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ABSTRACT Type II toxin-antitoxin (TA) modules encode a stable toxin that inhibits
cell growth and an unstable protein antitoxin that neutralizes the toxin by direct
protein-protein contact. hipBA of Escherichia coli strain K-12 codes for HipA, a serine-
threonine kinase that phosphorylates and inhibits glutamyl-tRNA synthetase. Induc-
tion of hipA inhibits charging of glutamyl-tRNA that, in turn, inhibits translation and
induces RelA-dependent (p)ppGpp synthesis and multidrug tolerance. Here, we de-
scribe the discovery of a three-component TA gene family that encodes toxin HipT,
which exhibits sequence similarity with the C-terminal part of HipA. A genetic
screening revealed that trpS in high copy numbers suppresses HipT-mediated
growth inhibition. We show that HipT of E. coli O127 is a kinase that phosphorylates
tryptophanyl-tRNA synthetase in vitro at a conserved serine residue. Consistently, in-
duction of hipT inhibits cell growth and stimulates production of (p)ppGpp. The
gene immediately upstream from hipT, called hipS, encodes a small protein that ex-
hibits sequence similarity with the N terminus of HipA. HipT kinase was neutralized
by cognate HipS in vivo, whereas the third component, HipB, encoded by the first
gene of the operon, did not counteract HipT kinase activity. However, HipB aug-
mented the ability of HipS to neutralize HipT. Analysis of two additional hipBST-
homologous modules showed that, indeed, HipS functions as an antitoxin in these
cases also. Thus, hipBST constitutes a novel family of tricomponent TA modules
where hipA has been split into two genes, hipS and hipT, that function as a novel
type of TA pair.

IMPORTANCE Bacterial toxin-antitoxin (TA) modules confer multidrug tolerance
(persistence) that may contribute to the recalcitrance of chronic and recurrent infec-
tions. The first high-persister gene identified was hipA of Escherichia coli strain K-12,
which encodes a kinase that inhibits glutamyl-tRNA synthetase. The hipA gene en-
codes the toxin of the hipBA TA module, while hipB encodes an antitoxin that coun-
teracts HipA. Here, we describe a novel, widespread TA gene family, hipBST, that en-
codes HipT, which exhibits sequence similarity with the C terminus of HipA. HipT is
a kinase that phosphorylates tryptophanyl-tRNA synthetase and thereby inhibits
translation and induces the stringent response. Thus, this new TA gene family may
contribute to the survival and spread of bacterial pathogens.

KEYWORDS persistence, ppGpp, toxin/antitoxin systems, translation, tRNA
synthetase

Prokaryotic toxin-antitoxin (TA) modules are usually composed of two elements, a
toxin that can inhibit cell growth and an antitoxin that counteracts the inhibitory

effect of the toxin (1, 2). Based on the molecular modes of antitoxin activity, TA modules
have been divided into different types (3). The abundant type II modules are charac-
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terized by protein antitoxins that bind directly to and inhibit their cognate toxins by
tight molecular interaction. Type II antitoxins usually contain a DNA-binding motif used
to regulate TA operon transcription via binding to operators in the promoter region
and a separate domain that interacts with and neutralizes the cognate toxin. Moreover,
antitoxins are degraded by cellular proteases, such as Lon and/or Clp, and the cellular
activity and amount synthesized of a given toxin are thus determined by the concen-
tration of cognate antitoxin (4).

Type II modules are highly abundant; that is, most prokaryotic chromosomes
encode at least one and some chromosomes encode cohorts of them. For example,
Mycobacterium tuberculosis has 88 known, well-conserved type II TAs, while the insect
pathogen Photorhabdus luminescens has a similarly large cohort (5). Toxin gene simi-
larities were used to divide type II modules into superfamilies (6, 7). Thus, in general,
toxins that exhibit sequence similarity inhibit cell growth by identical or related
molecular mechanisms and can be grouped into the same family. Type II toxins
belonging to the RelE, MazF, VapC, HipA, and TacT families curtail cell growth by
inhibiting translation, CcdB and ParE inhibit DNA replication, Zeta toxins inhibit cell wall
synthesis, and RES toxins inhibit cell growth by depleting NAD� (8–18).

The biological functions of TAs have been debated. For type II modules, many
studies now point to a function in survival during stress, including tolerance of multiple
antibiotics (1). Stochastic or stress-induced activation of TA modules can protect
bacteria from unfavorable environmental conditions by inducing persister formation
(19, 20), a transient, slow-growing state in which the bacteria are tolerant of antibiotics
and various other forms of stress (21). The stochastic formation of persisters is due to
phenotypic heterogeneity in clonal populations of cells and can be viewed as a
bet-hedging strategy that increases the survival rate in rapidly changing environments
(22). Moreover, sublethal concentrations of antibiotics and other stresses have been
found to stimulate the formation of persisters (23, 24).

The first gene associated with persistence was hipA (high persister gene A) of
Escherichia coli strain K-12, identified as a gain-of-function allele, hipA7 (25). This allele,
found also in clinical isolates of uropathogenic E. coli (26), showed a 100- to 1,000-fold
increase in persistence due to two amino acid changes in HipA (changes of G to S at
position 22 [G22S] and D to A at positions 291 [D291A]) (27). The hipA toxin gene and
the upstream hipB antitoxin gene together constitute a type II TA module (28). Modest
ectopic expression of wild-type HipA causes severe growth inhibition that can be
countered by the HipB antitoxin, which interacts directly with HipA (28). HipA and HipB
form a complex that represses hipBA transcription via binding to operators in the
promoter region (26). HipA is a Hanks serine-threonine kinase (29, 30) and was found
to specifically phosphorylate and inhibit glutamyl-tRNA synthetase (GltX or GltRS),
causing strong inhibition of translation and induction of guanosine tetra- and pent-
aphosphate [(p)ppGpp] synthesis and persistence (11, 31, 32). HipA-mediated phos-
phorylation of the conserved residue Ser239 inhibits the activity of GltX (11), thereby
preventing charging of tRNAGlu. As a consequence, the ratio of charged to uncharged
tRNAGlu decreases, which in turn stimulates binding of RelA-tRNA complexes to the
ribosome, leading to activation of RelA (33). The resulting increase in the cellular
(p)ppGpp level triggers the stringent response (11, 27, 32).

Here, we describe a novel family of three-component TA modules encoding toxins
exhibiting sequence similarity to HipA. We discovered that HipT of the enteropatho-
genic E. coli O127:H6 strain E2348/69 (HipTO127) is a toxin that can be counteracted by
overproduction of tryptophanyl-tRNA synthetase (TrpS or TrpRS). Consistently, our in
vitro data show that HipTO127 is a serine-threonine kinase that inhibits translation by
phosphorylating TrpS. HipTO127 aligns colinearly with HipA but lacks �100 amino acids
(aa) at its N terminus (Fig. 1A). Interestingly, hipTO127 is preceded by hipSO127, encoding
HipSO127 (103 aa), which exhibits sequence similarity with the N-terminal part of HipA
that is missing from HipTO127 (Fig. 1A). Finally, hipSO127 is preceded by a gene encoding
a HipB homolog containing a helix-turn-helix (HTH) DNA-binding motif. HipB, HipS, and
HipT form a complex in vivo and in vitro, and HipSO127 alone counteracts HipTO127
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FIG 1 hipBST of E. coli O127 encodes a three-component toxin-antitoxin module. (A) Schematic showing a comparison
of the hipBA and hipBST operons of E. coli K-12 and O127, respectively. Bent arrows pointing right indicate promoters.
The hipBA operon contains two genes, hipB and hipA, while hipBSTO127 contains three genes, hipBO127, hipSO127, and
hipTO127. The region of hipA between the dashed lines exhibits sequence similarity to hipSO127. The 8 amino acid residues
of the P loop in HipA (150-VAGAQEKT-158) that binds phosphates of ATP are shown; the autophosphorylated S150
residue is shown in green (35). The homologous P loop and autophosphorylated serine in HipTO127 were inferred by
sequence similarity. (B) Overnight cultures of E. coli MG1655 harboring pSVN1 (pBAD33::hipTO127) or the empty pBAD33
vector combined with pSVN111 (pNDM220::hipBO127), pSVN109 (pNDM220::hipSO127), pSVN110 (pNDM220::hipBSO127), or
the empty low-copy-number pNDM220 vector, as indicated, were diluted to obtain the same values of OD600, centrifuged at
5,000 rpm for 5 min, washed in phosphate-buffered saline (PBS), and serially diluted before being spotted onto LB nutrient
agar plates containing 0.2% glucose (to repress hipTO127), 0.2% arabinose (to induce hipTO127), or 0.2% arabinose plus 200 �M
IPTG (to induce hipBO127, hipSO127, or hipBSO127). (C) The strains used in the experiment whose results are shown in panel
B were grown in LB medium plus appropriate antibiotics. Overnight cultures were diluted, cells were grown exponen-
tially for at least 3 h until the doubling time appeared constant, and at an OD600 of �0.3, arabinose (0.2%) was added
to induce hipTO127 (red arrow). After a further 1.5 h, IPTG (200 �M) was added to induce hipSO127, hipBO127, or hipBSO127

(green arrow). (D and E) Viable counts of strains from the experiment whose results are shown in panels B and C before
and after the addition of arabinose (0.2%) at an OD600 of �0.3 (red arrow). At each time point, cell samples (0.5 ml) were
washed in PBS before a 10-times dilution series was spotted on agar plates with glucose (0.2%) to repress hipTO127 expression
(D) or with glucose (0.2%) to repress hipTO127 expression and IPTG (200 �M) to induce hipBO127, hipSO127, or hipBSO127 (E). Plates
were incubated for 16 h at 37°C before counting. Data points in panels C, D, and E represent mean values of results from at
least three independent experiments, and error bars indicate standard deviations.
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activity in vivo. The HipB homolog (called HipBO127) does not counteract HipTO127 but
instead augments the ability of HipSO127 to counteract HipTO127. Analysis of the hipBST
modules of Haemophilus influenzae and Tolumonas auensis revealed that the HipT
proteins of these organisms also are counteracted by overproduction of TrpS. More-
over, cognate HipS neutralizes HipT in both these cases. In summary, we describe here
a family of novel three-component TA modules that potentially can increase the stress
resilience and spread of bacterial pathogens.

RESULTS
Homologs of HipA are encoded by three-gene operons. Using similarity search-

ing with HipA (440 amino acids [aa]) of E. coli K-12 as the query sequence, we identified
a number of genes encoding HipA homologs that aligned colinearly with the C
terminus of HipA but were shortened by �100 aa at their N termini (Fig. 1A, and see
Fig. S1A in the supplemental material) (34). The HipA homologs contain P-loop motifs
matching the experimentally validated P loop of HipA, as well as conserved catalytic
domains and Mg2� binding motifs, suggesting that, like HipA, HipT proteins are kinases
(Fig. S1A) (35). A phylogenetic analysis showed that HipA and HipT group monophyl-
etically in a cladogram based on 8 HipA and 40 HipT sequences (Fig. S1D) (36). The
majority of the hipT genes were from gammaproteobacteria, but two HipT homologs
deeply embedded in the phylogenetic tree were from a deltaproteobacterium and a
firmicute (Streptococcus pneumoniae) (Fig. S1D). The HipT homolog from S. pneumoniae
is identical to the HipT homolog of H. influenzae strain 10810 (Fig. S1D). These two
organisms separated more than a billion years ago, and both are highly competent for
DNA uptake and live in the same biological habitat (the upper respiratory tract). These
observations raise the possibility that hipBST loci undergo lateral gene transfer between
distantly related organisms.

In all the hipT-containing organisms examined, we discovered short open reading
frames adjacent to and upstream from hipT, which are herein called hipS, encoding
proteins of �100 aa that exhibit sequence similarity to the missing N-terminal part of
HipA (Fig. S1B). In all these cases, open reading frames upstream from hipS encode
putative proteins of �100 aa containing HTH DNA-binding motifs (Fig. S1C). These
putative HipB homologs may thus autoregulate the hipBST operons. We chose the
hipBST module of E. coli O127:H6 strain E2348/69 as our primary model system for
functional analysis (Fig. 1A). The hipBSTO127 module encodes HipBO127 (107 aa),
HipSO127 (103 aa), and HipTO127 (335 aa). Gene pair hipBO127 and hipSO127 overlaps by
16 nucleotides (nt), and gene pair hipSO127 and hipTO127 overlaps by 1 nt, suggesting
that the genes may be translationally coupled.

HipTO127 inhibits cell growth and is counteracted by HipSO127. We validated the
components encoded by hipBSTO127 experimentally by inserting hipTO127 into plasmid
vector pBAD33 (carrying the arabinose-inducible pBAD promoter) and hipSO127,
hipBO127, and hipBSO127 into the low-copy-number R1 vector pNDM220 (carrying the
synthetic, isopropyl-�-D-thiogalactopyranoside [IPTG]-inducible pA1/O4/O3 promoter)
and subjected the standard E. coli K-12 strain MG1655 carrying combinations of these
plasmids to growth assays and viable-count measurements. Induction of hipTO127

resulted in strong inhibition of cell growth, both on plates and in liquid medium,
supporting the hypothesis that HipTO127 can function as a toxin (Fig. 1B and C). Growth
was rescued by induction of hipSO127 alone but not by hipBO127 alone, suggesting that
HipSO127 functions as the antitoxin (Fig. 1B and C). Coinduction of hipBO127 and hipSO127

provided a consistent, yet mild growth rescue advantage compared to the results for
hipSO127 alone, suggesting that HipBO127 augments the antitoxin activity of HipSO127

(Fig. 1C). Thus, HipBO127 does not function as a classical antitoxin.
Upon induction of hipTO127, CFU decreased dramatically (Fig. 1D). However, later

induction of hipSO127 or hipSO127 plus hipBO127 (by adding IPTG and glucose to the agar
plates to induce PA1/O4/O3::hipBSO127 and repress pBAD::hipTO127, respectively) fully
rescued cell viability (Fig. 1E). This result showed that ectopic production of HipTO127

induces a bacteriostatic condition from which the cells can be resuscitated. In support
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of this conclusion, strains in which hipTO127 was induced recovered viability after
prolonged incubation times (�40 h), even in the absence of hipSO127 or hipBSO127

(Fig. S2).
We were puzzled by the observation that HipSO127 but not HipBO127 exhibited

antitoxin activity and therefore decided to analyze the hipBST modules of two addi-
tional gammaproteobacteria, Haemophilus influenzae Rd KW20 (hipBSTHi) and Tolumo-
nas auensis DSM 9187 (hipBSTTa) (Fig. S1). Induction of hipTHi or hipTTa inhibited cell
growth of E. coli MG1655 in liquid medium in both cases, and induction of cognate hipS
genes was sufficient to neutralize the two HipT toxins (Fig. S3A and B). Like HipBO127,
HipBHi augmented the ability of HipSHi to neutralize HipTHi, as the presence of the
HipBSHi-encoding plasmid almost entirely prevented growth inhibition after induction
of hipTHi (Fig. S3A). HipBTa did not detectably augment the antitoxin effect of HipSTa in
this experimental setup (Fig. S3B). We also tested hipT genes from strains of Vibrio
cholerae and Vibrio halioticoli, but their induction was, for unknown reasons, not toxic
in E. coli K-12 and the corresponding hipBST modules were not analyzed further.

HipB, HipS, and HipT form a ternary complex in vivo. The above-described
observations suggest that HipBO127, HipSO127, and HipTO127 might form a protein complex
in vivo, as seen for other type II TA modules. To test this, we constructed a plasmid (pSVN94)
encoding N-terminally His6-tobacco etch virus (TEV)-tagged HipBO127, HipSO127, and the
enzymatically inactive HipTO127

D233Q mutant protein in which all three genes had
optimized translation signals (Shine-Dalgarno [SD] sequences and ATG start codons) to
increase translation rates. His6-TEV-HipBO127 was purified under native conditions and
analyzed by denaturing polyacrylamide gel electrophoresis (SDS-PAGE). Indeed, three
proteins of the expected molecular weights (MWs) copurified (Fig. S4A), indicating that
the HipBSTO127 proteins form a complex in vivo. Further separation of the protein
complex using a heparin column allowed isolation of three samples containing
HipTO127, HipBTO127, and HipBSTO127 (Fig. S4B, top). Gel filtration chromatography
further confirmed that HipT and HipBST are monodispersed in solution, suggesting that
HipBSTO127 is a heterotrimer (Fig. S4B, bottom).

Multicopy suppression of HipT by trpS. Previously, we showed that overproduc-
tion of GltX suppresses HipA-mediated growth inhibition and that HipA phosphorylates
GltX in vitro (11). Unexpectedly, overproduction of GltX did not suppress HipT-mediated
growth inhibition (Fig. S5A). Therefore, we performed a second multicopy gene library
screening in an attempt to identify genes that in high copy numbers could suppress the
effect of HipTO127 (see Materials and Methods). Using a pBR322-based Sau3A-derived
gene library of E. coli MG1655ΔydeA, �8,300 colonies with an average insert size of
�3,300 bp were screened, resulting in a coverage of roughly 5.8 times. In this screen-
ing, 105 hits were obtained, of which 19 were retransformed. Six of these plasmids
exhibited a stable phenotype and were sent for sequencing. Thereby, we identified a
DNA fragment containing rpe, gph, and trpS that suppressed HipTO127. Of these genes,
only conditional induction of trpS, which encodes tryptophanyl-tRNA synthetase (TrpS),
suppressed HipTO127-mediated growth inhibition, both on solid medium (Fig. S5B) and
in liquid culture (Fig. 2A). TrpS also suppressed HipTHi and HipTTa (Fig. 2B and C and
Fig. S5B), whereas GltX had no such effect (Fig. S5A).

HipT phosphorylates TrpS at a conserved sequence motif. The above-described
results suggested that HipT phosphorylates TrpS. To analyze HipT kinase activity
directly, we purified HipTO127 and its presumed target, TrpS. For comparison, we
included HipA and its known target GltX in the analysis. Indeed, HipTO127 phosphory-
lated TrpS in vitro (Fig. 3A, lanes 5 and 8) in a reaction that did not require tRNA (Fig. S6).
We showed previously that HipA phosphorylates GltX in vitro in a reaction that requires
the addition of tRNAGlu (11). Here, we were able to reproduce the results showing that
HipA phosphorylates GltX in the presence but not in the absence of tRNA (Fig. 3B, lanes
6 and 9). Thus, HipT and HipA kinases differ not only with respect to their specific target
but also by whether there is a requirement for the presence of tRNA in the in vitro
reaction mixtures (see Discussion).
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The best-conserved stretch of amino acids between GltX and TrpS are the highly
conserved KLS239KR/KMS197KS flexible-loop motifs (Fig. S7). Lys237 and Lys195 partic-
ipate in the catalytic reaction by stabilizing the transition state of ATP, and intact loop
motifs are required for catalysis (37). The observation that HipA phosphorylates GltX at
S239 (11) raised the possibility that HipT phosphorylates TrpS at the homologous S197.
To test this, we introduced two amino acid changes, S197A and S197D, into TrpS, the
latter to mimic a phosphorylated serine. Both changes abolished phosphorylation of
HipTO127, consistent with the proposal that HipT phosphorylates TrpS at S197 (Fig. 3C).
Finally, mass-spectrometric analysis revealed that, indeed, HipTO127 phosphorylates
TrpS at S197 in vitro (Table 1). We also note that HipA did not phosphorylate TrpS
(Fig. 3A, lanes 6 and 9), while HipTO127 did not phosphorylate GltX (Fig. 3B, lanes 5 and
8). This lack of cross-reactivity in the in vitro reactions is consistent with the specificity
of the multicopy suppression data.

FIG 2 Overproduction of TrpS counteracts HipTO127. (A to C) Growth curves of strains of E. coli
MG1655 harboring pSVN1 (pBAD33::hipTO127) (A), pSVN135 (pBAD33::hipTHi) (B), and pSVN129
(pBAD33::hipTTa) (C) or the empty pBAD33 vector combined with pSVN37 (pEG25::trpS) or the empty
high-copy-number pEG25 vector, as indicated. Cells were grown in LB medium supplemented with
the appropriate antibiotics. Overnight cultures were diluted and grown exponentially for at least 3 h
until the doubling time appeared constant. The pBAD promoter of the pBAD33 derivatives was
induced by arabinose (0.2%) at an OD600 of �0.3 (red arrow). The PA1/O4/O3 promoter of the
pEG25-derived plasmids was induced by the addition of IPTG (200 �M; green arrow) 1.5 h later. Data
points represent mean values from at least two independent experiments, and error bars indicate
standard deviations.
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HipA is known to inactivate itself by trans autophosphorylation at Ser150 (35, 38). In
the reaction mixture containing only HipTO127, a faint radioactive band corresponding
to the MW of HipTO127 was observed (Fig. 3A and B, lane 2). Since HipTO127 was the only
protein in the reaction mixture, we infer that HipTO127 phosphorylates itself. Consis-
tently, the weak HipTO127 band also appeared when HipTO127 was mixed with the
noncognate target GltX (Fig. 3B, lanes 5 and 8). Accordingly, the analysis of the
products of the in vitro reaction between HipTO127 and TrpS by mass spectrometry
showed that HipTO127 autophosphorylates either on S57 or S59 (Table 1).

HipTO127 stimulates production of (p)ppGpp. We and others showed previously
that HipA activates RelA to synthesize (p)ppGpp (11, 31, 32). Here, we measured

FIG 3 HipTO127 phosphorylates TrpS at S197 in vitro, and HipTO127 is autophosphorylated in vitro. (A) Phosphor-
ylation of TrpS and autophosphorylation of HipTO127 and HipA in vitro. HipTO127 or HipA (0.2 �M), [�-32P]ATP
(0.1 �M), and ATP (66 �M) were incubated with (�) or without (�) TrpS [purified from strain C41(DE3)/
pSVN46], as well as with (�) or without (�) a mixture of all E. coli tRNAs (0.5 �g) per microliter of reaction
mixture as indicated. (B) Phosphorylation of GltX and autophosphorylation of HipTO127 and HipA in vitro.
HipTO127 or HipA (0.2 �M), [�-32P]ATP (0.1 �M), and ATP (66 �M) were incubated with (�) or without (�) GltX
(purified from strain JW2395), as well as with (�) or without (�) a mixture of E. coli tRNAs (0.5 �g) per
microliter of reaction mixture as indicated. (C) Phosphorylation of TrpS at S197 and autophosphorylation of
HipTO127 in vitro. HipTO127 (1.5 �M) [purified from strain C41(DE3)/pSVN42] was added to the reaction mixtures
as indicated, in addition to [�-32P]ATP (0.1 �M) and ATP (66 �M) with (�) or without (�)TrpS (1.5 �M),
TrpSS197A (1.5 �M), or TrpSS197D (1.5 �M) as indicated.
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whether induction of hipTO127 induces (p)ppGpp synthesis and compared it to the
effect of induction of hipA or relE of E. coli K-12, the latter of which inhibits translation
by ribosome-dependent mRNA cleavage (8). Indeed, induction of both hipTO127 and
hipA resulted in increased levels of (p)ppGpp, albeit at a somewhat lower level in the
case of hipTO127 (Fig. 4A and B). The latter observation is consistent with the fact that
tryptophan is encoded by one codon only, compared to two in the case of glutamate,
and the fraction of tryptophanyl-tRNA is less than 2% of total tRNA, whereas that of
glutamyl-tRNA is more than 7% (39). Thus, deficiency of charged tRNAGlu leads to a
higher level of hungry ribosomal A sites and, therefore, a higher number of activated
RelA molecules and a higher level of (p)ppGpp. Consistent with previous results (40),

TABLE 1 Phosphorylation sites identified by LC-MS/MS analysis of products of in vitro phosphorylation reaction between HipTO127

and TrpS

Protein
Amino
acid

Andromeda
score

Localization
probability

Mass error
(ppm)

Phosphopeptide sequence of the best localized
MS/MS spectrum

HipT S57 104.24 0.999992 0.93417 GMS(1)ISGYQPK
HipT S59 139.32 0.999224 0.14379 GMS(0.001)IS(0.999)GYQPK
TrpS S197 304.44 0.999903 �0.17001 KMS(1)KSDDNRNNVIGLLEDPK
TrpS S199 309.72 0.864936 �0.094932 SGARVMSLLEPTKKMS(0.135)KS(0.865)DDNRNNVIGLLEDPK

FIG 4 HipTO127 induces (p)ppGpp accumulation in vivo. Levels of (p)ppGpp of E. coli MG1655 containing
pNDM220 (vector), pAH1 (pNDM220::hipA), pSVN116 (pNDM220::hipTO127), or pAH2 (pNDM220::relE). The
toxin-encoding genes were located downstream from the IPTG-inducible PA1/O3/O4 promoter (56, 57). (A)
Cells were grown exponentially at 37°C in low-phosphate MOPS (morpholinepropanesulfonic acid)
minimal medium containing radiolabeled H3

32PO4 (see Materials and Methods). Samples were withdrawn
before and 10, 30, and 60 min after the addition of IPTG (1 mM) and analyzed by thin-layer chromatog-
raphy (TLC) and phosphor imaging. (B) Quantification of the results of experiment shown in panel A and
of repetitions of the experiment shown in Fig. S8. Materials and Methods gives additional experimental
details. Error bars indicate standard deviations of three independent experiments.
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induction of relE did not stimulate (p)ppGpp synthesis, showing that inhibition of
translation per se is not sufficient to stimulate (p)ppGpp accumulation (Fig. 4A and B).

DISCUSSION

In this paper, we describe the discovery of a novel family of bacterial serine/
threonine kinases, HipT kinases, that exhibit sequence similarity with HipA of E. coli
K-12. HipA inhibits GltX (glutamyl-tRNA synthetase) by phosphorylation and thereby
triggers RelA-dependent synthesis of (p)ppGpp (11, 31, 32). We found that HipT of E.
coli O127 phosphorylates and inhibits TrpS (tryptophanyl-tRNA synthetase) and
thereby, similarly to HipA, stimulates synthesis of (p)ppGpp (Fig. 4). Even though TrpS
and GltX belong to the same class of tRNA synthetases (41), HipTO127 and HipA do not
exhibit cross-phosphorylation of TrpS and GltX in vitro, implying that the two kinases
exhibit substrate specificity (Fig. 3A and B). We showed previously that HipA phosphor-
ylates S239 of the conserved KLS239KR motif in GltX (11). A variant of this motif
(KMS197KS) is present in TrpS. Even though there are two amino acid differences
between the two motifs, they represent the overall highest degree of sequence
similarity between the two synthetases, suggesting that HipT phosphorylates S197 of
TrpS. Indeed, this proposal was confirmed by our mass spectrometric and mutational
analysis of TrpS (Table 1 and Fig. 3C).

We showed previously that phosphorylation of the conserved S239 of GltX by HipA
requires the presence of tRNAGlu in the in vitro reaction mixture (11). We proposed that
the binding of tRNAGlu to GltX would induce a conformational change of the motif
KLS239KR that would make S239 accessible to phosphorylation (11). In contrast, even
though GltX and TrpS belong to the same class of tRNA synthetases and the structural
organization of their active sites is similar (42), phosphorylation of TrpS by HipTO127

does not require the addition of tRNA (Fig. S6 in the supplemental material). We believe
that this difference is consistent with the requirement of GltX for the presence of
cognate tRNA to activate glutamate to glutamyl-adenylate (41), a property shared with
only two other type I tRNA synthetases (GlnRS and ArgRS). Thus, TrpS does not require
the presence of tRNATrp to activate tryptophan to tryptophanyl-adenylate and does not
require tRNATrp to be phosphorylated by HipT (Fig. S6).

HipA inactivates itself by autophosphorylation at the fully conserved, essential S150
located adjacent to the P loop of the kinase (35). Structural analysis revealed that
autophosphorylation stabilizes a conformation of HipA that disrupts the ATP-binding
pocket. It was proposed that autophosphorylation of HipA functions in the resuscitation
of cells inhibited by HipA by preventing further activity of available toxins. This
explanation is plausible, because cells inhibited by HipA somehow must revert the
inhibition of GltX before the cells can resuscitate. We observed that HipTO127 is
autophosphorylated in vitro (Fig. 3A and B) at the fully conserved S57 adjacent to the
P-loop motif in HipT and, to a minor extent, at S59 in the P-loop motif, both of which
are likely to inactivate the enzyme (Table 1).

The hipT gene is the third gene of the hipBST operon, and HipS and HipT exhibit
sequence similarity with either end of HipA. The most parsimonious explanation as to
how this arrangement appeared seems to be that hipA was duplicated during evolution
and split into hipS and hipT, shifting the kinase specificity during this evolutionary
trajectory. Analysis of the structure of HipBA reveals that HipS likely corresponds to the
N-terminal subdomain of HipA, which was found to be involved in dimerization during
DNA binding, as well as to harbor several mutations associated with high-persister
phenotypes (Fig. S9A and B, blue) (26). A more detailed look at the N-terminal
subdomain of HipA shows that residues involved in forming the hydrophobic core of
the domain are well conserved in HipS, suggesting that HipS and the N-terminal
subdomain of HipA share structure, while residues that are involved in HipA-HipA
dimerization appear to differ in HipS while being conserved between HipS orthologs.
This could suggest that the higher-order structure of HipBST differs from that of HipBA.
We also note that several of the known high-persister mutations found in the
N-terminal subdomain of HipA (including one of the mutations responsible for the
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hipA7 genotype) are naturally present in HipS, which raises the possibility that HipS is
HipA7-like (Fig. S9C). Finally, the structural analysis also reveals that HipB (of HipBST)
closely matches the corresponding antitoxin HipB in HipBA and likely harbors a
DNA-binding domain (Fig. S9A and B). Of the three proteins, the function of HipS as the
“third TA component” is clearly the most intriguing. We found that all three HipS
orthologs investigated are able to counteract cognate HipT toxins on their own, while
the HipB proteins do not have such an effect (Fig. 1). However, in two cases, we
observed that the HipB proteins augmented HipS-mediated neutralization of HipT,
suggesting that HipB somehow increases the activity of HipS, for example, by increas-
ing HipS metabolic stability or by stabilizing the HipS-HipT interaction. The latter
proposal is consistent with the observation that HipBST form a stable complex in vivo
(Fig. S4). A summary of our findings is presented in Fig. 5 and described further in the
legend to the figure.

Although two-component TA modules are by far the most common, a number of
other three-component TA modules have been identified (1). In many of these cases,
two adjacent genes exhibit sequence similarity with known type II TA modules, while
the function of the third component often remains unclear. However, in a few cases, the
function of the third component is known. For example, M. tuberculosis contains a
three-gene TA module that encodes a RelE-homologous HigB toxin and the HigA
antitoxin. The third gene encodes a SecB-like chaperone that controls the stability of
HigA such that the antitoxin becomes metabolically unstable under environmental
stress, thereby leading to activation of HigB and inhibition of translation by mRNA
cleavage (43). Thus, in this TA module, the third component provides a link between
cellular physiology and activation of the TA module. �-�-� of Streptococcus pyo-
genes is a three-component TA module in which � is a DNA-binding autorepressor
of the operon and � is an antitoxin that neutralizes the � toxin by direct protein-

FIG 5 Schematic overview of the components encoded by hipBST and their interaction. Our evidence
supports the idea that HipT inactivates TrpS by phosphorylation and that HipT phosphorylates itself.
Inactivation of TrpS, in turn, increases the level of uncharged tRNATrp that, in complex with RelA, loads
at hungry ribosomal A sites loaded with tryptophan codons. Loading of the binary RelA-tRNATrp complex
at an A site activates RelA to synthesize (p)ppGpp (33). The function of HipT autophosphorylation is
unknown, but it may play a role in the resuscitation of HipT-induced persister cells. Furthermore, our data
show that the HipBST proteins form one or more complexes and that HipT is inactivated by HipS. HipB
contains an HTH DNA-binding motif and probably autoregulates the hipBST operon. Speculative inter-
actions are indicated by stippled lines.
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protein contact (44). In the paaR-paaA-parE modules of E. coli O157:H7, the first
gene encodes a transcriptional regulator of the module operon and the second a
type II antitoxin that counteracts the activity of the ParE toxin (45). Thus, our work
presented here reveals a novel type of three-component TA modules with unknown
regulator properties that will be important and exciting to study. We hope that
future biochemical and structural studies will be helpful in revealing the mecha-
nisms of HipBST activation and regulation, as well as why this locus is configured as
a three-component TA module.

MATERIALS AND METHODS
Strains, plasmids, media, and growth conditions. Strains and plasmids are listed in Table 2, and

DNA oligonucleotides in Table 3. Cultures were grown at 37°C with shaking at 160 rpm in Luria-Bertani
(LB) medium. When required, the medium was supplemented with 25 �g/ml chloramphenicol, 30 �g/ml
or 100 �g/ml ampicillin, and 25 �g/ml kanamycin. Gene expression from plasmids carrying the pBAD
promoter was induced by 0.2% arabinose and repressed by 0.2% glucose. Gene expression from plasmids
carrying the synthetic PA1/O4/O3 promoter was induced by 200 �M isopropyl �-D-1 thiogalactopyranoside
(IPTG). The solid medium used to grow cells was Luria-Bertani agar (LB agar) medium supplemented with
the appropriate antibiotics and incubated at 37°C for approximately 16 h unless otherwise stated.

Gene knockout by P1 transduction. To construct strain E. coli MG1655�ydeA, gene knockout was
obtained by phage P1 transduction using a strain of the Keio collection as donor according to standard
procedure (46, 47).

Multicopy suppression screening. Genomic DNA (gDNA) of E. coli MG1655�ydeA was purified
according to the manufacturer’s instructions (EdgeBio). The gDNA was then partially digested with
Sau3AI (Bsp143I) and fragments inserted into pBR322, which had been digested with BamHI and
dephosphorylated. The gene library was transformed into a strain harboring the pBAD33::hipTO127

plasmid and plated on agar plates containing arabinose.
Site-directed mutagenesis. Amino acid changes TrpSS197A, TrpSS197D, and HipTO127

D233Q were
constructed by PCR mutagenesis (Table 3). The PCR products were digested with DpnI, and the resulting
plasmids were transformed into E. coli strain DH5�.

Protein purification. HipTO127 (produced by pSVN42) was purified from E. coli strain BL21 that also
produced HipBO127 and HipSO127 (pSVN44). Overnight cultures were diluted 100-fold into 350 ml fresh LB
medium. At an optical density at 600 nm (OD600) of �0.3, the toxin gene was induced by the addition
of 1 mM IPTG for 4 h, and cells were harvested by centrifugation. Pellets were resuspended in 25 ml cold
buffer A (50 mM NaH2PO4 [pH 8], 0.3 M NaCl, 10 mM imidazole, 5 mM �-mercaptoethanol [BME]) with the
addition of half a protease inhibitor cocktail each. Cells were carefully sonicated for 5 min at 60%
amplification (2 s on and 2 s off) while still kept cold. The cell lysate was spun at 16,000 rpm for 30 min
at 4°C, and the cleared lysate was incubated at 4°C for 1 h with 1 ml Ni beads that had been freshly
equilibrated in the same buffer for 1 h. Protein-bound beads were then applied to gravity flow columns
and washed with 50 ml of buffer B (50 mM NaH2PO4 [pH 8], 0.3 M NaCl, 35 mM imidazole, 1 mM BME).
As described previously, the toxin and antitoxins were separated with urea washes to leave the
His-tagged protein on the affinity column (48). His-tagged proteins were purified according to the
manufacturer’s protocol, further purified using an Äkta Pure (GE Healthcare) fast protein liquid chroma-
tography (FPLC) instrument, and stored in 200 mM NaCl, 50 mM Tris-HCl, and 5% glycerol. All proteins
purified with His tags were tested and compared to wild-type proteins in vivo prior to purification in
order to assess their functionality.

Phosphorylation in vitro. Phosphorylation reactions were performed in the presence of 0.05 �l
[�-32P]ATP (6,000 Ci/mmol; Perkin Elmer) per microliter of reaction mixture, 66.6 �M ATP (nonradioac-
tive), and aminoacylation buffer (1 mM dithiothreitol [DTT], 10 mM KCl, 16 �M ZnSO4, and 20 mM MgCl2)
for 45 min as described previously (11). Each reaction was stopped by the addition of 1 volume Laemmli
loading buffer, the reaction mixture was incubated for 10 min at 95°C, and proteins were resolved by
SDS-PAGE and exposed using phosphorimaging (GE Healthcare) overnight.

Phosphorylation in vitro measured by LC-MS. The phosphorylation reaction was performed with
13.5 �M TrpS and 6.7 �M HipTO127 in the presence of 5 mM ATP and aminoacylation buffer for 45 min at
37°C. The reaction was stopped by the addition of 4 volumes of denaturation buffer (6 M urea, 2 M
thiourea, 1 mM DTT, and 10 mM Tris-HCl, pH 8.0), and the reaction mixture incubated for 30 min at room
temperature, followed by incubation with 5.5 mM iodoacetamide for 45 min at room temperature.
Denatured proteins were digested overnight either with endoproteinase Lys-C (1:100 [wt/wt]; Wako) in
20 mM bicarbonate, pH 8.0, or with endoproteinase Arg-C (1:100 [wt/wt]; Roche) in 90 mM Tris-HCl, pH
7.6, 8.5 mM CaCl2, 5 mM DTT, 0.5 mM EDTA. Digested peptides were purified via Pierce C18 Spin Tips, and
0.5 �g of each sample was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS)
as described previously (49). Briefly, peptides were separated by an Easy-nL 1200 ultra-high-performance
liquid chromatography (UHPLC) instrument (Thermo Fisher Scientific) and transferred into an online
coupled Q Exactive HF mass spectrometer (Thermo Fisher Scientific) by nanoelectrospray ionization.
Peptides were eluted from a 20-cm-long analytical column packed with 1.9-�m reverse-phase particles
using a 33-min segmented gradient of 5% to 50% solvent B (80% [vol/vol] acetonitrile, 0.1% [vol/vol]
formic acid) at a constant flow rate of 300 nl/min. Full-scan MS spectra were acquired in a mass range
from 300 to 1,650 m/z with a maximum injection time of 45 ms and a resolution of 60,000. Higher-energy
collisional dissociation MS/MS scans of the 7 (Top7 data-dependent method) most abundant peaks were
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recorded with a maximum injection time of 220 ms at a resolution of 60,000. Acquired raw data were
processed with MaxQuant software (version 1.5.2.8) (50) using default settings if not stated otherwise.
The derived peak list was searched against a reference E. coli K-12 proteome (Taxon identifier 83333)
containing 4,324 entries (UniProt, release 2017/12), the protein sequence of HipT, HipS, and HipB from
E. coli O127:H6, and a file containing 245 common laboratory contaminants using a built-in Andromeda
search engine (51). Methionine oxidation, protein N-terminal acetylation, and Ser/Thr/Tyr phosphoryla-
tion were defined as variable modifications, and carbamidomethylation of cysteines was set as a fixed
modification. The maximum number of missed cleavages allowed was set to 3 for the endoproteinase
Lys-C and to 2 for Arg-C. Only phosphopeptides with an Andromeda score of �70 and a localization
probability of �0.75 were considered, and their MS/MS spectra were inspected manually (Fig. S10).

Measurement of cellular (p)ppGpp levels. Measurement of cellular (p)ppGpp levels was performed
as described previously (52, 53).

TABLE 2 Bacterial strains and plasmids

Strain or plasmid Descriptiona Reference or source

E. coli strains
MG1655 Wild-type K-12 58
MG1655�ydeA K-12 MG1655�ydeA::FRT This work
BL21 F� ompT hsdSB (rB

� mB
�) gal dcm 59

C41 (DE3) Derived from BL21(DE3): F� ompT hsdSB (rB
� mB

�) gal dcm (DE3) 60
EG235 C41 (DE3) �hipBA::kan, pMG25::gltX (optimized SD), pBAD33::His6::hipA (SD8 and start codon ATG) Laboratory collection
JW2395 AG1 [recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1] carrying pCA24N::gltX, GltX purification plasmid

encoding N-terminally His6-tagged gltX, from ASKA collection
55

Plasmids
pBAD33 p15 araC PBAD, Cmr 61
pNDM220 Mini-R1 lacIq PA1/04/03, Ampr 56
pCP20 pSC101 rep(Ts), Ampr Cmr 47
pBR322 pMB1 rop, Ampr Tetr 62
pMG25 pUC lacIq PA1/O4/O3, Ampr Laboratory collection
pEG25 pMG25 derivative that has reduced leakiness of the IPTG-inducible PA1/O4/O3 promoter Laboratory collection
pEG::gltX pMG25::gltX, optimized SD Laboratory collection
pEG::His6hipA pBAD33::His6hipA, HipA purification plasmid harboring N-terminally His6-tagged hipA Laboratory collection
pET-15b pBR322 lacI PT7, Ampr Novagen
pKG127 pUC57::hipBSTO127 Genscript
pSVN1 pBAD33::hipTO127, start codon GTG This work
pSVN42 pEG25::hipTO127::His6, optimized SD, HipTO127 purification plasmid C-terminally His6-tagged hipTO127 This work
pSVN46 pEG25::trpSHis6, optimized SD, TrpS purification plasmid harboring C-terminally His6-tagged trpS This work
pSVN49 pEG25::trpSS197D

His6, optimized SD, TrpSS197D purification plasmid harboring C-terminally His6-tagged
trpSS197D

This work

pSVN52 pEG25::trpSS197A
His6, optimized SD, TrpSS197A purification plasmid harboring C-terminally His6-tagged

trpSS197A

This work

pSVN60 pUC57::His6-TEVhipB::hipS::hipTO127, optimized SDs for all genes Genscript
pSVN61 pUC57::hipB::hipS::hipTO127::His6, optimized SDs for all genes used for TA complex purification via

C-terminally His6-tagged hipTO127

Genscript

pSVN37 pEG25::trpS, optimized SD This work
pSVN44 pBAD33::hipBSO127, optimized SD for hipBO127 This work
pSVN94 pET-15b::His6-TEVhipB::hipS::hipTD233Q

O127, optimized SDs for all genes This work
pSVN103 pNDM220::trpS, optimized SD This work
pSVN109 pNDM220::hipSO127, optimized SD This work
pSVN110 pNDM220::hipBSO127, optimized SDs This work
pSVN111 pNDM220::hipBO127, optimized SD This work
pSVN113 pUC57::hipBSTHi Genscript
pSVN114 pUC57::hipBSTTa Genscript
pSVN116 pNDM220::hipTO127, start codon GTG This work
pSVN122 pNDM220::hipBHi, optimized SD This work
pSVN123 pNDM220::hipSHi, optimized SD This work
pSVN124 pNDM220::hipBSHi, optimized SD for hipBHi, overlapping hipBHi and hipSHi This work
pSVN126 pNDM220::hipBTa, optimized SD This work
pSVN127 pNDM220::hipSTa, optimized SD This work
pSVN128 pNDM220::hipBSTa, optimized SD for hipBTa, overlapping hipBTa and hipSTa This work
pSVN129 pBAD33::hipTTa, optimized SD, start codon GTG This work
pSVN135 pBAD33::hipTHi, optimized SD This work
pSVN138 pNDM220::hipBSTa, optimized SDs This work
pSVN139 pNDM220::hipBSHi, optimized SDs This work
pAH1 pNDM220::hipA A. Harms
pAH2 pNDM220::relE A. Harms

aSD, Shine-Dalgarno sequence.
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Mass spectrometry. The mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE (54) partner repository with the data set identifier PXD012023.

Construction of plasmids. Construction of plasmids is summarized below.
pKG127. The region of the E. coli O127 E2348/69 genome (accession number NC_011601.1)

containing the hipBST locus (�3,948,403 to �3,950,320) was synthesized (GeneScript) and inserted into
the SalI restriction site of pUC57.

pSVN1. hipTO127 with start codon GTG was amplified from pKG127 using primers FP1(GTG) and RP1.
The resulting PCR product was digested with SalI and SphI and ligated with pBAD33.

pSVN37. trpS was amplified from pCA24N::trpS from the ASKA collection (55) using primers trpS Fw
and trpS Rv. The resulting PCR product was digested with BamHI and HindIII and ligated into pEG25.

pSVN42. hipTO127::His6 was amplified from pKG127 using primers FP13 and RP5. The resulting PCR
product was digested with BamHI and HindIII and ligated into pEG25.

pSVN44. hipBSO127 was amplified from pKG127 using primers FP15 and RP6. The resulting PCR
product was digested with SalI and SphI and ligated into pBAD33.

pSVN46. trpSHis6 was amplified from pSVN37using primers trpS Fw and trpS RP3. The resulting PCR
product was digested with BamHI and HindIII and ligated into pEG25.

pSVN49. The mutation in trpSS197D
His6 was created using pSVN46 and primers trpS S197D Fw and

trpS S197D Rv in a site-directed plasmid mutagenesis PCR. The fragment was digested with DpnI before
being transformed into E. coli DH5�.

pSVN52. The mutation in trpSS197A
His6 was created using pSVN46 and primers trpS S197A Fw and trpS

S197A Rv in a site-directed plasmid mutagenesis PCR. The fragment was digested with DpnI before being
transformed into E. coli DH5�.

pSVN94. His6-tevhipBO127::hipSO127::hipTO127 with optimized SDs for all three genes was subcloned from
pSVN60 by digesting with XbaI and XhoI, purifying the DNA fragment from a 1% agarose gel, and ligating
into pET-15b. The mutation in His6-tevhipBO127::hipS::hipTD233Q was created using primers hipX D233Q Fw

TABLE 3 Oligonucleotides

Oligonucleotide Sequence

FP1(GTG) CCCCCGTCGACGGATCCAAGGAGTTTTATAAGTGGCGAATTGTCGTATTCTG
RP1 CCCCCGCATGCGAATTCGCTCACAGCAGCCCCAGACG
FP25 CCCCCTCGAGGGATCCAAAATAAGGAGGAAAAAAAAATGATCTGCTCAGGACCAC
RP15 GGGGGAATTCAAGCTTTCACTCGCCGATGCATAG
FP22 CCCCCTCGAGGGATCCAAAATAAGGAGGAAAAAAAAATGCATCGGCGAGTGAAAG
RP14 GGGGGAATTCAAGCTTTTATTCCTCCCAAGGTAAAATC
FP39 CCCCGGGGGATCCAAAATAAGGAGGAAAAAAAAATGAATTTTTGTCGTATTTTATTAAAG
RP21 GGGGGTACCCTGCAGTTATAGTTCAGGTTCATTTAATAG
FP29 CCCCCGGGGGATCCAAAATAAGGAGGAAAAAAAAATGGACAATCTTAGTGCAC
RP19 GGGGGTACCCTGCAGCTAAATCGCGCATAGTGAAAC
FP30 CCCCCGGGGGATCCAAAATAAGGAGGAAAAAAAAATGCGCGATTTAGTCCGC
RP20 GGGGGTACCCTGCAGTCATTGTTTTTCTTCCTG
FP42 AAAATAAGGAGGAAAAAAAAATGCGCGATTTAGTCCG
RP30 TTTTTTTTCCTCCTTATTTTCTAAATCGCGCATAGTGAAAC
FP34 CCCCCGGGGGATCCAAAATAAGGAGGAAAAAAAAGTGGACCGTTGTCTGATCAC
RP24 GGGGGTACCCTGCAGTTACCGGTCGAGATCGACAAC
FP32 CCCCCGGGGGATCCAAAATAAGGAGGAAAAAAAAATGAGCCATAGAAATCTACTCG
RP22 GGGGGTACCCTGCAGTTACTTTGCGGCCCATAACTTG
FP33 CCCCCGGGGGATCCAAAATAAGGAGGAAAAAAAAATGGGCCGCAAAGTAATTG
RP23 GGGGGTACCCTGCAGTTAATCATTAACCTCAAG
FP41 AAAATAAGGAGGAAAAAAAAATGGGCCGCAAAGTAATT
RP29 TTTTTTTTCCTCCTTATTTTCTATTTGGCGGCCCATAACTTGATAC
trpS Fw CCCCCGGATCCAAAATAAGGAGGAAAAAAAAATGACTAAGCCCATCG
trpS RP4 GGGGGAATTCTTACGGCTTCGCCACAAAACC
trpS Rv CCCCCAAGCTTTTACGGCTTCGCCACAAAAC
FP13 CCCCGGATCCAAAATAAGGAGGAAAAAAAAATGGCGAATTGTCGTATTC
RP5 GGGGAAGCTTTCAGTGATGGTGATGGTGATGCAGCAGCCCCAGACGATG
trpS RP3 GGGGGAAGCTTTTAGTGATGGTGATGGTGATGCGGCTTCGCCACAAAACC
trpS S197A Fw AGAAGATGGCCAAGTCTGACGATAATCGC
trpS S197A Rv AGACTTGGCCATCTTCTTGGTCGGCTC
trpS S197D Fw AGAAGATGGACAAGTCTGACGATAATCGCA
trpS S197D Rv CAGACTTGTCCATCTTCTTGGTCGGCTC
FP5 CCCCCGTCGACGGATCCAAGGAAAAAAAAAGTGGCGAATTGTCGTATTCTG
FP15 CCCCGTCGACAAAATAAGGAGGAAAAAAAAATGATCTGCTCAGGACCA
RP6 GGGGGCATGCTTATTCCTCCCAAGGTAAAA
hipX D233Q Fw CGGTGTATCAGTTTGTTTCTGTCGCTCCC
hipX D233Q Rv GAAACAAACTGATACACCGGCGCTAACG
FP16 CCCCGAATTCAAAATAAGGAGGAAAAAAAAATGCATCACCATCACCATCACGAAAACCTGTACTTCCAAGGGATCTGCTCAGGACCACAAAATC
RP7 GGGGAAGCTTTCACTCGCCGATGCATAGTTTC
RP13 GGGGGAATTCAAGCTTTTAGTGATGGTGATGGTGATGTTCCTCCCAAGGTAAAATC
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and hipX D233Q Rv in a site-directed plasmid mutagenesis PCR. The fragment was digested with DpnI
before transformation.

pSVN103. trpS was amplified from pCA24N::trpS from the ASKA collection (55) using primers trpS Fw
and trpS RP4. The resulting PCR product was digested with BamHI and EcoRI and ligated into pNDM220.

pSVN109. hipSO127 was amplified from pKG127 using primers FP22 and RP14. The resulting PCR
product was digested with XhoI and EcoRI and ligated into pNDM220.

pSVN110. hipBSO127 was amplified from pSVN61 using primers FP25 and RP14. The resulting PCR
product was digested with XhoI and EcoRI and ligated into pNDM220.

pSVN111. hipBO127 was amplified from pSVN61 using primers FP25 and RP15. The resulting PCR
product was digested with XhoI and EcoRI and ligated into pNDM220.

pSVN113. The region of the H. influenzae Rd KW20 genome (NC_000907.1) containing the hipBST
locus (�710,585 to �712,589) was synthesized and inserted into the SalI site of pUC57 (GeneScript).

pSVN114. The region of the Tolumonas auensis DSM 9187 genome (NC_012691.1) containing the
hipBST locus (�2,117,168 to �2,119,170) was synthesized and inserted into the SalI site of pUC57
(GeneScript).

pSVN116. hipTO127 was amplified using primers FP5 and RP1 from pSVN1. The fragment was then
cloned into cut pNDM220 using BamHI and EcoRI, resulting in pSVN116 (pNDM220::hipTO127).

pSVN122. hipBHi was amplified from pSVN113 using primers FP29 and RP19. The resulting PCR
product was digested with BamHI and KpnI and ligated into pNDM220.

pSVN123. hipSHi was amplified from pSVN113 using primers FP30 and RP20. The resulting PCR
product was digested with BamHI and KpnI and ligated into pNDM220.

pSVN124. hipBSHi was amplified from pSVN113 using primers FP29 and RP20. The resulting PCR
product was digested with BamHI and KpnI and ligated into pNDM220.

pSVN126. hipBTa was amplified from pSVN114 using primers FP32 and RP22. The resulting PCR
product was digested with BamHI and KpnI and ligated into pNDM220.

pSVN127. hipSTa was amplified from pSVN114 using primers FP33 and RP23. The resulting PCR
product was digested with BamHI and KpnI and ligated into pNDM220.

pSVN128. hipBSTa was amplified from pSVN114 using primers FP32 and RP23. The resulting PCR
product was digested with BamHI and KpnI and ligated into pNDM220.

pSVN129. hipTTa was amplified from pSVN114 using primers FP34 and RP24. The resulting PCR
product was digested with XmaI and PstI and ligated into pBAD33.

pSVN135. hipTHi was amplified from pSVN113 using primers FP39 and RP21. The resulting PCR
product was digested with XmaI and PstI and ligated into pBAD33.

pSVN138. The optimized SD inserted between hipBTa and hipSTa was created using pSVN128 and
primers FP41 and RP29 in a site-directed plasmid mutagenesis PCR. Eight reactions were carried out at
different temperatures with a gradient PCR. The samples were pooled and digested with DpnI to digest
the parental plasmid before being transformed into E. coli DH5�.

pSVN139. The optimized SD inserted between hipBHi and hipSHi was created using pSVN124 and
primers FP42 and RP30 in a site-directed plasmid mutagenesis PCR. The fragment was digested with DpnI
before transformation.
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K, Brennan RG. 2015. HipBA–promoter structures reveal the basis of
heritable multidrug tolerance. Nature 524:59. https://doi.org/10.1038/
nature14662.

27. Korch SB, Henderson TA, Hill TM. 2003. Characterization of the hipA7
allele of Escherichia coli and evidence that high persistence is governed
by (p)ppGpp synthesis. Mol Microbiol 50:1199 –1213. https://doi.org/10
.1046/j.1365-2958.2003.03779.x.

28. Korch SB, Hill TM. 2006. Ectopic overexpression of wild-type and mutant
hipA genes in Escherichia coli: effects on macromolecular synthesis and
persister formation. J Bacteriol 188:3826 –3836. https://doi.org/10.1128/
JB.01740-05.

29. Stancik IA, Šestak MS, Ji B, Axelson-Fisk M, Franjevic D, Jers C, Domazet-
Lošo T, Mijakovic I. 2018. Serine/threonine protein kinases from Bacteria,
Archaea and Eukarya share a common evolutionary origin deeply rooted
in the tree of life. J Mol Biol 430:27–32. https://doi.org/10.1016/j.jmb
.2017.11.004.

30. Hanks SK, Quinn AM, Hunter T. 1988. The protein kinase family: con-
served features and deduced phylogeny of the catalytic domains. Sci-
ence 241:42–52. https://doi.org/10.1126/science.3291115.

31. Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G. 2013. HipA-
mediated antibiotic persistence via phosphorylation of the glutamyl-
tRNA-synthetase. Nat Commun 4:3001. https://doi.org/10.1038/ncomms
4001.

32. Bokinsky G, Baidoo EE, Akella S, Burd H, Weaver D, Alonso-Gutierrez J,
García-Martín H, Lee TS, Keasling JD. 2013. HipA-triggered growth arrest
and �-lactam tolerance in Escherichia coli are mediated by RelA-
dependent ppGpp synthesis. J Bacteriol 195:3173–3182. https://doi.org/
10.1128/JB.02210-12.

33. Winther KS, Roghanian M, Gerdes K. 2018. Activation of the stringent
response by loading of RelA-tRNA complexes at the ribosomal A-site.
Mol Cell 70:95–105.e4. https://doi.org/10.1016/j.molcel.2018.02.033.

34. Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG. 2009.
Molecular mechanisms of HipA-mediated multidrug tolerance and its
neutralization by HipB. Science 323:396 – 401. https://doi.org/10.1126/
science.1163806.

35. Schumacher MA, Min J, Link TM, Guan Z, Xu W, Ahn Y-H, Soderblom EJ,
Kurie JM, Evdokimov A, Moseley MA, Lewis K, Brennan RG. 2012. Role of
unusual P-loop ejection and autophosphorylation in HipA-mediated
persistence and multidrug tolerance. Cell Rep 2:518 –525. https://doi
.org/10.1016/j.celrep.2012.08.013.

36. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accu-
racy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi
.org/10.1093/nar/gkh340.

37. Sekine S, Nureki O, Dubois DY, Bernier S, Chenevert R, Lapointe J,
Vassylyev DG, Yokoyama S. 2003. ATP binding by glutamyl-tRNA syn-
thetase is switched to the productive mode by tRNA binding. EMBO J
22:676 – 688. https://doi.org/10.1093/emboj/cdg053.

38. Correia FF, D’Onofrio A, Rejtar T, Li L, Karger BL, Makarova K, Koonin EV,
Lewis K. 2006. Kinase activity of overexpressed HipA is required for

HipA Homologs Inhibit Tryptophanyl-tRNA Synthetase ®

May/June 2019 Volume 10 Issue 3 e01138-19 mbio.asm.org 15

https://doi.org/10.1016/j.molcel.2018.01.003
https://doi.org/10.1038/nchembio.2044
https://doi.org/10.1038/nchembio.2044
https://doi.org/10.1126/science.1088157
https://doi.org/10.1126/science.1088157
https://doi.org/10.3389/fmolb.2016.00009
https://doi.org/10.1128/JB.01013-08
https://doi.org/10.1128/JB.01013-08
https://doi.org/10.1128/jb.182.3.561-572.2000
https://doi.org/10.1093/nar/gki201
https://doi.org/10.1016/S0092-8674(02)01248-5
https://doi.org/10.1016/S0092-8674(02)01248-5
https://doi.org/10.1016/S1097-2765(03)00402-7
https://doi.org/10.1016/S1097-2765(03)00402-7
https://doi.org/10.1073/pnas.1019587108
https://doi.org/10.1016/j.molcel.2013.08.045
https://doi.org/10.1016/j.molcel.2013.08.045
https://doi.org/10.1016/j.molcel.2016.05.002
https://doi.org/10.1016/j.molcel.2016.05.002
https://doi.org/10.1016/0022-2836(92)90629-X
https://doi.org/10.1038/nchembio.2346
https://doi.org/10.1016/0022-2836(92)91024-J
https://doi.org/10.1016/0022-2836(92)91024-J
https://doi.org/10.1046/j.1365-2958.2002.02921.x
https://doi.org/10.1046/j.1365-2958.2002.02921.x
https://doi.org/10.1016/j.molcel.2019.01.028
https://doi.org/10.1111/mmi.14150
https://doi.org/10.1111/mmi.14150
https://doi.org/10.1371/journal.pcbi.1002627
https://doi.org/10.15252/msb.20166998
https://doi.org/10.15252/msb.20166998
https://doi.org/10.1126/science.aaf4268
https://doi.org/10.1146/annurev.micro.62.081307.163002
https://doi.org/10.1146/annurev.micro.62.081307.163002
https://doi.org/10.1371/journal.pbio.1000317
https://doi.org/10.1128/AAC.02552-13
https://doi.org/10.1128/AAC.02552-13
https://doi.org/10.1038/nature14662
https://doi.org/10.1038/nature14662
https://doi.org/10.1046/j.1365-2958.2003.03779.x
https://doi.org/10.1046/j.1365-2958.2003.03779.x
https://doi.org/10.1128/JB.01740-05
https://doi.org/10.1128/JB.01740-05
https://doi.org/10.1016/j.jmb.2017.11.004
https://doi.org/10.1016/j.jmb.2017.11.004
https://doi.org/10.1126/science.3291115
https://doi.org/10.1038/ncomms4001
https://doi.org/10.1038/ncomms4001
https://doi.org/10.1128/JB.02210-12
https://doi.org/10.1128/JB.02210-12
https://doi.org/10.1016/j.molcel.2018.02.033
https://doi.org/10.1126/science.1163806
https://doi.org/10.1126/science.1163806
https://doi.org/10.1016/j.celrep.2012.08.013
https://doi.org/10.1016/j.celrep.2012.08.013
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/emboj/cdg053
https://mbio.asm.org


growth arrest and multidrug tolerance in Escherichia coli. J Bacteriology
188:8360 – 8367. https://doi.org/10.1128/JB.01237-06.

39. Dong H, Nilsson L, Kurland CG. 1996. Co-variation of tRNA abundance
and codon usage in Escherichia coli at different growth rates. J Mol Biol
260:649 – 663. https://doi.org/10.1006/jmbi.1996.0428.

40. Germain E, Roghanian M, Gerdes K, Maisonneuve E. 2015. Stochastic
induction of persister cells by HipA through (p)ppGpp-mediated activa-
tion of mRNA endonucleases. Proc Natl Acad Sci U S A 112:5171–5176.
https://doi.org/10.1073/pnas.1423536112.

41. Giege R, Springer M. 23 May 2016, posting date. Aminoacyl-tRNA syn-
thetases in the bacterial world. EcoSal Plus 2016 . https://doi.org/10
.1128/ecosalplus.ESP-0002-2016.

42. Ribas de Pouplana L, Schimmel P. 2001. Two classes of tRNA synthetases
suggested by sterically compatible dockings on tRNA acceptor stem.
Cell 104:191–193. https://doi.org/10.1016/S0092-8674(01)00204-5.

43. Bordes P, Cirinesi A-M, Ummels R, Sala A, Sakr S, Bitter W, Genevaux P.
2011. SecB-like chaperone controls a toxin-antitoxin stress-responsive
system in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 108:
8438 – 8443. https://doi.org/10.1073/pnas.1101189108.

44. Volante A, Soberon NE, Ayora S, Alonso JC. 2014. The interplay between
different stability systems contributes to faithful segregation: Strepto-
coccus pyogenes pSM19035 as a model. Microbiol Spectr 2(4):PLAS-
0007-2013. https://doi.org/10.1128/microbiolspec.PLAS-0007-2013.

45. Hallez R, Geeraerts D, Sterckx Y, Mine N, Loris R, Van Melderen L. 2010.
New toxins homologous to ParE belonging to three-component toxin-
antitoxin systems in Escherichia coli O157:H7. Mol Microbiol 76:719 –732.
https://doi.org/10.1111/j.1365-2958.2010.07129.x.

46. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA,
Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12
in-frame, single-gene knockout mutants: the Keio collection. Mol Syst
Biol 2:2006.008. https://doi.org/10.1038/msb4100050.

47. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal
genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci
U S A 97:6640 – 6645. https://doi.org/10.1073/pnas.120163297.

48. Cherny I, Overgaard M, Borch J, Bram Y, Gerdes K, Gazit E. 2007.
Structural and thermodynamic characterization of the Escherichia
coli RelBE toxin-antitoxin system: indication for a functional role of
differential stability. Biochemistry 46:12152–12163. https://doi.org/10
.1021/bi701037e.

49. Semanjski M, Germain E, Bratl K, Kiessling A, Gerdes K, Macek B. 2018.
The kinases HipA and HipA7 phosphorylate different substrate pools in
Escherichia coli to promote multidrug tolerance. Sci Signal 11:eaat5750.
https://doi.org/10.1126/scisignal.aat5750.

50. Cox J, Mann M. 2008. MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10
.1038/nbt.1511.

51. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. 2011.
Andromeda: a peptide search engine integrated into the MaxQuant
environment. J Proteome Res 10:1794 –1805. https://doi.org/10.1021/
pr101065j.

52. Cashel M. 1994. Detection of (p)ppGpp accumulation patterns in Esch-
erichia coli mutants. Methods Mol Genet 3:341–356.

53. Tian C, Roghanian M, Jorgensen MG, Sneppen K, Sorensen MA, Gerdes
K, Mitarai N. 2016. Rapid curtailing of the stringent response by toxin-
antitoxin module-encoded mRNases. J Bacteriol 198:1918 –1926. https://
doi.org/10.1128/JB.00062-16.

54. Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G,
Perez-Riverol Y, Reisinger F, Ternent T, Xu Q-W, Wang R, Hermjakob H.
2016. 2016 update of the PRIDE database and its related tools. Nucleic
Acids Res 44:D447–D456. https://doi.org/10.1093/nar/gkv1145.

55. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyo-
naga H, Mori H. 2005. Complete set of ORF clones of Escherichia coli
ASKA library (a complete set of E. coli K-12 ORF archive): unique re-
sources for biological research. DNA Res 12:291–299. https://doi.org/10
.1093/dnares/dsi012.

56. Gotfredsen M, Gerdes K. 1998. The Escherichia coli relBE genes belong to
a new toxin–antitoxin gene family. Mol Microbiol 29:1065–1076. https://
doi.org/10.1046/j.1365-2958.1998.00993.x.

57. Lanzer M, Bujard H. 1988. Promoters largely determine the efficiency of
repressor action. Proc Natl Acad Sci U S A 85:8973– 8977. https://doi.org/
10.1073/pnas.85.23.8973.

58. Blattner F, Plunkett GI, Bloch C, Perna N, Burland V, Riley M, Collado-
Vides J, Glasner J, Rode C, Mayhew G, Gregor J, Davis N, Kirkpatrick H,
Goeden M, Rose D, Mau B, Shao Y. 1997. The complete genome se-
quence of Escherichia coli K-12. Science 277:1453–1462. https://doi.org/
10.1126/science.277.5331.1453.

59. Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase
to direct selective high-level expression of cloned genes. J Mol Biol
189:113–130. https://doi.org/10.1016/0022-2836(86)90385-2.

60. Miroux B, Walker JE. 1996. Over-production of proteins in Escherichia
coli: mutant hosts that allow synthesis of some membrane proteins and
globular proteins at high levels. J Mol Biol 260:289 –298. https://doi.org/
10.1006/jmbi.1996.0399.

61. Guzman LM, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation,
modulation, and high-level expression by vectors containing the arabi-
nose P(BAD) promoter. J Bacteriol 177:4121– 4130. https://doi.org/10
.1128/jb.177.14.4121-4130.1995.

62. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW,
Crosa JH, Falkow S. 1977. Construction and characterization of new
cloning vehicle. II. A multipurpose cloning system. Gene 2:95–113.
https://doi.org/10.1016/0378-1119(77)90000-2.

Vang Nielsen et al. ®

May/June 2019 Volume 10 Issue 3 e01138-19 mbio.asm.org 16

https://doi.org/10.1128/JB.01237-06
https://doi.org/10.1006/jmbi.1996.0428
https://doi.org/10.1073/pnas.1423536112
https://doi.org/10.1128/ecosalplus.ESP-0002-2016
https://doi.org/10.1128/ecosalplus.ESP-0002-2016
https://doi.org/10.1016/S0092-8674(01)00204-5
https://doi.org/10.1073/pnas.1101189108
https://doi.org/10.1128/microbiolspec.PLAS-0007-2013
https://doi.org/10.1111/j.1365-2958.2010.07129.x
https://doi.org/10.1038/msb4100050
https://doi.org/10.1073/pnas.120163297
https://doi.org/10.1021/bi701037e
https://doi.org/10.1021/bi701037e
https://doi.org/10.1126/scisignal.aat5750
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1021/pr101065j
https://doi.org/10.1021/pr101065j
https://doi.org/10.1128/JB.00062-16
https://doi.org/10.1128/JB.00062-16
https://doi.org/10.1093/nar/gkv1145
https://doi.org/10.1093/dnares/dsi012
https://doi.org/10.1093/dnares/dsi012
https://doi.org/10.1046/j.1365-2958.1998.00993.x
https://doi.org/10.1046/j.1365-2958.1998.00993.x
https://doi.org/10.1073/pnas.85.23.8973
https://doi.org/10.1073/pnas.85.23.8973
https://doi.org/10.1126/science.277.5331.1453
https://doi.org/10.1126/science.277.5331.1453
https://doi.org/10.1016/0022-2836(86)90385-2
https://doi.org/10.1006/jmbi.1996.0399
https://doi.org/10.1006/jmbi.1996.0399
https://doi.org/10.1128/jb.177.14.4121-4130.1995
https://doi.org/10.1128/jb.177.14.4121-4130.1995
https://doi.org/10.1016/0378-1119(77)90000-2
https://mbio.asm.org

	RESULTS
	Homologs of HipA are encoded by three-gene operons. 
	HipTO127 inhibits cell growth and is counteracted by HipSO127. 
	HipB, HipS, and HipT form a ternary complex in vivo. 
	Multicopy suppression of HipT by trpS. 
	HipT phosphorylates TrpS at a conserved sequence motif. 
	HipTO127 stimulates production of (p)ppGpp. 

	DISCUSSION
	MATERIALS AND METHODS
	Strains, plasmids, media, and growth conditions. 
	Gene knockout by P1 transduction. 
	Multicopy suppression screening. 
	Site-directed mutagenesis. 
	Protein purification. 
	Phosphorylation in vitro. 
	Phosphorylation in vitro measured by LC-MS. 
	Measurement of cellular (p)ppGpp levels. 
	Mass spectrometry. 
	Construction of plasmids. 
	pKG127. 
	pSVN1. 
	pSVN37. 
	pSVN42. 
	pSVN44. 
	pSVN46. 
	pSVN49. 
	pSVN52. 
	pSVN94. 
	pSVN103. 
	pSVN109. 
	pSVN110. 
	pSVN111. 
	pSVN113. 
	pSVN114. 
	pSVN116. 

	pSVN122. 
	pSVN123. 
	pSVN124. 
	pSVN126. 
	pSVN127. 
	pSVN128. 
	pSVN129. 
	pSVN135. 
	pSVN138. 
	pSVN139. 
	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

