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Behaviors of Cavefish Offer Insight Into
Developmental Evolution
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SUMMARY

Many developmental processes have evolved through natural selection, yetin only afew
cases do we understand if and how a change of developmental process produces a
benefit. For example, many studies in evolutionary biology have investigated the |
developmental mechanisms that lead to novel structures in an animal, but only a few
have addressed if these structures actually benefit the animal at the behavioral level of
prey hunting and mating. As such, this review discusses an animal’s behavior as the
integrated functional output of its evolved morphological and physiological traits.
Specifically, we focus on recent findings about the blind Mexican cavefish, Astyanax
mexicanus, for which clear relationships exist between its physical traits and ecosystem.
This species includes two morphotypes: an eyed surface dweller versus many conspe-
cific types of blind cave dwellers, some of which evolved independently; all of the blind
subtypes derived from eyed surface dwellers. The blind cavefish evolved under clear
selection pressures: food is sparse and darkness is perpetual. Simulating the major
aspects of a cave ecosystem in the laboratory is relatively easy, so we can use this
species to begin resolving the relationships between evolved traits and selection
pressures—relationships which are more complex for other animals models. This
review discusses the recentadvances in cavefish research that have helped us establish
some key relationships between morphological evolution and environmental shifts.

“Some interesting, classic
evolutionary questions could be
answered by surveying
behavioral and morphological
Pphenotypes in the [cavefish]."
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INTRODUCTION

Evolutionary processes, such as genetic drift and natu-
ral selection, can cause organisms’ developmental pro-
cesses to evolve. The evolution of such processes can
promote morphological and physiological diversity, as well
as help an organism adapt to new environmental chal-
lenges and ecological niches (Hall, 1999). To understand
in detail how developmental processes evolve, we first
must identify the selection pressures and molecular mech-
anisms that elicit these changes—e.g., evolutionary devel-

opment integrated with functional ecology (reviewed in
Irschick et al., 2013). This multi-disciplinary approach is
difficult to achieve for most organisms because the envi-
ronmental conditions that originally led to their develop-
mental changes—and thereby afforded specific selection
advantages—are often ambiguous. A few recent studies
have begun to reveal the advantages associated with

Abbreviations: [EO] SN, [eye-orbit] superficial neuromast; shh, Sonic
Hedgehog; VAB, vibration-attraction behavior
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developmental traits, including a feeding advantage for
animals with certain jaw morphs or different tooth shapes
that depend on an animals’ food sources (Wainwright et al.,
1995; Albertson et al., 2001; Kocher, 2004; Alfaro et al.,
2005; Laffont et al., 2009; Parsons et al., 2009); increased
mechanosensors to compensate for animals with poor
visual cues (Yoshizawa et al., 2010); as well as conspicu-
ous (Hert, 1989; Couldridge, 2002) and cryptic pigmenta-
tion patterns (Klingenberg, 2010; Linnen et al., 2013). Yet,
these scientific accomplishments also emphasize the vast
knowledge gap regarding how animals evolve adaptive
traits as their genomes and developmental processes shift.
If we can identify an animal that has evolved under clear
and simple selection pressures, however, it will be possible
to more directly test the advantages of the developmental
changes they have evolved to undergo.

The cave ecosystem is characterized by perpetual dark-
ness, the absence of primary productivity, and sparse food
resources (Culver, 1982; Culver et al., 2009). These con-
ditions exert significant pressure on cave-dwelling animals
such that cave-adapted animals from most major phyla
exhibit a remarkable convergence in morphological and
physiological changes related to cave life, including fea-
tures that are both constructive (longer appendages, novel
behaviors, elaborate non-visual sensory systems) and
regressive (reduced vision and pigmentation) (Culver,
1982; Culver et al., 2009). Some aquatic cave populations,
including teleost, have been isolated from their surface-
dwelling relatives for such a long time that they have
accumulated cave-specific mutations (for examples, see
Protas et al., 2006; Gross et al., 2009; Elipot et al., 2014). In
contrast, it is relatively difficult to identify the original muta-
tions and selection pressures influencing surface-dwelling
animals because they frequently hybridize with other pop-
ulations and live in complex fauna. In this respect, cave
animals are valuable models that we can use to analyze
adaptive changes that occur under clearly defined selection
pressures. Behavior is a convenient window through which
we can observe the selective advantages associated with
morphological and physiological traits. For example, better
sensitivity of a sensory organ can improve behavioral
responses in predator avoidance, prey hunting, or mating,
which lead to enhanced survivorship or fecundity. Natural
selection then screens animals with the best combination of
traits, depending on their fitness (Mayr, 1963; Bateson,
1988; Wecislo, 1989; West-Eberhard, 1989; Gittleman et al.,
1996; Wimberger et al., 1996).

This review discusses recent advances in our under-
standing of behavioral evolution and related morphological
and physiological traits in an animal that lives in a habitat
with clear selection pressures: the Mexican cavefish, Asty-
anax mexicanus, an established animal model for studying
evolution and development (Mitchell et al., 1977; Wilkens,
1988; Jeffery, 2001, 2008, 2009; Protas et al., 2012; Rétaux
et al., 2013). Within the past few million years, at least five
independent colonizations by two different migrating waves
of eyed-surface-fish ancestors have established 29 geo-
graphically isolated Astyanax cavefish populations in north-
eastern Mexico (Ornelas-Garcia et al., 2008; Bradic et al.,
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2012, 2013; Strecker et al., 2012; Coghill et al., 2014). After
an initial radiation underground, the founder cavefish pop-
ulations became isolated and evolved independently. Food
sources are limited in these caves, and likely consist of
small soil crustaceans, micro-organisms, and organic mat-
ter present in the water that drops from the cave ceiling
(Culver et al., 2009). Depending on the cave, additional
nutrient sources for cavefish may come from the guano
dropped by bats living at the cave ceiling and organic matter
brought in by seasonal flooding (Culver et al., 2009; per-
sonal observation). When the habitat of these fish changed
from the surface to the cave, the cavefish ancestor evolved
regressed eyes, reduced pigmentation or albinism, en-
hanced oral-pharyngeal morphologies, and expanded ner-
vous systems (Wilkens, 1988; Yamamoto et al., 2000,
2004, 2009; Jeffery, 2005; Protas et al., 2006; Alunni
et al., 2007; Franz-Odendaal et al., 2007; Menuet et al.,
2007; Rétaux et al., 2008; Atukorala et al., 2013; Rétaux
etal., 2013). Despite their 2—6 million year separation from
A. mexicanus surface cohorts, the cavefish and surface fish
cohorts remain interfertile, allowing us to study the evolu-
tion of behavioral, morphological and physiological traits by
genetic analysis.

Recent work is revealing the genetic architectures that
underlie the behavioral evolution of cavefish species, includ-
ing the examination of the following behaviors: vibration-
attraction behavior (VAB) (Eigenmann, 1909; Hill, 1969;
Parzefall, 1983; Yoshizawa et al., 2010, 2012a, 2012b);
sleep loss (Duboué et al., 2011, 2012); reduced aggression
(Parzefall, 2001; Elipot et al., 2013); loss of schooling and
shoaling (Parzefall, 2001; Kowalko et al., 2013a); stabilized
feeding posture (Schemmel, 1980; Kowalko et al., 2013b);
enhanced chemosensory ability (Protas et al., 2008;
Bibliowicz et al., 2013); and reduced circadian rhythms
and sleep (Cavallari et al., 2011; Duboué et al., 2011,
2012; Beale et al., 2013). Among these behaviors, VAB
is the most-studied, positively selected behavior regarding
how it benefits cavefish in their environment, its sensory
and genetic basis, and its developmental process. Here,
| review the behaviors that have been evolutionarily
advantageous and most informative in deciphering how
A. mexicanus populations have adapted to their caves.

PREY DETECTION AND FORAGING BEHAVIOR

VAB: Adaptive Cave-Associated Foraging
Behavior

Cavefish exhibit VAB; that is, they swim toward an
oscillating object, either in a natural cave pool or in a
laboratory (Fig. 1A) (Table 1). VAB represents a potential
foraging behavior that has evolved repeatedly in at least
three different Astyanax cavefish populations (Fig. 1B)
(Parzefall, 1983; Abdel-Latif et al., 1990; Yoshizawa
et al., 2010). Considering these populations likely evolved
separately under similar ecological conditions (Mitchell
et al.,, 1977; Borowsky, 2008; Ornelas-Garcia et al.,
2008; Wilkens, 2010; Bradic et al., 2012; Gross, 2012;
Strecker et al., 2012; Coghill et al., 2014), the convergence

269



Molecular Reproduction & Development

A  Surface fish Cavefish

S
B Surface Separated cave
populations populations
n 25 ok &
Q
S
© [ OO . [ e e |
g 20 l *
e
< 151 l
[T
[9)
S
g 10. ..............................................
§
Z 5
b e
0 ‘ S 2
(}00* & 5 \5\00% N
& 5 Q° P QN
@ N

Figure 1. VAB and its repeated evolution. (A) Swimming path (purple
lines) of surface fish (left) and Pachodn cavefish (right) during a 3-min
assay period. Dotted lines represent the 2-cm diameter quantification
area surrounding the glass rod (dark spot in the center of the chamber).
Arrows indicate the starting positions of the fish. (B) VAB levels
measured as number of approaches in A. mexicanus populations.
Three separated cave populations showed VAB (above the threshold
level of 4 approaches), but no VAB was apparent in either surface-fish
population. One-tailed Mann-Whitney tests with Bonferroni correction
for multiple comparisons were performed between a group of Rio Choy
and Rio Tampadn surface fish, and each cavefish population. *,
P <0.05; **, P<0.01. Rio Choy surface fish, n=4; Rio Tampadn
surface fish, n=13; Pachdn cavefish, n=8; Los Sabinos cavefish,
n=29; and Piedras cavefish, n=4.

of these populations towards VAB suggests the distinct
advantage this behavior would have in the cave environ-
ment. Yet, the extent of VAB is variable within and among
populations, and some individuals of one of the oldest
cavefish populations, Pachdn, even lack this behavior
(Fig. 2A). The converse is true for surface fish: while
most surface fish lack VAB, a few individuals exhibit low
levels of this behavior (Fig. 2A).

Taking advantage of this variation within populations,
the adaptive significance of VAB was tested in competitive
prey-capture experiments wherein pairs of fish with and
without VAB were fed small amount of vibrating prey: brine
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shrimp (Fig. 2B). In darkness, cavefish were significantly
better at capturing the brine shrimp than surface fish
(Fig. 2Ba). The key finding, however, was that surface
fish with VAB had significantly more brine-shrimp captures
in the dark than surface fish without VAB, a difference that
disappeared in the light (Fig. 2Bb). Thus, an individual's
ability to utilize VAB plays a role in foraging and is likely
advantageous for survival in dark caves. In wild populations
of surface fish, VAB is presumably deleterious because fish
with VAB may swim toward predators, such as the noctur-
nal prawn, at night (Wilson et al., 2004; Yoshizawa et al.,
2011). In contrast, VAB is adaptive in cavefish because it
increases foraging in an environment with limited food
availability, minimal light, and macroscopic predators
(Yoshizawa et al., 2010, 2011). Consequently, the VAB
already present as a standing variation in ancestral surface
populations may have been subject to positive selection
once the cavefish ancestors started colonizing caves.

Probing a little deeper reveals hints at how these cave
populations have honed VAB to survive. Cavefish VAB
occurs at a relatively low frequency range (about
5-50Hz), with a peak frequency of 35Hz (Yoshizawa
et al., 2010, 2013). These values are within the range
that cavefish can detect with their mechanosensory lateral
line (20—80 Hz) (Coombs et al., 1989, 2014; Munz, 1989).
Interestingly, none of the surface fish, even those with VAB,
displayed such behavioral tuning (Yoshizawa et al., 2011).
Furthermore, because many crustaceans produce water
fluctuations at 30—40 Hz while swimming (Lang, 1980), the
tuning of cavefish’s VAB at 35 Hz is a novel trait that is likely
adaptive in the cave ecosystem.

The cavefish’s optimized frequency detection system
suggests that the lateral-line sensory organ that cavefish
use to detect water flow is likely a vibration-sensory recep-
tor that has been enhanced in cavefish compared to surface
fish (Schemmel, 1967; Munz, 1989). One type of lateral-line
sensory organ is the superficial neuromast (SN), which is
composed of ciliated hair cells and a gelatinous cupular
matrix (Fig. 3, see below). The SNs of cavefish are larger
and more numerous than those of surface fish, and are
primarily responsible for VAB, as determined by SN abla-
tion studies and genetic analysis (Schemmel, 1967; Teyke,
1990; Yoshizawa et al., 2010). Although SNs appear
throughout the body and are particularly abundant on the
cavefish’s head, those SNs located within the orbit of the
cavefish’s degenerated eye seem to play a particularly
important role in VAB (Yoshizawa et al., 2012b). This
suggests that the extra cranial space created with the
loss of the cavefish’'s eyes is an important event that
promoted this novel behavior. As there was no difference
in the number of eye-orbit SNs (EO SNs) among surface
fish—in fact, no EO SN was observed in surface fish—their
appearance in cavefish did not arise through the selection
of a standing phenotypic variation (Yoshizawa et al.,
2012b); instead, there must be a distinct evolutionary
path linking VAB and EO SN evolution.

Cavefish eyes start degenerating around 36 hr post-fertili-
zation, but no significant increases in any SNs (including EO
SNs) are detectible, relative to surface fish, until 2 months

Mol. Reprod. Dev. 82:268-280 (2015)
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Figure 2. Significance of VAB in feeding, as determined by competi-
tive prey-capture experiments. (A) VAB levels measured as the num-
ber of approaches. Surface fish, n =54 (gray area); cavefish, n=52
(orange area). Vertical dashed line represents the cut-off value of 4
approaches used to classifying fish with (>4 approaches) and without
(<4 approaches) VAB using a stimulus of 50Hz. (B) Prey-capture
competition assays. Bars show the proportion of strikes at prey
between pairs of surface fish (black fish cartoons) and cavefish (orange
fish cartoons) with or without VAB during a 1-min assay period in
darkness (left bars) and in light (right bars). A total of eight pairs of
cavefish versus surface fish (Ba), and five pairs of surface fish with
versus without VAB (Bb) in the dark and light are shown. Values
are mean ratio of strikes +£95% confidence intervals of the mean. *,
P < 0.05; **P < 0.01. For details about the method, please see Yoshi-
zawa et al. (2010).

post-fertilization (Yoshizawa et al., 2010). This ontogeny
suggests that eye degeneration itself does not induce EO
SN formation. Many aspects of eye degeneration are con-
trolled by increased Hedgehog signaling in cavefish (Yama-
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moto et al., 2004; Jeffery, 2005), so a surface fish was
engineered to overexpress shh by mRNA injection so that
its eyes would also degenerate to test the relationship be-
tween eye retention and EO SN development; these shh-
overexpressing fish did not develop EO SN (Yoshizawa et al.,
2012b). Therefore, neither eye degeneration alone nor ex-
cess Hedgehog signaling in early development induces EO
SN formation or enlargement; note that tests that ask if
Hedgehog signaling plays a role later in development,
when EO SNs first appear at 2 months old, have not yet
been conducted.

Although there is no shared developmental process
between eye degeneration and EO SN formation, onto-
genic analysis and a comparison using different cave
populations could help establish the relationship between
VAB and EO SN evolution. The first approach was to
determine how the timing of VAB onset correlates with
the development of EO SNs in surface fish versus Pachdn
cavefish by studying fish at 2, 3, and 4 months post-
fertilization and in the young-adult stage (~1-year-old).
Cavefish EO SN quantity gradually increases between
2 months and the first year of age (Fig 3); this temporally
correlates with the appearance and enhancement of VAB,
which is first detectible between 2 and 3 months post-
fertilization (Fig. 3A). Interestingly, another cavefish popu-
lation, Tinaja, presents with a weak level of VAB, similar to
the amount that some individual surface fish display, and
does not have EO SNs even though their eyes degenerate
(Fig. 3C). This difference further supports the correlation
between cavefish VAB and EO SN evolution, and also
reinforces that EO SNs are not directly attributable to
eye degeneration.

While EO SN ontogeny corresponds with VAB cavefish,
there is no correlation between VAB and the total number of
SNs in an individual. While Pachén and Tinaja cavefish
have significantly more SNs in their infraorbital region than
surface fish do (Fig. 3C), the development of these organs
is not genetically correlated with the level of VAB, and their
ablation does not detectably affect VAB (Yoshizawa et al.,
2012b). These observations further emphasize the model
that the EO SN, as a minor group of sensory organs, plays
an important role in facilitating VAB whereas other SNs in
the infraorbital region may contribute to other sensations,
such as hydrodynamic imaging (see below, and also Has-
san, 1989; Montgomery et al., 2001; Windsor et al., 20083,
2010a; Coombs et al., 2010). Development of the EO SN
may therefore have evolved as a consequence of positive
selection for the enhancement of an adaptive behavior,
indicating that studying behavioral traits can help reveal
distinct roles for SNs residing in different cranial areas.

Considering the importance of the EO SNs in VAB, and
thus the cavefish’s ability to forage, it is surprising that VAB
and EO SNs emerge so late in development. Such timing
may occur for two reasons: (1) the developmental process
might be constrained or (2) their foraging preference might
change with age. To address the first possibility, Wada et al.
(2010) investigated SN development in zebrafish. The SNs
first form at the edge of a developing intramembranous
bone in the cranial region (the operculum, at4—5 days post-

Mol. Reprod. Dev. 82:268-280 (2015)
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fertilization). In Astyanax, however, the second and third
infraorbital (suborbital) bones, which underlie the infraor-
bital SNs and EO SNs, develop in cavefish around 2—3
months post-fertilization (Yamamoto et al., 2003). There-
fore, the number of SNs in cavefish may only be able to
increase after the infraorbital bone forms, meaning that the
development of EO SN—and thereby VAB—is develop-
mentally constrained until the infraorbital bone forms at2—3
months post-fertilization. The second reason for the late
development of VAB and EO SN—that cavefish foraging
preferences change over time—derives from the hypothe-
sis that cavefish larvae and adults may have different
foraging preferences, possibly to reduce competition with
one another. Cavefish adults quickly respond and move
toward a water surface that is disturbed by falling water
droplets or bat guano (likely via VAB), but they also scav-
enge for food, perhaps relying on chemosensory inputs
originally adapted for bottom feeding. In contrast, relatively
small, younger fish scavenge for food exclusively at the
bottom, again possibly using chemosensation (Parzefall,
1983; personal and S. Rétaux’s observation at the cave Los
Sabinos). In the laboratory, however, large cavefish occa-
sionally eat smaller cavefish, suggesting that small, youn-
ger fish cannot compete with mature adults. Therefore, the
late development of EO SN and VAB may offer small, young
fish a better chance to survive by avoiding the hazards of
larger, hungry conspecifics that are using VAB to forage
just beneath the water’s surface.

While it is difficult to determine which of these possibili-
ties—developmental constraints or an ecological advan-
tage—is responsible for the late development of VAB and
EO SNs, genetic experiments have helped. By overex-
pressing or knocking down the gene(s) responsible for
EO SN development using available transgenic and/or
genome editing methods (e.g., TALEN and CRISPR tech-
nologies) (Gaj et al., 2013; Hwang et al., 2013; Elipot et al.,
2014; Ma et al., 2015), and performing gene-regulatory-
network analysis (Gavin-Smyth et al., 2013), we will gain
insight to the relationship between EO SN development and
the timing of dermal-bone formation. Deciphering which
gene(s) are responsible for VAB will—through in situ
hybridization and/or immunohistochemistry techniques
—help reveal if the novel sensory tuning occurs at the level
of first projection, the octavolateralis nucleus, or higher,
such as at the torus semicircularis area. It is unlikely that
sensory tuning is achieved at the neuromast level, howev-
er, since the sensitivity estimation based on the morpho-
metrics of neuromasts does not peak at 35 Hz (Yoshizawa
et al., 2014). Nevertheless, the foraging advantage asso-
ciated with VAB gives us a new way to resolve the driving
forces for the evolution of other morphological traits, in-
cluding cranial SN, intramembranous bone, and also neural
connections in the central nervous system.

Evolution of Foraging-Related Traits Through the
Pleiotropy of Hedgehog Signaling

The pleiotropic effects of enhanced Hedgehog signaling
promote eye degeneration as well as increases in jaw size
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and number of taste buds in Astyanax cavefish (Table 1)
(Yamamoto et al., 2004, 2009; Jeffery, 2005). Given the
necessary redistribution of attention to the non-visual
senses, selection for these other constructive traits, which
are fostered by Hedgehog signaling, during cavefish evo-
lution may have accelerated eye loss as a developmental
tradeoff. No one has tested if these gustatory traits (larger
jaws, more taste buds) improve cavefish’s foraging abili-
ties. Nevertheless, an enlarged jaw is likely beneficial in the
darkness, possibly as an adaptation to bottom feeding, and
carrying more taste buds likely improves foraging because
they could help navigate to food in the dark. To understand
the adaptive significance of these morphological and
sensory shifts, however, we must perform behavioral tests,
such as food-competition experiments. For example,
behavioral analyses showing that these gustatory traits
are advantageous would support the hypothesis that
oral-pharyngeal shifts can promote eye reduction through
pleiotropy. If having a large jaw and more taste buds does
not enhance foraging efficiency, however, these traits
would constitute another example of “not all evolved
traits are adaptive” (see below).

Hedgehog signaling is also required for other critical
developmental processes, beyond cavefish eye degener-
ation and a few gustatory traits. During development,
enhanced Hedgehog signaling increases the number of
migratory cells that enter the olfactory bulbs (Menuet et al.,
2007) and serotonergic neurons at the hypothalamus (Eli-
pot, 2013). While the former may represent a positive
behavioral response linked to the chemical stimulus of
food (Table 1) (Bibliowicz et al., 2013), the latter is an
example of a change in behavioral “strategy.” For instance,
having an enhanced serotonergic system in the anterior
hypothalamus and the raphe nucleus redirects attacking
behavior towards foraging behavior. Attacking behavior is
frequently used to establish a hierarchical relationship
between individuals in surface dwelling fish (Magurran,
1993; Elipot et al., 2013), but this does not occur in cave
populations, possibly because A. mexicanus cavefish lack
schooling behavior (Elipot et al., 2013; Kowalko et al.,
2013b; see below). Indeed, cavefish have higher serotonin
levels and more serotonergic neurons at the hypothalamic
anterior paraventricular nucleus and hindbrain raphe than
their surface counterparts; these anatomical and endocrine
changes are believed to have shifted cavefish behavior
from attacking to foraging (Elipot et al., 2013). Another
study reported that cavefish have higher serotonin levels
in the brain because of mutations in the serotonin degra-
dation enzyme, monoamine oxidase (mao)—which again
promotes foraging behavior (Table 1) (Elipot et al., 2014).
The cavefish’s heightened foraging is likely adaptive to the
cave environment, where there is little food and few pred-
ators: fish eat on a “first come, first served” basis. In fact,
enhanced foraging behavior has converged in indepen-
dently-evolved cave populations (Elipot et al., 2013).

Yet even though cavefish have higher numbers of sero-
tonergic neurons in their hypothalamus by 1 week of age
(Elipot et al., 2013), there is no obvious difference in
attacking behavior between cavefish and surface fish at
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that age (personal observation). This may be because fish
at this young age are too immature to establish hierarchical
positions, or because some unknown benefit exists for
having an enhanced serotonergic system in the larval
stage. Overall, if we could better understand the difference
in the “aggression” neural circuits between cavefish and
surface fish, and their relationship with the number of
serotoninergic cells in 1-week-old juveniles, we would
gain much-needed insight to the evolution of cavefish’'s
foraging behavior. In general, this behavioral shift in cave-
fish from attacking to foraging provides the first example of
a likely behavioral advantage underlying their enhanced
Hedgehog signaling, whose trade-off is eye development
(c.f. Yamamoto et al., 2009).

Evolution of Foraging Behavior Without Obvious
Morphological Shifts

Many behaviors have evolved in the company of mor-
phological changes, yet behavior can also evolve without
obvious anatomical adaptations—e.g., feeding posture.
When in the dark, surface fish feed at a steep angle of
~90° relative to a substrate. In contrast, multiple cave
populations feed at a much shallower angle of ~45° (Ta-
ble 1) (Schemmel, 1980). Although no one has yet deter-
mined how low-angle feeding is advantageous in the dark
(though this could be demonstrated in a competition as-
say), three A. mexicanus cave populations (Pachén, Ti-
naja, and Los Sabinos) (Kowalko et al., 2013b and personal
observation) and other benthic feeders (for example, see
Ferry-Graham et al., 2002) all perform low-angle feeding,
suggesting that this behavior may be advantageous for
foraging at the bottom of caves. Since jaw morphology is
frequently associated with feeding (Wainwright et al., 1995;
Albertson et al., 2001; Kocher, 2004; Alfaro et al., 2005;
Parsons etal., 2009), it was surprising when a set of studies
revealed no detectable correlation between feeding angle
and eight cranio-facial phenotypes in an F, intercross
derived from a surface fish mated to a cavefish (Kowalko
et al.,, 2013b). The genetics therefore suggests that a
cavefish’s low feeding angle represents an exclusively
behavioral adaptation—potentially through changes in mo-
tor control—that required no accompanying morphological
changes.

The convergent evolution of a cavefish’s feeding posture
has also been supported by genomic evidence (Kowalko
etal., 2013a). Using quantitative trait loci (QTL) mapping of
feeding posture (a potentially adaptive behavior) and eye
degeneration in two independently evolved cavefish pop-
ulations, Kowalko et al reported distinct QTL results for
different genes in different populations, suggesting that
many cavefish traits evolved by de novo mutation rather
than by selection from standing genetic variation. At the
single-feeding-angle QTL detected in one cavefish popu-
lation (Tinaja), the “cave” allele actually worked to increase
the feeding angle, which was unexpected and indicates
there are still undetected QTLs (Table 1) (Kowalko et al.,
2013b). Importantly, a different cave population (Pachén)
showed two feeding-posture QTLs, and at both of them the
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“cave” alleles worked to reduce the feeding angle, sug-
gesting that different genes were utilized during the evolu-
tion of feeding behavior among independent cave
populations (Kowalko et al., 2013a).

So how did cavefish converge onto their feeding angle?
Surface fish readily stabilize their feeding angle at a 45°
angle in lighted conditions, so cavefish may have evolved
their posture control without visual cues, instead relyingonor
modifying the vestibular posture control centers. This is
supported by observations at the larval stage, when cavefish
and surface fish feed similarly. Instead of feeding at either
45° or 90°, both larval types bob along the bottom of the tank
and attack sunken food, trying out different feeding angles
during each attempt. Since this larval feeding style is some-
what similar to adult surface fish, it would be interesting to
investigate the ontogeny of neural wiring in the basal ganglia,
cerebellum, pontine, and vestibular systems—which togeth-
er control posture—and how this wiring is associated with
feeding angle in cavefish. In addition, future competition
assays should test if a lower feeding angle is advantageous
in the dark, which will provide insight into the selection
pressure for this behavior.

SOCIAL INTERACTION

Foraging is not the only behavior to have evolved in
cavefish; they also show differences from surface fish in
their social interactions, one of which is schooling. School-
ing has multiple benefits, including helping fish avoid pred-
ators and foraging, but these benefits may not be valid in
caves, which have limited food and few predators. Indeed,
the loss of schooling depends on the loss of visual sensing
and on a non-visually-related genetic factor (Kowalko et al.,
2013a). Yet, the same genetic factor encoded at this allele
actually promotes schooling in cavefish compared to sur-
face fish (Table 1) (Kowalko et al., 2013a). Such a finding
suggests that the absence of cavefish schooling is mainly
duetoeyeloss, which is supported by ablation of the lateral-
line sensory system. Although it was once suggested that
the lateral line controls schooling behavior (Partridge et al.,
1980), ablating the lateral line didn’t affect schooling in
either surface fish or cavefish (Kowalko et al., 2013a).
Therefore loss of schooling behavior may simply be a
consequence of eye loss—which could be beneficial, as
opposed to deleterious, because being solitary may pro-
vide a better chance to find the rare food sources. A test of
food-finding ability using eyed, schooling individuals and
eyed, non-schooling individuals—e.g., those that Kowalko
et al. (2013a) isolated among F, hybrids from a surface
fish x cavefish cross—should reveal an advantage for the
loss of schooling under sparse-food condition.

Mating preferences cover another social behavior. Fe-
male surface fish prefer to mate with large males; in dark
environments, though, this preference disappears, sug-
gesting that mate preference depends on visual cues
(Table 1) (Plath et al., 2006). Yet even in the dark, two
out of six cavefish populations evolved a preference for
large males (Micos and Yerbaniz; others are Molino,
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Pachdn, Piedras, and Curva cavefish), suggesting the
evolution of a non-visual mate preference (Plath et al.,
2006). Such a preference could be a consequence of
adaptations and reliance on the mechanosensory lateral-
line system, which can sense the vortices produced by fish
(Bleckmannetal., 1991). ltwould therefore be interesting to
investigate if the frequency stimulus of vortices produced
by large males (~100 Hz) (Bleckmann et al., 1991) attracts
females and stimulates their release of gonadotropin re-
leasing hormone (GnRH) to initiate reproductive behavior
(Hofmann, 2006). Such an investigation could then explore
how the reproduction process adapted after cavefish were
no longer able to use visual sensory inputs.

NAVIGATION WITHOUT VISUAL INFORMATION

Another behavior cavefish exhibit is wall-following,
which is thought to function in space recognition and
avoiding collisions with cave walls (Table 1) (Hassan
1989; De Perera, 2004; Windsor et al., 2008, 2010a,
2010b; Coombs et al., 2010). This behavior has evolved
in all Astyanax cavefish populations, and likely helps them
navigate in the absence of visual cues. As mentioned, the
cavefish’s lateral-line system senses hydrodynamic
changes in the flow field of water caused by objects in
the cave (Hassan 1989, 1992; Coombs et al., 2010). The
ontogeny of this behavior is not clear, although it seems to
appear by 3—4 months post-fertilization (personal obser-
vations). Because numbers of infraorbital SNs significantly
increase after 2 months post-fertilization (Yoshizawa et al.,
2010), wall-following behavior may largely depend on this
sensory organ. Furthermore, wall-following behavior may
be tightly associated with the ability to recognize and
navigate spaces in the absence of visual cues (De Perera,
2004; Holbrook et al., 2009). The part of the nervous system
most likely involved in space recognition is at a region
homologous to the hippocampus, in the lateral part of
the dorsalis of the telencephalon, where spatial memories
form (Lo et al., 2002). It would therefore be interesting to
find out how cavefish establish spatial memory that is only
based on temporal information from hydrodynamic stimuli.

ON THE EVOLUTION OF BEHAVIOR

For the most part, cave animals adeptly confront the
challenges of sparse food and perpetual darkness. Conse-
quently, many researchers have associated cave animals’
traits with these selection pressures without actually testing
the advantages of these evolved traits, thereby leading to
misunderstanding or an overemphasis of the significance
of the evolution of these traits. For example, the significant
increase of infraorbital SN was first predicted as the recep-
tor for adaptive VAB, but the minor sensory population of
EO SNs turned out to be the major receptors for VAB
(Yoshizawa et al., 2010, 2012b). This case study reminds
us to consider a classic criticism of the adaptive program:
not all evolved traits are adaptive (Gould et al., 1979). The
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A. mexicanus cavefish system makes it easy to avoid such
pitfalls by permitting laboratory studies in simulated cave
environments, which are easy to replicate with dark and
food-deprived conditions.

Some interesting, classic evolutionary questions could
be answered by surveying behavioral and morphological
phenotypes in the A. mexicanus system, such as: Do
behavioral adaptations emerge before or after morphologi-
cal changes? Since behavior can be drastically modified by
a simple change—such as a hormone concentration in the
central nervous system (Kobayashi et al., 1999)—the evo-
lution of behaviors has been assumed to precede morpho-
logical and sensory evolution (reviewed in West-Eberhard,
1989). Yet, multiple studies in the cockroach, moth, silk-
worm, and mouse suggest that changes in the expression
level of some sensory receptors is enough to trigger adap-
tive shifts of behaviors (Jacobs et al., 2007; Sakurai et al.,
2011; Leary et al., 2012; Wada-Katsumata et al., 2013). In
A. mexicanus, there are complex trends among cave-as-
sociated behaviors. A few behavioral traits, including VAB
and stabilized feeding angle, may have preceded morpho-
logical or sensory evolution because there are standing
phenotypic variations of these behaviors among the cave-
fish and their related surface-dwelling cohorts. Thus, during
the initial steps of the adaptation process, individual cave-
fish ancestors that expressed these cave-associated be-
haviors were at a selective advantage because they did not
require extreme morphological/sensory changes to adjust
to the cave enviroment (Yoshizawa et al., 2010, 2011,
2012; Kowalko et al., 2013). In contrast, cavefish behaviors
that require eye regression, including loss of schooling
(Kowalko et al., 2013) and wall-following (personal obser-
vation of eye-ablated surface fish), may have emerged after
the morphological loss of the eye. Furthermore, loss of
pigment, another morphological trait, may have also in-
duced behavioral changes, including higher locomotor ac-
tivity and/or sleep loss, because a null mutation of the
oculocutaneous albinism Il (oca2) gene increases the pro-
duction of dopamine and noradrenalin, two neurotransmit-
ters that affect sleep and locomotor behaviors (Duboué
et al., 2011, 2012; Bilandzija et al., 2013). Oca2 could
therefore work in a pleiotropic manner at the morphological
and behavioral level. In addition, well-known pleiotropic
Hedgehog signaling controls both morphology/sensory
system (eye regression, widening jaw, increase of taste
buds) and behavior (behavioral shift from aggression to
foraging via increase of serotonergic neurons in the hypo-
thalamus) (Yamamoto et al., 2004, 2009; Elipot et al.,
2013). Thus, traits controlled by pleiotropic genes could
have evolved concurrently as a result of the mutation of
these genes.

In summary, the cavefish serves as an excellent model
to study the evolution of multiple morphological and behav-
ioral traits because it has provided evidence that morpho-
logical and behavioral traits evolved through complex
manners. The latest A. mexicanus behaviors studied
include: enhanced prey capture ability in 25-day-old cave-
fish in the dark (Espinasa et al., 2014); feeding control via
appetite-related hormones (Penney et al., 2014); and loss
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of circadian rhythm and sleep (Duboué et al., 2011, 2012;
Beale et al., 2013; Moran et al., 2014; Yoshizawa et al.,
2015). The next frontier in cavefish research will be to
identify more of the genes and mutations involved in the
adaptation to the cave environment, thereby establishing a
field where genetics, ontogeny, neuroscience, phylogeny,
and ecology are integrated.

The recent development of powerful tools has led to a
wealth of important information we can use to unravel
evolutionary mysteries, including available genome sequen-
ces (AstMex102 from the Ensembl genome browser, at
www.ensembl.org); available embryology techniques that
can modify gene expression (Yamamoto et al., 2000, 2004,
2009; Gross et al., 2009; Bilandzija et al., 2013); defined
embryonic and larval stages (Hinaux et al., 2011); tran-
scriptome datasets (Gross et al.,, 2013; Hinaux et al.,
2013); and defined evolutionary relationships among pop-
ulations (Ornelas-Garcia et al., 2008; Bradic et al., 2012;
Gross, 2012; Bradic et al., 2013). Further advances in
transgenic capabilities (Elipot et al., 2014) and genomic
engineering methods, such as TALEN and CRISPR tech-
nologies (Gaj et al., 2013; Hwang et al., 2013), allow us to
perform more directed genetic studies. Such technology is
helping to fill the technical gap between the A. mexicanus
system—uwith its clear selection pressures and many cave-
adapted traits—and other model animal systems—with their
historical knowledge base. With new information and better
experimental techniques, we can further exploit A. mexica-
nus as an evolutionary vertebrate model, which will ultimate-
ly allow us to comprehensively understand the evolutionary
processes through which genomic and developmental shifts
produce enhanced or co-opted adaptive traits.
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