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Abstract: Haptoglobin (Hp) is an acute phase protein which supports the immune response and
protects tissues from free radicals. Its concentration correlates with disease activity in spondy-
loarthropathies (SpAs). The Hp polymorphism determines the functional differences between Hp1
and Hp2 protein products. The role of the Hp polymorphism has been demonstrated in many
diseases. In particular, the Hp 2-2 phenotype has been associated with the unfavorable course of
some inflammatory and autoimmune disorders. Its potential role in modulating the immune system
in SpA is still unknown. This article contains pathophysiological considerations on the potential
relationship between Hp, its polymorphism and SpA.
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1. Introduction

Spondyloarthropathy is one of the most common rheumatic diseases whose prevalence
varies between 0.4 and 1.9% in different countries [1]. The heterogeneity of SpA is the
result of numerous overlapping environmental and genetic factors which make the overall
pathogenesis of the disease still elusive.

The dominant role of the innate immune system in the pathophysiology of SpA
indicates its autoinflammatory character rather than an autoimmune one, although it
is ultimately classified as an immune-mediated disease [2]. Several cytokine pathways
are involved in the inflammatory process in SpA but it is the increased production of
free oxygen radicals that directly corresponds to the destruction of tissues. Increased
oxidative stress and its link to disease activity was demonstrated in the prototype form of
SpA-ankylosing spondylitis (AS) [3].

Hp is a molecule that regulates the immune response and reduces oxidative stress;
thus, its role may be crucial in the inflammatory pathways implicated in SpA [4]. Increased
local expression of Hp was described in arthritis [5]. Hp is described as an inhibitor of
collagen degradation and an important factor in cell migration [6]. Both of these processes
characterize arthritis.

Human Hp is α2-sialoglycoprotein that belongs to acute phase proteins. Its synthesis,
mainly in hepatocytes, is stimulated by proinflammatory cytokines IL-1, IL-6 and tumor
necrosis factor α (TNFα). There are three major Hp phenotypes: Hp 1-1, Hp 2-1 and Hp
2-2, which arise from diversity in α chain compositions. Hp phenotypes differ in molecular
size and structure, which determine their biological properties. The main role of Hp is
connected with the binding capacity of hemoglobin (Hb). It forms a soluble complex with
Hb, which is not filtered in the kidneys but is broken down in the liver, thus preventing
kidneys from damage. Moreover, Hp dampens the inflammation by inhibiting the synthesis
of prostaglandins, leukotrienes and cathepsin B. It reduces oxidative stress of iron-derived
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reactive oxygen connected with free Hb release. Hp 2-2 is the least effective in terms of
antioxidative and anti-inflammatory activities due to its polymeric form weakly moving to
the tissues [4,7,8].

Elevated serum Hp concentrations and a positive correlation between Hp levels and
disease activity parameters have been observed in SpAs. Hp is an inflammatory marker
used in the evaluation of treatment efficacy in many clinical trials [9–11]. An interesting
issue is how Hp shapes the anti-inflammatory response in SpA and whether there are
significant differences between Hp phenotypes in this respect. It also seems important for
Hp2 gene carriers as the Hp2 precursor (pre-Hp2) molecule, zonulin, was upregulated in a
recently conducted study in AS patients [12].

This article will focus on pathophysiological mechanisms in SpA in which Hp and its
polymorphism may be crucial. We propose that Hp and its related protein, zonulin, may
have important functions in the pathogenesis of SpA. Uncovering what role Hp and its
polymorphism play in SpA would be advantageous in the future.

2. Distribution of Haptoglobin Phenotypes in Spondyloarthropathies

The distribution of general Hp alleles presents the frequencies of 0.4 for Hp1 and 0.6
for Hp2 in Europe [4]. The most widespread theory of evolutionary and structural biology
of Hp states that the gene Hp2 occurred approximately 2 million years ago in India and
is evolutionarily younger than the Hp1 gene [13]. Its spread beyond the Asian continent
indicates the existence of certain advantages over the Hp1 allele. The hypothesis says that
the appearance and increasing prevalence of the Hp2 allele is related to parasitic infections,
especially malaria [14]. Nevertheless, in light of recent studies, this theory seems to be
controversial, because it is also likely that the Hp2 gene is much older than previously
assumed [15].

The anti-inflammatory properties of Hp depend on the phenotype and are the weakest
for the Hp 2-2 phenotype. Hp 2-2 is associated with a higher predisposition to autoimmune
and inflammatory diseases and worse outcomes of many of them [14,16–18]. The lower
concentrations of Hp in serum and tissues in patients with inflammatory bowel diseases
and Hp 2-2 phenotype may be associated with higher concentrations of proinflammatory
cytokines compared to other patients [19].

The first published study on the distribution of Hp phenotypes in patients with
rheumatoid spondylitis dates back to 1962. [20]. No statistical significance was found
between the study group (45 Caucasian males) and the healthy volunteers, but it was noted
that the differences in the distribution of the Hp1-1 phenotype between these two groups
were at the borderline of statistical significance. The authors suggested conducting the
study on a larger group of patients.

No significant difference in Hp frequency in AS (48 Caucasian individuals) and no
correlation between Hp phenotype and serum C-reactive protein (CRP) were found by
Sitton and Dixon [21]. The authors observed disturbed proportions of Hp 2-1 and Hp
2-2 phenotypes compared to patients with rheumatoid arthritis in favor of Hp 2-1. The
relatively small size study is its limitation, as listed by the authors. Nothing is known about
other factors that could affect the CRP value either. No data are given on, e.g., medicines
taken by patients.

Baeten et al. investigated the expression of CD 163 (a scavenger receptor for Hb–
Hp complexes) in patients with SpAs (130 Belgian residents) and showed no difference
in the distribution of Hp phenotypes compared to both: the normal distribution in the
Belgian population and between the subgroups of SpA [22]. The Hp 1-1 phenotype was
weakly correlated with some of the disease activity parameters (CRP and erythrocyte
sedimentation rate (ESR)) but not with the Bath Ankylosing Spondylitis Disease Activity
Index (BASDAI) or with the Bath Ankylosing Spondylitis Metrology Index (BASMI).

The cross-sectional character of the study is its limitation. It is worth noting that
the examined patients with SpAs were on various treatments modifying the course of
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the disease and some of them were untreated. Therefore, conclusions on the relationship
between disease activity and Hp polymorphism are difficult to draw.

Surprisingly, different results from above were published by Soliev et al. from the
Medical Institute in Tashkent [23]. The authors observed the significantly more frequent
occurrence of the Hp 2-2 phenotype in ankylosing spondylitis, Hp 1-1 in psoriatic arthritis
and Hp 2-1 in reactive arthritis. A total of 100 patients with SpAs, residents of Uzbekistan,
were examined. The control group in this study had a similar distribution of Hp phenotypes
to the European population. In the context of this research, it is worth noting the finding of
Ciccia et al. who demonstrated upregulation of zonulin in the intestines of AS patients [12].
Zonulin is a relatively newly discovered molecule, having been identified in 2000 by
Fasano and colleagues [24]. In 2009, zonulin was identified as pre-Hp2, an uncleaved
form of mature Hp2 [25]. Importantly, the function of zonulin as a modulator of intestinal
barrier tightness has been described. Until this discovery, pre-Hp2 was thought to be
inactive. There are two identified zonulin triggers so far: gliadin and bacteria [26]. Of
additional interest are the results of the proteomic analysis in AS performed by Liu et al. [27].
This study showed significantly increased expression of Hp precursor (pre-Hp) in AS
patients compared to the control group. Moreover, it was shown that pre-Hp epitopes bind
with high affinity to an allele HLA B*2705—the subtype which is the SpA risk factor for
Caucasians. The authors found that the acute anterior uveitis is connected with an allele,
HLA A*0201, especially when it coexists with HLA B*2705. HLA A*0201 possess properties
that are particularly easy to combine with pre-Hp, similar to HLA B*2705.

Taken together, there has been no clear evidence of abnormal distribution of Hp
phenotypes among people with SpA and there is no good data of the relationship between
the Hp polymorphism and disease activity in SpA. However, the distribution of the Hp
genes themselves seems to be relevant in the context of the functions that their precursors
perform, especially the pre-Hp2- zonulin molecule, already well described in the literature.

3. The Role of Zonulin and Haptoglobin in Chronic Gut Inflammation

The idea that the gut joint axis is an important pathophysiological component of SpA is
growing. Interestingly, studies have shown that inflammation of the intestines is correlated
with the disease activity. Subclinical intestinal inflammation can be found in up to 68%
of patients with SpAs [28]. Microscopic gut inflammation in axial SpA was described as
related to younger age, progressive disease, male sex and higher disease activity [29]. In
another study, the degree of bone marrow oedema in sacroilliac joints of patients with axial
SpAs was linked to gut inflammation and male sex [30]. Gut inflammation seems to be
a predictor of SpA progression to AS [28]. Inflammatory changes in the gut appear to be
driven by an altered microbiome which causes an increased response from the immune
cells especially through IL-23 cytokine release [31–33]. The pathogenic responsiveness to
bacteria antigens and perturbation in the gut microenvironment may be associated with
HLA B27 function [34–36]. Impaired intestinal barrier which leads to increased intestinal
permeability has been demonstrated in SpA [12,36,37]. It is likely that the translocation of
bacterial products plays an important role in the initiation of inflammation in the joints
and in the uvea [38–40]. Marquez et al. revealed a protective function of Hp in the
intestines [19]. Hp deficient mice developed severe inflammatory colitis with a particularly
high production of IL 17. In this study, a higher frequency of Hp2 gene in the group with
inflammatory bowel diseases than in the control group was presented.

Fasano et al. showed that zonulin regulates the tight junctions in the intestines and
that increased gut permeability is associated with zonulin expression [41]. Ciccia et al.
had similar observations [12]. The authors studied gut vascular and epithelial barrier
impairment in AS patients and found that downregulation of endothelial and epithelial
tight junction proteins is associated with zonulin. It was shown that high serum levels of
lipopolysaccharide, lipopolysaccharide (LPS)-binding protein and intestinal fatty acid-BP
together with the zonulin modified the activity of peripheral blood monocytes. This study
demonstrated that zonulin, due to its affinity for the CD 163 receptor, leads to expansion of
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CD 163+ c-MAF + monocytes compatible with M2 macrophages. M2 macrophages were
shown to be expanded in the peripheral blood, the gut and the synovium in patients with
SpAs [42]. In another study, the number of macrophages CD 163+ (M2) in the synovium
of patients with SpAs correlated with the disease activity and decreased during anti-TNF
therapy [43].

The role of the microbiome in the development of SpA was shown in a study on
transgenic HLA B27 rats [44]. The lack of commensal bacteria effectively protected them
from the development of arthritis. Ciccia et al. demonstrated that ileal inflammation and
perturbation in epithelial tight junctions in HLA B27 positive rats could be reversed by
antibiotic treatments [12]. In another study, mice deprived of the normal Toll-like receptor
4(TLR4)—the lipopolysaccharide (LPS) sensor—were less likely to develop arthritis [45].
Additionally, the levels of proinflammatory factors in their synovial tissue were lower. TLR
4 was necessary to induce LPS-dependent arthritis.

LPSs increase the expression of the IL-23p19 gene in dendritic cells as well as activate
innate lymphoid cells type 3 (ILC3) [46]. Polarization of innate lymphoid cells towards
ILC3 may also result from the direct action of IL-23 [47]. Increased amounts of ILC3 were
detected in the inflamed gut of patients with AS and correlated with disease activity [48].
ILC3 expresses integrin α4β7 and thus provides circulation between the intestine and the
active inflammatory sites such as bone marrow and joints rich in α4β7 ligand [33,48].

On the other hand, innate immune cells, such as macrophages, NK cells, and neu-
trophils that are involved in intestinal inflammation, have receptors for Hp-Mac-1 leucocyte
integrin b2 (CD11b/CD18) [49]. CD11b/18 together with other receptors is involved in reg-
ulating gene expression in response to LPSs. Further, Ling Zeng showed that macrophages
in AS patients produce more IL-23 and TNF α in response to LPSs than in the control
group. For some reason, these cells are particularly easily activated by LPS [50]. Hp was
shown to dampen the LPS driven immune response mainly by inhibiting the monocyte
and macrophage functions. This effect was selective and was associated with a decrease in
production of TNF α, IL-10 and IL-12p70 [51].

An interesting issue in the context of differences in the course of SpA between men and
women is the gender-specific anti-inflammatory properties of Hp in response to bacterial
LPS, as was shown in the in vitro study. Raju et al. investigated changes in Hp levels in
relation to the presence of LPS, TNF alpha and sex hormones [52]. The study showed
that Hp was responsible for the endotoxin tolerance (ET) state, caused by a fall in TNF α

levels, and was reversible when Hp was blocked. Hp suppressed the proinflammatory
cytokines, released in response to bacterial LPSs, more strongly in the presence of estrogen.
The opposite effect was observed by adding testosterone to the test blood, which caused an
increase in TNF α. The authors conclude that this finding is consistent with observations of
worse prognoses in the case of bacterial sepsis in males. On the other hand, higher levels
of estrogen in females have long been suggested to correlate with a higher incidence of
autoimmune diseases. The question is, can this be related to more frequent occurrence of
AS among men and faster progression of the disease in their case?

To summarize, microbiomes, increased intestinal permeability and inflammation play
important roles in the pathogenesis of SpA, as indicated by numerous reports from the
literature. The regulation of response to LPS involves Hp and zonulin. There are some
differences in the pattern of this reaction between the Hp phenotypes and it seems that
the response is gender-specific. Zonulin in AS patients was shown to be linked with an
impaired gut barrier, which may indicate a worse course of the disease in carriers of the
Hp2 gene.

4. The Role of Haptoglobin in Inflammatory Pathways

The IL23/IL17 axis is an important cytokine pathway in SpA and a crucial part of
antibacterial immunity [53]. One of the main sources of IL-23 in SpAs are macrophages
with receptor CD 163 (M2) [50]. Ciccia et al. showed that polarization of macrophages
towards M2 may happen upon exposure to zonulin; thus, it may enhance the IL23/IL17
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axis [12]. Prostaglandins create the next most important inflammatory pathway in SpA,
which affects this axis. A number of studies have reported that prostaglandin E2 (PGE2)
leads to an increase in IL-23 production by bone marrow-derived dendritic cells and
an increase in IL-23 receptor expression on Th17 cells [46,54,55]. Therefore, PGE2 shifts
the immune response towards Th17. Additionally, IL-23 was shown to stimulate Th17
cells to produce PGE2 [56]. The recent studies have demonstrated that overexpression
of prostaglandin E2 receptor 4 (EP4) on Th17 lymphocytes and monocytes is associated
with disease activity and progression in AS [57,58]. Moreover, prostaglandins play an
important role in new bone formation by EP2 and EP4 receptors [59]. Cyclooxygenase
(COX) inhibition by nonsteroidal anti-inflammatory drugs has proven to be effective in
SpA treatment [60,61].

Shim has shown that prostaglandins stimulate Hp synthesis [62]. On the other hand,
Hp blocks COX. This process is phenotype-dependent and is the least pronounced for Hp
2-2 [4]. However, there are no data showing that inhibition of prostaglandin synthesis by
Hp and that phenotype strength of this process have any clinical implications in SpA. This
is a particularly interesting issue in terms of new bone formation.

Hp itself was demonstrated to modulate the response of lymphocytes, Th 17 [19]. It
is unknown whether this process is phenotype-dependent. Moreover, Arredouani et al.
showed a direct effect of Hp on T lymphocytes by significantly stronger suppression of
Th2 cytokines (IL-4, IL-5, IL-10, IL-13) than Th1 cytokines (IFN gamma and IL-2) [63]. This
outcome was observed for both Hp 1-1 and Hp 2-1 phenotypes. Unfortunately, the Hp 2-2
phenotype has not been studied for this purpose.

To conclude, Hp interacts with the receptors of immune cells and clearly takes part in
the cytokine pathways important for SpA pathogenesis. A particularly interesting issue is
the Hp phenotypic relationship of the prostaglandin synthesis blockade.

5. Haptoglobin and Oxidative Stress

Oxidative stress is based on increased production of reactive oxygen species (ROS)
and the insufficiency of the system’s antioxidant potential to balance them. Inflamma-
tion can easily cause oxidative stress, but, on the other hand, ROS activate the genes
involved in inflammation [64]. Thus, these two processes constitute a rather inseparable
pathophysiological aspect.

One of the main sources of ROS are inflammatory cells. This way of defense against
pathogens is particularly important for innate immune cells. Neutrophils and macrophage
activation may lead to respiratory burst. Excessive generation of ROS may lead to cellular
damage and death [65]. Interestingly, a study conducted on macrophages obtained from
HLA B27-transgenic rats showed that stimulation of macrophages through IFN gamma
and LPS leads to an increase in the production of ROS [66]. ROS reduction with antioxidant
N-acetylcysteine significantly reduces transcriptions of proinflammatory cytokines.

In general, increased numbers of oxidative stress biomarkers were observed in patients
with AS and PsA [67]. There are numerous reports from the literature showing that
oxidative stress has an important function in AS pathogenesis [3,68]. There are hypotheses
stating that high ROS toxicity may be responsible for articular cartilage damage and bone
loss in AS [69]. Pathological bone formation may also be associated with Wnt/Beta-catenin
and BMP/Smad pathways activation triggered by ROS [70]. The last meta-analysis of 2020
showed that some oxidative stress markers correlate with disease activity in AS [71]. In
one study, it was observed that oxidative stress can be reduced by infliximab therapy [72].

The antioxidant properties of Hp are mainly related to its ability to form complexes
with Hb. The smallest antioxidative capacity has the phenotype Hp 2-2 [4]. However, it
seems that Hp is also a strong antioxidant, regardless of its ability to bind Hb. Additionally,
Hp increases the resistance of the cell to oxidative stress and this property also seems
phenotypically dependent [73]. Additionally, Hp can directly bind to neutrophils, inhibiting
production of ROS and influencing their responses to other agonists [74]. It is interesting
that TNF α, by stimulating p 55 receptors on neutrophils, leads to release of Hp [75].



J. Clin. Med. 2021, 10, 1131 6 of 10

Moreover, TNF α is one of the main factors responsible for the production of free oxygen
radicals in AS [76].

Summarizing, Hp is produced during pro-oxidative conditions such as inflammation
and has important antioxidant functions. Oxidative stress is another pathway in SpA,
which may be influenced by Hp.

6. Conclusions and Research Directions

Despite the scientific basis on which Hp and its precursors are linked to immune
response, there is little research on their influence in the pathogenesis of SpA. Considering
that Hp and zonulin are associated with the immunological pathways distinctive for SpA,
such studies could prove very worthwhile. It seems highly possible that interplay between
genetic susceptibility to SpA and environmental factors may be prevented by intercellular
tight junctions regulated by zonulin.

In this context, research using larazotide acetate seems interesting. Larazotide acetate
(also known as AT-1001) is an oral synthetic peptide that blocks the action of zonulin
by increasing the integrity of the intestinal barrier and reducing the immunoreactivity
associated with its impairment [77]. Studies on AT 1001 in patients with coeliac disease
showed reductions in gastrointestinal symptoms compared to those on a gluten-free diets
alone [78] and during gluten challenge [79]. Would AT 1001 be effective in the therapy of
SpA in Hp2 gene carriers?

Figure 1 depicts the immunological pathways in SpA regarding the mechanism of
actions of Hp and pre-Hp2. These are the sites where Hp polymorphism may be relevant.

Figure 1. Proposed model of haptoglobin and zonulin impact on pathophysiology of spondyloarthropathies. Enteric
bacteria stimulate zonulin secretion. Zonulin increases intestinal permeability and causes bacteria and lipopolysaccharides
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(LPSs) to penetrate the intestinal wall. LPSs lead to the polarization of macrophages towards M2, activate dendritic cells and
boost production of proinflammatory cytokines by them. IL-23 strongly stimulates lymphocytes’ Th17 to secrete cytokine
IL-17 and PGE2. PGE2 in turn strengthens the response of Th17 cells to IL-23 and increases production of IL-23 by dendritic
cells. TNF is a powerful oxidative stress trigger but on the other hand leads to the release of Hp from neutrophils. Hp
has antioxidant properties and reduces macrophage M2 response to LPSs by decreasing TNF alpha secretion. Hp also
inhibits the production of prostaglandins in other signal pathways between cells. AT 1001 inhibits zonulin functions and
may represent a novel therapeutic option in SpA. x© = sites of haptoglobin inhibitory action.

Returning to the topic of our work—haptoglobin and its related protein, zonulin—
what is their role in spondyloarthropathy?—currently, we are not able to answer this
question unequivocally on the basis of the available literature. There is very little research
on the subject. However, we want to draw attention to the issue of potential immunomod-
ulatory functions of Hp and zonulin in SpA. Research on this subject, especially with
regard to the polymorphisms of Hp and pre-Hp2, could help us understand the difficult
pathogenesis of this disease and to develop better and more effective methods of treatment.

Whether the enhancement of the natural barrier by the use of a zonulin blocker could
inhibit the development of SpA and alleviate the course of the disease is questionable,
although it is worth answering this question one day.
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