organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Butyryl-5-hydroxy-4-phenylseselin

Thammarat Aree,* Santi Tip-pyang and Preecha Sowanthip

Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand Correspondence e-mail: thammarat.aree@gmail.com

Received 12 August 2010; accepted 24 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.100; data-to-parameter ratio = 8.0.

In the title coumarin compound (systematic name: 6-butyryl-5-hydroxy-8,8-dimethyl-4-phenyl-2H,8H-benzo[1,2-b;3,4-b']dipyran-2-one), C₂₄H₂₂O₅, also known as mammea A/AC cyclo D, the chromene and pyran rings are almost coplanar with a maximum deviation from the mean plane of 0.295 (2) Å. The attached phenyl group is inclined at $53.49 (8)^{\circ}$ with respect to the chromene ring. The molecular structure is stabilized by an intramolecular O-H···O hydrogen bond. In the crystal, molecules are linked into sheets parallel to (101) by intermolecular $C-H \cdots O$ hydrogen bonds. Adjacent sheets are sustained by intermolecular C- $H \cdot \cdot \pi$ and $\pi - \pi$ [centroid–centroid distance = 4.471 (2) Å] interactions.

Related literature

For the structural characterization of mammea A/AC cyclo D, see: Thebtaranonth et al. (1981); Morel et al. (1999); Kaweetripob et al. (2000). For its anti-HIV activity, see: Márquez et al. (2005); Bedoya et al. (2005) and for its anticancer activity, see: Reves-Chilpa et al. (2004). For related coumarins, see: Mahidol et al. (2002). For a review on the cytotoxic activity of coumarins, see: Kostova (2005).

Experimental

Crystal data

$C_{24}H_{22}O_5$	a = 17.0746 (4) A
$M_r = 390.42$	b = 13.4170(4)
Monoclinic, Cc	c = 8.7607 (3) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.965, T_{\max} = 0.986$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 2 restraints $wR(F^2) = 0.100$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\min} = -0.14 \text{ e} \text{ Å}^{-3}$ 2115 reflections 265 parameters

 $\mu = 0.09 \text{ mm}^{-1}$

 $0.40 \times 0.32 \times 0.16 \text{ mm}$

5484 measured reflections

2115 independent reflections

1714 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.023$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1'-C6'ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 03 - H3O \cdots O1'' \\ C3'' - H32 \cdots O2^{i} \\ C4' - H4' \cdots O2^{ii} \\ C6'' - H61'' \cdots Cg1^{iii} \end{array}$	0.82 0.97 0.93 0.96	1.73 2.71 2.70 2.75	2.464 (3) 3.522 (5) 3.396 (4) 3.646 (4)	149 142 132 156

Symmetry codes: (i) x, y + 1, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005): data reduction: SAINT: program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al. 2006); software used to prepare material for publication: SHELXTL.

This work was supported by the Thai Government Stimulus Package 2 (TKK2555), under the Project for the Establishment of a Comprehensive Center for Innovative Food, Health Products and Agriculture (PERFECTA), the Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University (to TA), the National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (FW001A) (to ST).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2051).

References

- Bedoya, L. M., Beltrán, M., Sancho, R., Olmedo, D. A., Sánchez-Palomino, S., Del Olmo, E., López-Pérez, J. L., Muñoz, E. & San Feliciano, A. (2005). Bioorg. Med. Chem. Lett. 15, 4447-4450.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Kaweetripob, W., Mahidol, C., Prawat, H. & Ruchirawat, S. (2000). Pharm. Biol. 38, 55-57.
- Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29-46.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Mahidol, C., Kaweetripob, W., Prawat, H. & Ruchirawat, S. (2002). J. Nat. Prod. 65, 757-760.
- Márquez, N., Sancho, R., Bedoya, L. M., Alcamí, J., López-Pérez, J. L., San Feliciano, A., Fiebich, B. L. & Muñoz, E. (2005). Antivir. Res. 66, 137-145.

(4) Å

(4) Å

Morel, C., Guilet, D., Oger, J.-M., Séraphin, D., Sévenet, T., Wiart, C., Hadi, A. H. A., Richomme, P. & Bruneton, J. (1999). *Phytochemistry*, **50**, 1243–1247.
Reyes-Chilpa, R., Estrada-Muñiz, E., Ramírez Apan, T., Amekraz, B., Aumelas, A., Jankowski, C. K. & Vázquez-Torres, M. (2004). *Life Sci.* **75**, 1635–1647.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Thebtaranonth, C., Imraporn, S. & Padungkul, N. (1981). Phytochemistry, 20, 2305-2306.

Acta Cryst. (2010). E66, o2464-o2465 [doi:10.1107/S160053681003415X]

6-Butyryl-5-hydroxy-4-phenylseselin

T. Aree, S. Tip-pyang and P. Sowanthip

Comment

The title coumarin compound, 6-butyryl-5-hydroxy-4-phenylseselin or mammea A/AC cyclo D (Fig. 1) was isolated from the hexane crude extract of the flowers of *Mammea siamensis* (*Sarapee* in Thai). Several coumarins derived from the same flowers have been reported, see for example Mahidol *et al.* 2002 and other references cited therein. In this work, we report the crystal structure of mammea A/AC cyclo D.

The molecular structure consists of one chromene ring, one pyran ring and one phenyl ring (Fig. 1). The chromene and pyran rings are almost coplanar. Atoms C2, C2", C4" and O1" most deviate from the mean plane by 0.133 (3), 0.295 (2), -0.154 (3) and -0.172 (2) Å, respectively. The butyraldehyde group, hydroxy group and atom O2 displace from the chromene plane to greater extents: 0.326 (3) Å, O3; 0.307 (4) Å, O1"; and -0.303 (7) Å, C3"'. The methyl C4"', C5" and C6" atoms point upwards and downwards the chromene ring with torsion angles of -73.8 (6)° for C1"'-C2"'-C3"'-C4"', -142.8 (3)° for C4"-C3"-C2"-C5" and 91.7 (4)° for C4"-C3"-C2"-C6". The attached phenyl group inclines by 53.49 (8)° against the chromene ring. The molecular structure is stabilized by intramolecular O3-H…O1"' hydrogen bond.

In the crystal, the molecules are linked into sheets parallel to (101) by intermolecular, bifurcated C3^{'''}—H32^{...}O2(*x*, y + 1, *z*) and C4'—H4'···O2(x - 0.5, -y + 0.5, z + 0.5) hydrogen bonds (Fig. 2 and Table 1). The adjacent sheets are sustained by intermolecular C6''—H61''··· π (ring C1'—C2'—C3'—C4'—C5'—C6') and $\pi - \pi$ (two adjacent rings of C4a—C5—C6—C7—C8—C8a) interactions (Fig. 3). The corresponding distance from atom H to the phenyl-ring center is 2.75 Å and the interplanar spacing is 3.54 Å.

Experimental

The title coumarin compound was isolated from the hexane crude extract of the flowers of *Mammea siamensis*, which is a Thai medicinal plant, locally known as *Sarapee*. This coumarin mammea A/AC cyclo D was known for almost 30 years. Its structure was ambigously characterized by spectroscopic techniques (Thebtaranonth *et al.*, 1981; Morel *et al.*, 1999; and Kaweetripob *et al.*, 2000). Other coumarins were also isolated from the same flower (Mahidol *et al.*, 2002 and other references cited therein).

The light yellow, block-like single crystals were obtained by slow evaporation of a hexane–dichloromethane solution at room temperature.

Refinement

All H atoms were located in a difference Fourier map and then refined using a riding model: C-H = 0.97 Å(secondary), 0.93 Å (aromatic), 0.96 Å (methyl), O-H = 0.82 Å (hydroxy), and $U_{iso}(H) = 1.2U_{eq}(C,O)$ and $U_{iso}(H) = 1.5U_{eq}(methyl C)$. In the absence of significant anomalous scattering effects, Friedel pairs were averaged and therefore, the absolute structure could not be determined.

Figures

Fig. 1. The molecular structure of the title compound, with atomic numbering scheme and 40% probability displacement ellipsoids.

Fig. 2. An infinite sheet parallel to (101) formed by intermolecular C—H…O hydrogen bonds (dotted lines).

Fig. 3. Parallel, infinite sheets are sustained by intermolecular C—H··· π and π - π interactions.

6-Butyryl-5-hydroxy-8,8-dimethyl-4-phenyl-2H,8H- benzo[1,2-b;3,4-b¹]dipyran-2-one

Crystal data	
C ₂₄ H ₂₂ O ₅	F(000) = 824
$M_r = 390.42$	$D_{\rm x} = 1.292 \ {\rm Mg \ m}^{-3}$
Monoclinic, Cc	Melting point = $412-413$ K
Hall symbol: C -2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 17.0746 (4) Å	Cell parameters from 2083 reflections
b = 13.4170 (4) Å	$\theta = 2.4 - 24.3^{\circ}$
c = 8.7607 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 90.341 \ (1)^{\circ}$	<i>T</i> = 298 K
$V = 2006.95 (10) \text{ Å}^3$	Block, light yellow
Z = 4	$0.40\times0.32\times0.16~mm$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	2115 independent reflections
Radiation source: fine-focus sealed tube	1714 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
φ and ω scans	$\theta_{\text{max}} = 26.7^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -21 \rightarrow 21$
$T_{\min} = 0.965, \ T_{\max} = 0.986$	$k = -16 \rightarrow 12$
5484 measured reflections	$l = -11 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.100$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.0539P)^2 + 0.3001P]$ where $P = (F_0^2 + 2F_c^2)/3$
2115 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
265 parameters	$\Delta \rho_{max} = 0.13 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.37812 (12)	0.33800 (15)	0.0704 (2)	0.0539 (5)
C2	0.33746 (18)	0.2581 (2)	0.1325 (4)	0.0585 (8)
C3	0.26471 (17)	0.2825 (2)	0.2042 (4)	0.0527 (7)
H3	0.2335	0.2304	0.2382	0.063*
C4	0.23882 (15)	0.3763 (2)	0.2253 (3)	0.0417 (6)
C4A	0.28947 (13)	0.4585 (2)	0.1797 (3)	0.0381 (6)
C5	0.27705 (14)	0.5596 (2)	0.2138 (3)	0.0401 (6)
C6	0.32418 (15)	0.6360 (2)	0.1496 (3)	0.0418 (6)
C7	0.38818 (14)	0.6053 (2)	0.0584 (3)	0.0430 (6)
C8	0.40587 (14)	0.5060 (2)	0.0336 (3)	0.0426 (6)
C8A	0.35629 (14)	0.4350 (2)	0.0958 (3)	0.0413 (6)
O2	0.36629 (16)	0.17743 (18)	0.1167 (4)	0.0866 (8)
O3	0.22095 (11)	0.58102 (16)	0.3131 (2)	0.0545 (5)
H3O	0.2187	0.6415	0.3254	0.065*
C1'	0.15739 (15)	0.3906 (2)	0.2792 (3)	0.0423 (6)
C2'	0.12989 (18)	0.3393 (2)	0.4053 (3)	0.0517 (7)
H2'	0.1639	0.2998	0.4623	0.062*
C3'	0.0518 (2)	0.3467 (3)	0.4467 (3)	0.0634 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H3'	0.0335	0.3115	0.5307	0.076*
C4'	0.00155 (18)	0.4058 (3)	0.3643 (4)	0.0651 (9)
H4'	-0.0505	0.4115	0.3936	0.078*
C5'	0.02778 (17)	0.4563 (2)	0.2394 (4)	0.0613 (8)
H5'	-0.0066	0.4958	0.1831	0.074*
C6'	0.10527 (16)	0.4491 (2)	0.1961 (3)	0.0518 (7)
H6'	0.1227	0.4836	0.1107	0.062*
O1"	0.43245 (11)	0.67654 (16)	-0.0081 (2)	0.0583 (6)
C2"	0.51443 (16)	0.6551 (2)	-0.0456 (3)	0.0512 (7)
C3"	0.52184 (19)	0.5511 (3)	-0.1026 (4)	0.0659 (9)
H3"	0.5624	0.5355	-0.1689	0.079*
C4"	0.47252 (17)	0.4806 (3)	-0.0619 (3)	0.0590 (8)
H4"	0.4802	0.4152	-0.0938	0.071*
C5"	0.5349 (2)	0.7323 (4)	-0.1653 (5)	0.0883 (13)
H51"	0.5019	0.7234	-0.2533	0.132*
Н53"	0.5887	0.7246	-0.1941	0.132*
H52"	0.5271	0.7979	-0.1242	0.132*
C6"	0.56228 (19)	0.6696 (3)	0.0983 (4)	0.0650 (9)
H61"	0.5531	0.7352	0.1383	0.098*
H62"	0.6169	0.6621	0.0754	0.098*
Н63"	0.5473	0.6207	0.1726	0.098*
O1'''	0.25223 (16)	0.75871 (17)	0.2771 (3)	0.0754 (7)
C1""	0.30374 (18)	0.7407 (2)	0.1820 (4)	0.0534 (7)
C2"'	0.3419 (2)	0.8263 (2)	0.1013 (5)	0.0707 (9)
H21	0.3395	0.8142	-0.0078	0.085*
H22	0.3968	0.8285	0.1306	0.085*
C3"'	0.3056 (3)	0.9268 (3)	0.1337 (8)	0.1047 (16)
H31	0.2988	0.9338	0.2430	0.126*
H32	0.3413	0.9786	0.1007	0.126*
C4"'	0.2279 (3)	0.9421 (4)	0.0562 (8)	0.131 (2)
H41	0.2350	0.9428	-0.0524	0.197*
H42	0.2059	1.0045	0.0882	0.197*
H43	0.1931	0.8889	0.0832	0.197*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0436 (10)	0.0447 (11)	0.0734 (13)	-0.0010 (8)	0.0108 (9)	-0.0126 (9)
C2	0.0485 (16)	0.0413 (17)	0.086 (2)	-0.0067 (13)	0.0061 (16)	-0.0075 (15)
C3	0.0431 (15)	0.0435 (15)	0.0716 (19)	-0.0084 (12)	0.0022 (13)	0.0007 (14)
C4	0.0370 (13)	0.0426 (14)	0.0456 (15)	-0.0053 (11)	-0.0006 (11)	0.0026 (11)
C4A	0.0330 (13)	0.0428 (14)	0.0386 (13)	-0.0045 (11)	-0.0004 (10)	-0.0006 (11)
C5	0.0347 (12)	0.0447 (15)	0.0410 (13)	-0.0012 (11)	-0.0023 (10)	-0.0002 (12)
C6	0.0329 (12)	0.0441 (15)	0.0482 (14)	-0.0034 (11)	-0.0063 (10)	0.0018 (11)
C7	0.0322 (12)	0.0518 (16)	0.0450 (14)	-0.0107 (11)	-0.0031 (10)	0.0063 (12)
C8	0.0368 (12)	0.0485 (15)	0.0426 (13)	-0.0060 (11)	0.0001 (10)	-0.0046 (12)
C8A	0.0357 (14)	0.0437 (15)	0.0444 (14)	-0.0024 (11)	0.0000 (11)	-0.0062 (11)
O2	0.0718 (15)	0.0470 (14)	0.141 (2)	0.0045 (12)	0.0231 (15)	-0.0142 (15)

O3	0.0476 (11)	0.0509 (12)	0.0652 (13)	-0.0020 (9)	0.0161 (9)	-0.0061 (10)
C1'	0.0368 (13)	0.0457 (15)	0.0445 (13)	-0.0097 (11)	0.0020 (10)	-0.0001 (12)
C2'	0.0556 (17)	0.0551 (18)	0.0443 (15)	-0.0095 (14)	-0.0012 (12)	0.0048 (13)
C3'	0.0620 (19)	0.082 (2)	0.0466 (17)	-0.0215 (17)	0.0152 (14)	0.0053 (16)
C4'	0.0436 (16)	0.083 (2)	0.069 (2)	-0.0096 (15)	0.0154 (14)	-0.0080 (18)
C5'	0.0419 (15)	0.071 (2)	0.071 (2)	0.0020 (14)	-0.0005 (14)	0.0055 (16)
C6'	0.0408 (14)	0.0583 (18)	0.0564 (16)	-0.0082 (12)	0.0040 (11)	0.0115 (13)
O1"	0.0438 (11)	0.0547 (13)	0.0765 (14)	-0.0081 (9)	0.0076 (10)	0.0172 (10)
C2"	0.0376 (14)	0.0625 (18)	0.0537 (17)	-0.0125 (12)	0.0047 (11)	0.0103 (14)
C3"	0.0513 (17)	0.086 (3)	0.0604 (18)	-0.0193 (16)	0.0220 (14)	-0.0193 (17)
C4"	0.0473 (16)	0.066 (2)	0.0637 (19)	-0.0107 (15)	0.0178 (13)	-0.0189 (16)
C5"	0.059 (2)	0.117 (3)	0.089 (3)	-0.016 (2)	0.0098 (18)	0.045 (2)
C6"	0.0623 (19)	0.066 (2)	0.067 (2)	-0.0040 (15)	-0.0097 (15)	-0.0067 (16)
O1"''	0.0721 (15)	0.0505 (13)	0.1036 (19)	0.0059 (11)	0.0179 (14)	-0.0090 (12)
C1"'	0.0393 (14)	0.0468 (16)	0.0739 (19)	-0.0003 (12)	-0.0069 (14)	0.0006 (15)
C2"'	0.0588 (19)	0.0437 (18)	0.110 (3)	-0.0058 (14)	-0.0009 (18)	0.0087 (18)
C3'''	0.089 (3)	0.047 (2)	0.178 (5)	0.001 (2)	0.006 (3)	0.011 (3)
C4'''	0.107 (4)	0.086 (4)	0.200 (6)	0.037 (3)	-0.002 (4)	0.023 (4)

Geometric parameters (Å, °)

1.372 (3)	C5'—C6'	1.382 (4)
1.389 (4)	С5'—Н5'	0.9300
1.198 (4)	С6'—Н6'	0.9300
1.433 (4)	O1"—C2"	1.468 (3)
1.347 (4)	C2"—C3"	1.488 (5)
0.9300	C2"—C6"	1.510 (4)
1.458 (3)	C2"—C5"	1.516 (5)
1.483 (4)	C3"—C4"	1.317 (4)
1.397 (3)	С3"—Н3"	0.9300
1.406 (3)	C4"—H4"	0.9300
1.329 (3)	C5"—H51"	0.9600
1.421 (4)	С5"—Н53"	0.9600
1.418 (4)	С5"—Н52"	0.9600
1.476 (4)	С6"—Н61"	0.9600
1.353 (3)	С6"—Н62"	0.9600
1.385 (4)	С6"—Н63"	0.9600
1.388 (4)	O1"'—C1"'	1.239 (4)
1.457 (4)	C1'''—C2'''	1.500 (5)
0.8200	C2'''—C3'''	1.511 (6)
1.385 (4)	C2"'—H21	0.9700
1.389 (4)	C2'''—H22	0.9700
1.387 (4)	C3'''—C4'''	1.501 (7)
0.9300	С3'''—Н31	0.9700
1.371 (5)	С3'''—Н32	0.9700
0.9300	C4"'—H41	0.9600
1.365 (4)	C4'''—H42	0.9600
0.9300	C4'''—H43	0.9600
122.1 (2)	C7—O1"—C2"	119.6 (2)
122.1 (2)	C7—O1"—C2"	
	$\begin{array}{c} 1.372 (3) \\ 1.389 (4) \\ 1.198 (4) \\ 1.433 (4) \\ 1.347 (4) \\ 0.9300 \\ 1.458 (3) \\ 1.483 (4) \\ 1.397 (3) \\ 1.406 (3) \\ 1.329 (3) \\ 1.421 (4) \\ 1.418 (4) \\ 1.476 (4) \\ 1.353 (3) \\ 1.385 (4) \\ 1.388 (4) \\ 1.457 (4) \\ 0.8200 \\ 1.385 (4) \\ 1.389 (4) \\ 1.387 (4) \\ 0.9300 \\ 1.371 (5) \\ 0.9300 \\ 1.365 (4) \\ 0.9300 \\ 122.1 (2) \end{array}$	1.372 (3) $C5'-C6'$ 1.389 (4) $C5'-H5'$ 1.198 (4) $C6'-H6'$ 1.433 (4) $O1"-C2"$ 1.347 (4) $C2"-C3"$ 0.9300 $C2"-C6"$ 1.458 (3) $C2"-C5"$ 1.483 (4) $C3"-C4"$ 1.397 (3) $C3"-H3"$ 1.406 (3) $C4"-H4"$ 1.329 (3) $C5"-H53"$ 1.418 (4) $C5"-H52"$ 1.476 (4) $C6"-H61"$ 1.353 (3) $C6"-H62"$ 1.388 (4) $O1"-C1"'$ 1.457 (4) $C6"-H63"$ 1.388 (4) $O1"-C2"''$ 0.8200 $C2'''-C3'''$ 0.8200 $C2'''-H22$ 1.385 (4) $C3'''-H21$ 1.389 (4) $C3'''-H41$ 1.371 (5) $C3'''-H32$ 0.9300 $C4'''-H41$ 1.365 (4) $C4'''-H42$ 0.9300 $C4'''-H43$ 122.1 (2) $C7-O1"-C2'''$

O2—C2—O1	116.5 (3)	O1"—C2"—C3"	110.0 (2)
O2—C2—C3	127.9 (3)	O1"—C2"—C6"	107.5 (2)
O1—C2—C3	115.6 (3)	C3"—C2"—C6"	110.7 (3)
C4—C3—C2	124.1 (3)	O1"—C2"—C5"	104.2 (3)
С4—С3—Н3	118.0	C3"—C2"—C5"	112.8 (3)
С2—С3—Н3	118.0	C6"—C2"—C5"	111.3 (3)
C3—C4—C4A	118.2 (2)	C4"—C3"—C2"	121.8 (3)
C3—C4—C1'	118.3 (2)	С4"—С3"—Н3"	119.1
C4A—C4—C1'	123.2 (2)	С2"—С3"—Н3"	119.1
C8A—C4A—C5	117.0 (2)	C3"—C4"—C8	119.4 (3)
C8A—C4A—C4	117.5 (2)	C3"—C4"—H4"	120.3
C5—C4A—C4	125.5 (2)	C8—C4"—H4"	120.3
O3—C5—C4A	117.2 (2)	С2"—С5"—Н51"	109.5
O3—C5—C6	121.0 (2)	С2"—С5"—Н53"	109.5
C4A—C5—C6	121.7 (2)	H51"—C5"—H53"	109.5
C7—C6—C5	117.0 (2)	С2"—С5"—Н52"	109.5
C7—C6—C1'''	124.6 (3)	Н51"—С5"—Н52"	109.5
C5—C6—C1'''	118.4 (3)	Н53"—С5"—Н52"	109.5
O1"—C7—C8	119.3 (2)	С2"—С6"—Н61"	109.5
O1"—C7—C6	118.2 (2)	С2"—С6"—Н62"	109.5
C8—C7—C6	122.5 (2)	Н61"—С6"—Н62"	109.5
C7—C8—C8A	117.7 (2)	С2"—С6"—Н63"	109.5
C7—C8—C4"	119.1 (3)	Н61"—С6"—Н63"	109.5
C8A—C8—C4"	123.1 (3)	Н62"—С6"—Н63"	109.5
O1—C8A—C8	114.8 (2)	O1"'-C1"'-C6	119.0 (3)
O1—C8A—C4A	121.5 (2)	O1""—C1""—C2"'	118.7 (3)
C8—C8A—C4A	123.7 (2)	C6—C1'''—C2'''	122.3 (3)
С5—О3—НЗО	109.5	C1"'-C2"'-C3"'	114.5 (3)
C2'—C1'—C6'	118.6 (2)	C1""—C2""—H21	108.6
C2'—C1'—C4	120.8 (3)	СЗ'''—С2'''—Н21	108.6
C6'—C1'—C4	120.3 (2)	C1"'-C2"'-H22	108.6
C1'—C2'—C3'	120.2 (3)	С3'''—С2'''—Н22	108.6
C1'—C2'—H2'	119.9	H21—C2"'—H22	107.6
C3'—C2'—H2'	119.9	C4'''—C3'''—C2'''	113.6 (4)
C4'—C3'—C2'	120.2 (3)	C4"'—C3"'—H31	108.9
C4'—C3'—H3'	119.9	C2"'—C3"'—H31	108.9
C2'—C3'—H3'	119.9	C4"'—C3"'—H32	108.9
C5'—C4'—C3'	120.1 (3)	C2"'—C3"'—H32	108.9
C5'—C4'—H4'	119.9	H31—C3'''—H32	107.7
C3'—C4'—H4'	119.9	C3'''—C4'''—H41	109.5
C4'—C5'—C6'	120.3 (3)	C3'''—C4'''—H42	109.5
C4'—C5'—H5'	119.9	H41—C4'''—H42	109.5
C6'—C5'—H5'	119.9	C3'''—C4'''—H43	109.5
C5'—C6'—C1'	120.5 (3)	H41—C4'''—H43	109.5
С5'—С6'—Н6'	119.8	H42—C4'''—H43	109.5
C1'—C6'—H6'	119.8		
C8A—O1—C2—O2	-172.2 (3)	C4—C4A—C8A—O1	-6.5 (3)
C8A—O1—C2—C3	9.4 (4)	C5—C4A—C8A—C8	-6.3 (3)
O2—C2—C3—C4	175.7 (4)	C4—C4A—C8A—C8	174.1 (2)

O1—C2—C3—C4	-6.1 (5)	C3—C4—C1'—C2'	50.3 (4)
C2—C3—C4—C4A	-3.2 (4)	C4A—C4—C1'—C2'	-136.1 (3)
C2—C3—C4—C1'	170.7 (3)	C3—C4—C1'—C6'	-124.1 (3)
C3—C4—C4A—C8A	9.5 (3)	C4A—C4—C1'—C6'	49.6 (4)
C1'—C4—C4A—C8A	-164.1 (2)	C6'—C1'—C2'—C3'	0.0 (4)
C3—C4—C4A—C5	-170.0 (2)	C4—C1'—C2'—C3'	-174.5 (3)
C1'—C4—C4A—C5	16.3 (4)	C1'—C2'—C3'—C4'	-0.8 (5)
C8A—C4A—C5—O3	-169.6 (2)	C2'—C3'—C4'—C5'	1.1 (5)
C4—C4A—C5—O3	9.9 (3)	C3'—C4'—C5'—C6'	-0.7 (5)
C8A—C4A—C5—C6	8.1 (3)	C4'—C5'—C6'—C1'	-0.2 (5)
C4—C4A—C5—C6	-172.4 (2)	C2'—C1'—C6'—C5'	0.5 (4)
O3—C5—C6—C7	173.0 (2)	C4—C1'—C6'—C5'	175.0 (3)
C4A—C5—C6—C7	-4.6 (3)	C8—C7—O1"—C2"	-27.2 (3)
O3—C5—C6—C1'''	-6.8 (3)	C6—C7—O1"—C2"	153.9 (2)
C4A—C5—C6—C1'''	175.5 (2)	C7—O1"—C2"—C3"	38.7 (3)
C5—C6—C7—O1"	177.9 (2)	C7—O1"—C2"—C6"	-81.9 (3)
C1"'-C6-C7-O1"	-2.3 (4)	C7—O1"—C2"—C5"	159.9 (3)
C5—C6—C7—C8	-1.1 (3)	O1"—C2"—C3"—C4"	-27.0 (4)
C1'''C6C7C8	178.8 (2)	C6"—C2"—C3"—C4"	91.7 (4)
O1"—C7—C8—C8A	-176.1 (2)	C5"—C2"—C3"—C4"	-142.8 (3)
C6—C7—C8—C8A	2.9 (4)	C2"—C3"—C4"—C8	4.1 (5)
O1"—C7—C8—C4"	0.9 (4)	C7—C8—C4"—C3"	10.7 (4)
C6—C7—C8—C4"	179.8 (2)	C8A—C8—C4"—C3"	-172.5 (3)
C2—O1—C8A—C8	176.2 (3)	C7—C6—C1'''—O1'''	-171.8 (3)
C2—O1—C8A—C4A	-3.2 (4)	C5—C6—C1'''—O1'''	8.1 (4)
C7—C8—C8A—O1	-178.4 (2)	C7—C6—C1'''—C2'''	9.6 (4)
C4"—C8—C8A—O1	4.7 (3)	C5—C6—C1'''—C2'''	-170.5 (3)
C7—C8—C8A—C4A	0.9 (4)	O1"'-C1"'-C2"'-C3"'	-6.7 (5)
C4"—C8—C8A—C4A	-175.9 (2)	C6—C1"'—C2"'—C3"'	171.9 (3)
C5—C4A—C8A—O1	173.1 (2)	C1'''—C2'''—C3'''—C4'''	-73.8 (6)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1'–C6'ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
O3—H3O…O1'''	0.82	1.73	2.464 (3)	149.
C3'''—H32···O2 ⁱ	0.97	2.71	3.522 (5)	142.
C4'—H4'···O2 ⁱⁱ	0.93	2.70	3.396 (4)	132.
C6"—H61"…Cg1 ⁱⁱⁱ	0.96	2.75	3.646 (4)	156

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1/2, -*y*+1/2, *z*+1/2; (iii) *x*+1/2, *y*+1/2, *z*.

Fig. 2

