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Throughout biology, specifying cellular events at the correct location and time is neces-
sary for ensuring proper function. The formation of robust microtubule organizing centers
(MTOCs) in mitosis is one such event that must be restricted in space to centrosomes to pre-
vent ectopic MTOC formation elsewhere in the cell, a situation that can result in multipolar
spindle formation and aneuploidy. The process of reaching maximum centrosome MTOC
activity in late G2, known as centrosome maturation, ensures accurate timing of nuclear
envelope breakdown and proper chromosome attachment. Although centrosome matura-
tion has been recognized for over a century, the spatial and temporal regulatory mecha-
nisms that direct MTOC activation are poorly understood. Here, we review Sas-4/CPAP,
Asterless/Cep152, Spd-2/Cep192, and PLP/Pericentrin, a group of proteins we refer to as
‘bridge’ proteins that reside at the surface of centrioles, perfectly positioned to serve as the
gatekeepers of proper centrosome maturation at the perfect place and time.

Building centrosomes
Centrosomes are non-membrane bound organelles composed of an orthogonal pair of centrioles sur-
rounded by a protein network termed pericentriolar material (PCM). It is this PCM that nucleates and
organizes microtubules (MTs) to form MT organizing centers (MTOCs). During early interphase (Figure
1A), a single centrosome radially organizes MTs used to traffic cargo, support cell shape, guide cell motility,
and assist in cell signaling, among other roles. The centrosome then proceeds through two critical cycles
[1]. The first is the Duplication Cycle, which is the process of going from one centrosome to two. The
second is the Maturation Cycle, during which centrosomes anchor increasing amounts of PCM, nucleate
more MTs, and become more robust MTOCs in preparation for mitosis where both centrosomes coordi-
nate the assembly of the bipolar mitotic spindle (Figure 1A). Defects in centrosome protein function or
in centrosome number cause many cellular abnormalities such as cell cycle arrest, aneuploidy, cell polar-
ity defects, and missegregation of cell-fate determinants. Not surprisingly then, mutations in centrosome
proteins are linked to many human diseases such as microcephaly and cancer [2–4].

A major advance in understanding these two cycles in recent years has been the positional
mapping of centrosome proteins using structured illumination microscopy (SIM) [5–9]. Based on
the distance from the center of the centriole, zones of centrosome proteins have been proposed.
However, there is no consensus on the nomenclature of these zones, especially across species. In
this review, we classify the centrosome as three hierarchical zones: (1) the centriole zone, (2)
the ‘bridge’ zone, and (3) the PCM zone (Figure 1B). This review focuses on ‘bridge proteins’,
which are ideally positioned between centrioles and PCM, and thus poised to facilitate the ex-
pansion of PCM during centrosome maturation. We propose that properly positioning and regu-
lating bridge proteins is key to triggering centrosome maturation, which in-turn is critical for in-
creased MTOC function, spindle formation, and ultimately chromosome segregation during mitosis.
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Figure 1. Bridge proteins facilitate centrosome maturation

(A) Centrosomes undergo two critical cycles that are linked to the cell cycle. In S-phase, each mother centriole (blue) templates

the nucleation of a new daughter centriole (purple), thereby forming two centrosomes. As cells near mitosis, centrosomes undergo

maturation by recruiting additional PCM. The focus of this review is to explore the mechanism by which centrosome maturation

is regulated (Box). How is PCM expansion catalyzed at the centrosome in late G2? (B) The three main centrosome zones are

indicated: centriole, bridge, and PCM. The bridge zone is the area between the centriole (blue) and the PCM (colored network),

spanning roughly the 100–200 nm position (radial distance). The bridge zone is occupied by four conserved proteins Sas-4/CPAP

(pink), Spd-2/Cep192 (red), Asterless/Cep152 (yellow), and PLP/Pericentrin (brown). Spd-2/Cep192 also occupies the PCM zone

as a critical member of the PCM network that also includes Cnn/CDK5RAP2 (orange) and γTuRCs (green). The C. elegans protein

Sas-7 (orange oval) also qualifies as a bridge protein. Asterless/Cep152 and PLP/Pericentrin are radially organized such that their

C-termini are anchored to the centrioles and N-termini are proximal to the PCM. Plk1/Polo is key to PCM network expansion,

although substrates within the bridge zone have not been identified.

The centriole zone
Centrioles form the core structural unit of a centrosome. A relatively small number of centriole proteins are stereo-
typically organized and encased within a MT barrel with nine-fold symmetry. Studies over the past 10 years have
made extensive progress toward our understanding of centriole assembly. Complex mechanisms involving Polo-like
kinase 4 (Plk4 in humans and flies, Zyg1 in Caenorhabditis elegans) and the major centriole proteins Sas-4 (CPAP
in human), Spd-2 (Cep192 in humans), Sas-6, Ana2/STIL/Sas5 (flies, human, C. elegans), and Cep135 ensure that
a mother centriole templates the birth of a single daughter centriole once per cell cycle. These centriole duplication
mechanisms have been recently reviewed [1,10]. Interestingly, clear evidence shows that centriole proteins, such as
Spd-2 and Sas-4, also play roles in recruiting or assembling PCM, likely owing to their additional localization within
the bridge and PCM zones. Investigating the dual roles for these proteins in centrosome duplication and maturation
is challenging as complete loss-of-function analysis using null mutant or RNAi knockdown leads to loss of the entire
organelle as a result of a failure in centriole duplication. Thus, a repeating theme throughout this review is the neces-
sity for a deeper understanding of centriole proteins through structure-function analysis and separation-of-function
mutations.
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The PCM zone, a network of Cnn–Spd-2–Pericentrin
The PCM is the outer layer of the centrosome and is composed of hundreds of proteins, including a matrix of Pericen-
trin (Pcnt/Kendrin in humans), Centrosomin (Cnn in flies, Cep215/CDK5RAP2 in humans), and Spd-2 (Cep192 in
humans), which together function to recruit and anchor gamma tubulin ring complexes (γTuRC) [11–20]. In vitro
work using C. elegans recombinant protein showed that Spd-5 (a protein many suggest to be a functional ortholog
of Cnn/Cep215) and Spd-2 can form an expanding protein matrix, whose rate of assembly is enhanced by the critical
mitotic kinase Polo-like kinase (Plk1 in human and C. elegans, Polo in flies) [21–24]. Because C. elegans do not have
a Pcnt ortholog, the Spd-5/Spd-2 scaffold is likely the main PCM structure that recruits MT nucleating factors, be it
γTuRCs or MT-associated proteins such as ZYG-9 and TPXL-1 [22].

In Drosophila, Polo is also critical for PCM assembly. One mechanism of Polo function is via phosphorylating the
phosphoregulated-multimerization (PReM) domain in the central region of Cnn [25], which then promotes either
an intra- or inter-molecular interaction with the C-terminal CM2 domain of Cnn [26]. The Drosophila ortholog of
Pcnt, Pericentrin-like protein (PLP), does not expand into the PCM zone and thus is not a component of the fly PCM
network. However, as we will discuss below, PLP might serve as a catalyst to trigger the expansion and/or stabilization
of PCM at the mother centriole.

In humans, the localization and function of Cep192 (Spd-2), Cep215/CDK5Rap2 (Cnn), and Pcnt appear to be
significantly interdependent, but none rely exclusively on any one protein [20]. While less is known about mammalian
PCM network formation, a mechanism similar to Drosophila and C. elegans is likely to emerge. In fact, in cultured
mammalian cells it was shown that Plk1 phosphorylation of Pcnt is required for the recruitment of several PCM
proteins, including Cep192 [27]; other Plk1 substrates have yet to be mapped.

Taking the work from various model systems in aggregate, a singular model of centrosome maturation is slowly
coming into focus where Polo/Plk1 phosphorylates Cnn/Cep215/CDK5Rap2, Spd-2, and PLP/Pcnt to induce PCM
expansion during G2. This expansion then greatly increases γTuRC recruitment and MT nucleation from the rel-
atively low levels in interphase to the high levels needed for mitosis. A key question in the field remains – how is
this network expanded or catalyzed at the right place (the surface of centrioles) and at the right time (in G2 during
maturation) (Figure 1A, Box)?

The bridge zone – templating the PCM network
We define ‘bridge’ proteins based on two criteria: the first is based on their position between the centriolar MT wall at
roughly 100 nm (radial distance) and the inner edge of PCM at approximately 200 nm [6–9,28–30] (Figure 1B). This
zone was referred to previously as ‘Zone II and III’ [9], the ‘inner and intermediate’ PCM [6], and in many studies
simply as PCM. We use the term bridge as it is a descriptive term that conveys the function of these proteins to link
centrioles and PCM. The second criterion for bridge proteins is the presence of published data to support their role
in recruiting or anchoring PCM. It is important to keep in mind that these radial measurements vary between species
and cell-type, and that centrosome protein positions are ‘normal distributions’, which means a significant amount
of protein localizes on either side of the mean peak position. The significant overlap between the three centrosome
zones probably explains the multifunctionality of centrosome proteins that the field is just beginning to appreciate.

Four scaffold proteins – Sas-4/CPAP, Spd-2/Cep192, Asl/Cep152, and PLP/Pcnt – fit the criteria of a bridge protein
(Figure 1B). One additional C. elegans protein, Sas-7, is also properly positioned just beyond the centriole wall and
has been implicated in PCM recruitment, thus satisfying the bridge protein criteria [31]. Interestingly, all of these
proteins play an additional role in building or maintaining centrioles. This dual role has contributed to the significant
challenge to independently investigate their PCM maturation role. We will discuss what is known about the role of
bridge proteins in catalyzing and assembling the Spd-2–Cnn–Pcnt PCM network.

Sas-4/CPAP
CPAP in humans, and Sas-4 in C. elegans, Drosophila, and mouse, is the most functionally diverse protein in the
bridge category. Sas-4 is essential for centriole duplication in most organisms [18,32–34]. Earlier work showed that
Sas-4 is, in fact, a centriole protein [35,36], while later SIM imaging specifically placed Sas-4 within the centriole zone
of the newly forming daughter centriole [8,37]. This localization facilitates the role of Sas-4 in assembling the centriole
MT wall [38] and in centriole length control [39,40]. Elegant work using a combination of structural and biochemical
assays uncover how the two CPAP N-terminal MT-binding domains PN2.3 (LID + SAC regions) and MBD (MT
binding domain) target CPAP to the plus end of centriole MTs. These two domains generate a perfect balance between
promoting and restricting MT growth to ensure proper centriole length [41]. This work helps explain previous studies
that showed that PN2.3 can suppress MT growth [42], while overexpression of CPAP can promote MT elongation

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

795



Essays in Biochemistry (2018) 62 793–801
https://doi.org/10.1042/EBC20180036

[39,40,43]. In a separate role, several lines of evidence support a Sas-4 function in recruiting PCM. Work in C. elegans
showed that partial depletion of Sas-4 reduces PCM levels [35], while work in human cell lines showed that CPAP
immunoprecipitated with γ-tubulin, and that CPAP antibodies blocked MT nucleation from isolated centrosomes
[44]. Additionally, SIM of cultured Drosophila S2 and human U2OS cells revealed Sas-4/CPAP localization as a
ring around the mother centriole [8,37], within the bridge zone. We speculate that this mother centriole localization
facilitates the secondary role of Sas-4 in recruiting PCM.

How might Sas-4/CPAP mediate PCM recruitment? There are currently two main models. The first model is direct
tethering of PCM components to the centriole [45]. In this model, the C-terminal TCP domain of Sas-4 binds com-
ponents of the centriole zone – STIL/Ana2 and Cep135 [46–49], while the N-terminus extends into the bridge zone
to bind components of the PCM [37,50,51]. Consistent with this model, disruption of the TCP domain reduces PCM
levels at centrosomes [45]. However, the mutation used in this study also led to centriole loss in 50% of cells, which
would complicate analysis of PCM recruitment. Thus, the perfect separation-of-function mutation to independently
test the role of Sas-4 in centrosome maturation remains elusive.

The second model of Sas-4 function involves a cell cycle regulated kinase signaling cascade [52]. Sas-4 is the only
bridge protein to date shown to directly bind Polo [37], and work in Drosophila has recently shown that Cdk1/Cyclin
B phosphorylation of Sas4-T200 is required for Polo recruitment to the centrosome [52]. Although not tested by
Novak and colleagues, it is tempting to speculate that this Polo recruitment by Sas-4 occurs in G2 to initiate PCM
network expansion by phosphorylating the Cnn–PReM domain at the surface of the centriole [53]. In support of this
mechanism, Polo has been localized to the bridge zone [9] and the incorporation of PCM into the centrosome, at
least in some cells, begins within the bridge zone (centriole wall) before expanding into the surrounding PCM zone
[53,54].

For both the direct recruitment of PCM model [45] and the indirect signaling through Polo model [52], a stable
pool of Sas-4 near the centriole wall is likely required. In fact, FRAP analysis of centrosomes has shown that the
Sas-4 pool surrounding the mother centriole does not recover within the timeframe of centrosome maturation [53].
This does not exclude, however, a contribution from a dynamic pool of Sas-4 that might be recruited as part of a
preassembled PCM complex such as the S-CAP complex shown in Drosophila [51].

Taken together, Sas-4 is a complicated protein with multiple roles and many levels of regulation. Similar to all the
bridge proteins, separation of function mutation analysis will be required to independently interrogate Sas-4’s roles
in centriole duplication, centriole elongation, and PCM recruitment.

Asterless/Cep152
Asl and its human ortholog Cep152, much like Sas-4/CPAP, possess dual functions in centriole duplication and cen-
trosome maturation. Asl/Cep152 is critical for centriole duplication, as it functions to recruit the centriole duplication
kinase Plk4 to the centriole [55–62]. Asl displays a highly ordered molecular architecture within the bridge zone [5–9]
with its C-terminus close to the centriole wall, anchored and properly positioned by Ana1/Cep295 [5], Cep135 [37],
and possibly Sas-4 [57,60,62]. The N-terminus of Asl extends radially away from the centriole toward the PCM zone
and is thus well positioned to influence PCM assembly (Figure 1B). In fact, several studies in Drosophila have shown
that loss of Asl leads to a reduction in PCM levels [53,55,63]. In mammalian cells, depletion of Cep152 resulted in
a reduction of γ-tubulin, although the precise cell cycle stage was not reported [64], and therefore it is not clear if
Cep152 is required for centrosome maturation per se.

Interestingly, Asl is loaded onto daughter centrioles between metaphase and telophase [55] as part of the
‘centriole-to-centrosome conversion’ mechanism that transforms an immature daughter centriole into a mother cen-
triole competent to duplicate and recruit PCM [5,52]. To date, however, nothing is known about the regulation of Asl
for the precise timing of PCM recruitment much later in the cell cycle in G2. Is Asl/Cep152, for example, phospho-
rylated by Polo or another mitotic kinase in G2 (Figure 1B)?

Likewise, little is known about the events downstream of Asl – how exactly does Asl feed into templating or anchor-
ing the Cnn–Spd-2 PCM network during maturation? We speculate that this is mediated through direct binding and
recruitment of Spd-2 and/or Cnn to the surface of the centriole as extensive direct interactions have been reported
among all three proteins in Drosophila [25,29], and proximity labeling experiments suggest Cep152–CDK5Rap2 in-
teract in mammalian cells [64]. These direct interactions might serve to concentrate Spd-2 and Cnn at the centriole
wall and bring them in contact with Polo kinase for activation.

An important note regarding these aforementioned Drosophila studies on Asl PCM recruitment is that they were
either conducted using a poorly characterized allele of Asl (asl1) [55,63] which was later shown to be hypomorphic
[56], or in Drosophila embryos using inhibitory antibody injections [65]. Furthermore, in contrast with these studies,
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two studies using the null allele aslmecD in Drosophila have shown that Asl-free centrioles are fully capable of recruit-
ing PCM in male meiosis [29,56]. Thus, extensive future structure function studies in mammalian and Drosophila
systems (C. elegans do not have Asl) are required to understand how Asl functions to regulate PCM recruitment
independent of its role in centriole duplication.

Spd-2/Cep192
We have included Spd-2 in the list of bridge proteins because it satisfies both bridge protein criteria of localization
and a known role in PCM recruitment. Spd-2, however, is a major component of the PCM itself as we describe above
and is critical for centriole duplication in several species [18,21,59,66,67]. The current published data, however, does
attribute a distinct role for Spd-2 in the bridge zone in catalyzing the initial steps of centrosome maturation, and thus
we do not further discuss Spd-2 in this review. However, we do postulate that protein modification of bridge zone
Spd-2 (at the centriole surface) is an important trigger of PCM expansion.

Pericentrin/PLP
Pericentrin (Pcnt) has an extensive research history, most of which describes Pcnt as a critical PCM protein that is
incorporated throughout the expanding PCM in mitosis, similar to Spd-2/Cep192, Cnn and γ-tubulin. However,
there is a pool of Pcnt in the bridge zone as identified by SIM of interphase cells [6,8]. How then might we investigate
the bridge role of Pcnt independently of its role within the PCM? In this respect, the Drosophila ortholog of Pcnt,
PLP (CP309) has proven to be quite valuable. In Drosophila, PLP does not assemble with the Cnn–Spd-2 network in
mitosis but remains tightly associated with the centriole, similar to its localization in interphase. Thus, studying PLP
affords an opportunity to independently investigate the bridge role of Pcnt/PLP without the confounding function
within the PCM.

In Drosophila, loss of PLP results in the reduction and disorganization of Cnn in mitosis [68,69], suggesting that
PLP at the centriole wall does, in fact, influence the recruitment and stability of the Spd-2–Cnn network. The one
exception to this strict PLP bridge zone localization is seen in Drosophila embryos where PLP-satellites are found in
the interphase centrosome ‘flare zone’, which extend over 1.5 μm in radius, well beyond the PCM zone [28]. Because
the flare zone appears to be a Drosophila embryos specific structure, other Drosophila cell types are more suitable
for studying the bridge role of PLP.

Similar to the molecular architecture of Asl, the C-terminus of PLP (and Pcnt) is anchored to the centriole, while the
N-terminus radially extends toward the PCM zone [6–9]. This organization is consistent with the extended molecular
characteristic of Spc110, the yeast ortholog of Pcnt, within the yeast spindle pole body [70,71], suggesting an evolu-
tionarily conserved molecular architecture. Additional structural insight into PLP/Pcnt was gained using STORM
imaging and EM, which revealed symmetric clusters around the centrioles, reminiscent of the nine-fold symmetry
of the centriolar MTs [7,8]. This radially organized and extended conformation of PLP might directly account for its
role in PCM recruitment and organization, but this hypothesis has yet to be tested.

Another similarity shared by Asl and PLP is the timing of PLP loading onto the centriole. PLP appears to load onto
the daughter centriole just after Asl during centriole-to-centrosome conversion in metaphase/anaphase [5]. Thus, the
addition of both PLP and Asl to daughter centrioles might be required for fully converting a centriole into a mature
organelle competent for recruiting PCM much later in G2. But again, few details are known about the regulation
of PLP. Based on mammalian work where Plk1 phosphorylates Pcnt to allow for PCM recruitment [27], a reason-
able hypothesis is that PLP is also a Polo substrate that can then trigger, or catalyze Spd-2–Cnn network expansion
through direct protein–protein interactions. In fact, extensive direct PLP–Cnn and PLP–Spd-2 interactions have been
reported [28,37,72,73]. Interestingly, many interactions overlap with one another. For example, the CM2 domain of
Cnn can interact with the central region of Cnn [26,37] and the N-terminal region of PLP [28,37]. These types of
overlapping interactions drive hypotheses of competitive and cooperative protein binding that is potentially regu-
lated by the biochemical state in different cell cycle stage. At this point, however, such hypotheses lack experimental
support.

Concluding remarks
In this review, we discuss the architecture of the centrosome in the terms of three zones, focusing mainly on the cen-
tral zone of the centrosome we refer to as the ‘bridge zone’, which comprises four centrosome proteins (Sas4/CPAP,
Asl/Cep152, Spd-2/Cep192, and PLP/Pcnt). One additional protein that we do not discuss in this review is C. el-
egans Sas-7, which also likely functions as a bridge protein [31]. These bridge proteins reside just outside of the
centriole wall and have been shown to play an important role in PCM assembly, likely through parallel mechanisms
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that cross-communicate. Perturbation of any one mechanism does not completely abolish centrosome function, pos-
sibly due to system redundancy that ensures robust MTOC activity needed for spindle formation. Polo is clearly a
critical component of centrosome maturation and we predict that future work will identify all four bridge proteins
as Polo/Plk1 substrates. Determining the impact of phosphorylation (by Polo or other mitotic kinases) on the cen-
trosome interaction network, such as those shown for Sas-6 [1], Cep135 [37], and Cnn [26], will be quite exciting.
Identifying these sites and their function will constitute an important advance in our understanding of how centro-
some maturation and MTOC activity is properly triggered in G2. Furthermore, showing that bridge proteins are,
in fact, the key proteins in templating PCM network expansion will help explain how MTOC activity is spatially re-
stricted to centrosomes. In addition to the clear need for generating separation-of-function mutations, understanding
these spatial and temporal mechanisms will be aided by advancements in optogenetics and rapid protein degradation
systems such as the auxin-induced degradation (AID) systems, which provide a way to carefully manipulate protein
dynamics in space and time.

Summary
• Centrosomes undergo a dramatic transformation in G2, known as centrosome maturation, where

additional PCM is recruited. This maturation facilitates an increase in MT nucleation and organization
in preparation for mitosis.

• The region of the centrosome just beyond the centriole wall is a zone critical for centrosome matu-
ration: we term this region as the ‘bridge zone’.

• This zone is occupied by four proteins referred to as ‘bridge proteins’, all of which have been shown
to play a role in some aspect of centrosome maturation. The bridge proteins are Sas-4/CPAP, Aster-
less/Cep152, Spd-2, and PLP/Pericentrin. The C. elegans specific protein Sas-7 is also classified as
a bridge protein.

• Polo/Plk1 is an essential kinase for centrosome maturation and has a role in regulating bridge pro-
teins. It is predicted that future work will identify all bridge proteins as Polo/Plk1 substrates and that
their phosphorylation is required to catalyze PCM expansion in G2.
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