity remains to be established and
may be better understood through extensive computer simulations
and histopathologic correlations.

The comparable results of the FM and CTRWmodels for differentiat-
ing neoplastic pathology are one of the key outcomes of this study. The
similarity of their performances in tumor ROI, despite the differences in
the theoretical bases and mathematical representations, suggests that
both models can equally capture the structural complexity from a high
b-value data set acquired under the current acceptable clinical settings.
These models can be further evaluated in the living human tissue under
more advanced imaging conditions, such as higher b-values beyond
4000 s/mm2 and varying diffusion times, to provide new insights into
the tissue structures. Such similarity also implies that simplification or
consolidation of the non-Gaussian diffusion modeling may be possible
without losing the advantages in sensitivity, specificity, and accuracy.

Our study has several limitations. First, no numerical simulations,
phantom experiments, or histologic correlationswith known structures
were attempted to validate the FM model parameters. Second, our
study does not include a normal control group. Instead, the normal
appearing gray matter on the contralateral side of the tumor was
employed as an internal control, and no significant difference was
found between the two tumor groups (p N 0.10). Third, the maximal
b-value used in the FM or CTRW analysis was different from that
employed in the ADC analysis. Hence, the SNR at the highest b-value
can differ by about 2.6 times. Even with this SNR disadvantage, the
CTRW and FM models outperformed the mono-exponential model.
This performance is expected to improve further if the SNRs of the
DW images are matched. Lastly, we divided the patients only into two
groups, low-grade and high-grade, without further classifying them
into the individual grades or sub-types. This was primarily due to the
moderate number of patients enrolled in the study.

In conclusion, we have demonstrated the feasibility of using an FM
diffusion model with high b-values to improve differentiating between
low- and high-grade pediatric brain tumors over the conventional ADC
approach, offering higher specificity (88%), sensitivity (90%), and diag-
nostic accuracy (88%). Moreover, we have shown that the FM and
CTRW models provide similar performance for discriminating the ma-
lignancy of pediatric brain tumors, which challenges several recent re-
ports on the drastic difference between the two models observed in
cell cultures. Although the biophysical origin of the FM model requires
further investigation, this model can provide a new avenue for grading
brain tumors noninvasively in pediatric patients.
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