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Abstract: Methods for the asymmetric transfer hydrogenation (ATH) of ketones and 
imines are still being intensively studied and developed. Of foremost interest is the use of 
Noyori’s [RuCl(η6-arene)(N-TsDPEN)] complexes in the presence of a hydrogen donor  
(i-PrOH, formic acid). These complexes have found numerous practical applications and 
have been extensively modified. The resulting derivatives have been heterogenized, used in 
ATH in water or ionic liquids and even some attempts have been made to approach the 
properties of biocatalysts. Therefore, an appropriate modification of the catalyst that suits 
the specific requirements for the reaction conditions is very often readily available. The 
mechanism of the reaction has also been explored to a great extent. Model substrates, 
acetophenone (a ketone) and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (an imine), 
are both reduced by this Ru catalytic system with almost perfect selectivity. However, in 
each case the major product is a different enantiomer (S- for an alcohol, R- for an amine 
when the S,S-catalyst is used), which demanded an in-depth mechanistic investigation. 
Full-scale molecular modelling of this system enabled us to visualize the plausible 3D 
structures of the transition states, allowing the proposition of a viable explanation of 
previous experimental findings. 
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1. Introduction 

It is a well-known fact that optically pure compounds play an inimitable role in various branches of 
the chemical industry, with pharmaceutical and fine chemical production processes being the most 
prominent ones [1,2]. Nowadays, enantioenriched chiral substances can be obtained in various ways, 
e.g., via chiral resolution of a racemic mixture, enzymatic catalysis, isolation of chiral compounds 
from natural resources, or catalytic asymmetric synthesis [3]. 

Chiral separation of enantiomers from a racemate prepared by standard organic techniques is still a 
widely-used method in asymmetric synthesis [4-7], mainly for economic reasons. However, chiral 
resolution brings unfavourable additional steps into the chain of synthetic reactions. Moreover, the 
other enantiomer is often of no value after the resolution. 

Enzymatic catalysis stands in contrast to this classical method [8], exploiting the chirality imprinted 
in species of natural origin. Notwithstanding the superb selectivity achievable by means of enzymatic 
catalysis, the use of enzymes is often disadvantageous due to the strict conditions required to maintain 
their integrity and efficacy.  

Catalytic asymmetric synthesis stands somewhere “in between” when compared to chiral resolution 
techniques and enzymatic reactions, particularly in terms of cost and efficacy. Without a doubt, it 
embodies one of the pillars of modern chemistry. Although it is endowed with an exquisite toolbox for 
the synthesis of optically pure substances [9-11], much still remains to be explored. 

Among the most frequently used techniques for enantioselective synthesis is asymmetric 
hydrogenation, already a 40 year old method that exploits an astonishing variety of organometallic 
complex catalysts [12-14]. The asymmetric bias of the reaction is generally reached by employing 
chiral ligands, which provide the necessary chiral environment around the central metal atom. The first 
successful ligands capable of stereoselective reductions were DIOP [15,16] (a bisphosphine developed 
by Kagan and Dang in 1971) and CAMP [17] (a monophosphine introduced by Knowles and  
co-workers in 1972). Using rhodium-based precursors, these ligands formed in situ catalytic 
complexes able to hydrogenate unsaturated carboxylic acids, giving amino acids of good optical purity. 
It was indeed a huge breakthrough in chemistry, as Knowles justifiably pointed out [13]: “(...) this was 
the first time ever that anyone had obtained enzyme-like selectivity with a man-made catalyst! Never 
in our wildest imagination did we think a structure versus activity study would converge so quickly to 
a product with commercial potential. CAMP was our sixth candidate. As I look back from this 
perspective, I don’t think that even we were emotionally equipped to realize what we had done.” 

During the 40 years of asymmetric hydrogenation development, a myriad of ligands and catalysts 
have emerged, giving >99% ees in reductions of C=C, C=O and C=N double bonds present in a variety 
of substrates. The majority of the ligands developed for asymmetric synthesis are those based on the 
phosphorus atom, which was thoroughly covered in a recent monograph [18]. In addition to these, 
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hybrid P,N ligands [19,20] have also been developed. This review, however, focuses on a defined 
group of ligands containing nitrogen donor atoms. 

To date the original Noyori-type η6-arene/N-arylsulfonyl-1,2-diphenylethylenediamine-ruthenium(II) 
catalysts have performed well in asymmetric transfer hydrogenations (ATH) of various groups of 
substrates [21-28] and have found numerous practical applications [29-37]. Naturally, a number of reviews 
have been published concerning both these remarkable catalytic hydrogenation systems [7,38-43] and their 
reaction mechanisms [44-47]. It should be pointed out that these complexes have also been used for 
asymmetric hydrogenations (AH) [48,49], which represents an extraordinary feature since both 
mechanisms (ATH and AH) are usually not achievable using a common catalyst. This review 
examines the ATH of imines and ketones using Noyori’s extraordinary η6-arene/N-arylsulfonyl-1,2-
diphenylethylenediamine-ruthenium(II) catalysts and discusses some mechanistic considerations based 
on the latest findings. Hence, [RuCl(η6-arene)(amino alcohol)] species, which were investigated at the 
same time as the [RuCl(η6-arene)TsDPEN] complexes, will not be covered, although they have also 
been tested by Noyori for the reduction of aromatic ketones [50]. Another analogous group of ligands 
comprises tosylated diaminocyclohexane (TsCYDN) [51] and its derivatives. Although these ligands 
are very similar to the DPEN-type auxiliaries, they are beyond the scope of this review. 

In the first instance, these catalytic complexes were used in homogeneously catalyzed ATH of 
ketones and imines in organic media [21]. Although these initial experiments proved the indisputable 
significance of the newly-discovered catalysts (see Section 2.1.), they suffered from difficult catalyst 
separation, which is a common issue in homogeneous catalysis. Consequently the chiral product, 
which was often synthesised for biological uses, contained expensive and environmentally unfriendly 
ruthenium compounds. Therefore, successive developments in this area have focused on greener 
applications of the catalysts in hand, which in particular meant their immobilization or the replacement 
of the solvent with water or ionic liquids. In Sections 2.2. to 2.4., some examples are given on how this 
can be accomplished when unmodified catalysts are used in practice. However, the majority of cases 
have dealt with changes to the catalyst structure so as to improve its properties for a desired use. This 
large group of derivatives is covered in subchapter 3 which is further structured thematically. Hand in 
hand with these overall improvements came the possibility of catalyst recycling, which is of foremost 
practical importance. 

The last subchapter of this review outlines the knowledge of the reaction mechanisms through 
which the ATH of ketones and imines operate under different circumstances. While the reaction 
mechanism is very well characterised in the case of ketones, a different concept had to be devised for 
the ATH of imines. The mechanistic pathways further change upon using different hydrogen donor 
molecules, or conducting the reactions in aqueous solutions. 

2. Original η6-Arene/N-sulfonyldiamine-RuII Catalysts 

2.1. The Pioneering Works on η6-Arene/N-sulfonyldiamine-RuII Catalysts 

Beginning in 1995, Noyori’s η6-arene/N-arylsulfonyl-1,2-diphenylethylenediamine-ruthenium(II) 
catalysts 1(a-f) [52-55] (Figure 1) emerged. These complexes were able to accelerate the 
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hydrogenations of a wide range of aldehydes, ketones and imines with great selectivity [7,21,56]. This 
subsection briefly treats the original RuII complexes in selected examples of their original applications. 

Figure 1. The basic set of η6-arene/N-sulfonyldiamine-RuII catalysts. 

 

Table 1. The basic set of η6-arene/N-sulfonyldiamine-RuII catalysts and their representative 
reactions. 

Entry Catalyst Substrate Product 
S/C [a]; Time; Temp.; 

Conversion (%) 
% ee  

(config) [b] 
Ref. [c]

1 (R,R)-1a D

O

 
200; 0.5 h; 28 °C; 100 97 (R) [26] 

2 (S,S)-1b 
 

200; 3 h; 28 °C; 99 95 (R) [53] 

3 (R,R)-1b [d] 
 

100; 20 h; 28 °C; > 99 97.7 (R) [57] 

4 (S,S)-1c 
 

200; 20 h; 28 °C; 99 98 (S) [54] 

5 (S,S)-1c [d] 
 

200; 15 h; r.t.; 99 97 (S) [52] 

6 (R,R)-1d D

O

 
200; 7 h; 28 °C; 99 96 (R) [26] 

7 (S,S)-1e 
 

200; 8 h; 28 °C; 99 84 (R) [53] 

8 (R,R)-1f 

N

(CH2)2

MeO

MeO

MeO

OMe  

200; 12 h; 28 °C; 99 92 (S) [53] 

[a] Molar ratio substrate/catalyst; [b] See corresponding references for details on determination of ee 
and product configuration; [c] Reference containing data for a given entry; [d] Catalyst was formed in 
situ from the [RuCl2(η6-arene)]2 dimer and the corresponding N-arylsulfonylethylene-1,2-diamine. 
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The RuII complexes are composed of two moieties: the η6-arene ligand and the chiral diamine 
auxiliary ligand. Benzene [53], p-cymene [53,55] and mesitylene [52,54,55] were first applied as  
the η6-arene ligands and shortly afterwards, hexamethylbenzene was tested as well [26]. The  
chiral diamine moiety was originally represented by N-tosyl-1,2-diphenylethylene-1,2-diamine  
(Ts-DPEN), N-(naphthalene-1-sulfonyl)-1,2-diphenylethylene-1,2-diamine (Nps-DPEN) and N-(2,4,6-
trimethylphenylsulfonyl)-1,2-diphenylethylene-1,2-diamine (mesitylsulfonyl-DPEN).  

The original ligand combinations are outlined in Table 1 along with their performance data. Catalyst 
1a was found to be highly active in some cases, probably due to its η6-benzene ligand (entries 1 vs. 6). It 
was also described as efficacious in the ATH of 1-phenyl-3,4-dihydroisoquinoline derivatives [23], 
which proved unfeasible when using e.g., 1b. Perhaps the most frequently used catalyst is 1b, equipped 
with η6-p-cymene and TsDPEN, which has been shown to be able to efficiently hydrogenate imines and 
ketones with very high enantioselectivity (entries 2 and 3, refs. [53,57]). Catalyst 1c was mainly used in 
the ATH of ketones, furnishing even higher ees than 1b (entries 4 and 5, refs. [52,54]). Usage of catalyst 
1d has been rather limited due to its lower activity. For instance, although it was demonstrated that 1d 
accelerated the hydrogenation of benzaldehyde-1-d (entry 6), this reaction catalyzed by 1a or 1b 
proceeded up to 20 times faster with a very similar ee [26]. Catalyst 1e has not been used very often in 
practice, owing to its very low solubility in most organic solvents [23]. However, similarly to 1a, it was 
reported to be able to catalyze the ATH of 1-phenyl-3,4-dihydroisoquinoline derivatives (entry 7, ref. [53]). 
Above all, catalyst 1f was tested in the ATH of 1-substituted 3,4-dihydroisoquinolines with very good 
enantioselectivity (entry 8, ref. [53]). 

Basically, there are two ways to use such a complex as a catalyst: generation in situ or use of a 
preformed complex. Preparation of the catalyst in situ involves reacting the [RuCl2(η6-arene)]2  
dimer with the corresponding N-arylsulfonyl-diphenylethylenediamine immediately before the 
hydrogenation, without further purification. This approach was actually applied in the first published 
work [52], where [RuCl2(η6-mesitylene)]2 and (S,S)-TsDPEN (Ru:TsDPEN = 1:2 molar) were heated 
at 80 °C for 20 min and then used in the reduction of aromatic ketones. For example, hydrogenation of 
acetophenone in such a manner gave (S)-1-phenylethanol in 97% ee and 95% yield (Entry 5 in Table 1). 
Preparing the catalyst this way may substantially help in overcoming certain difficulties, such as: (1) 
the true catalytic complex is not commercially available (whereas the precursors are); (2) the complex 
isolation is difficult or infeasible; or (3) the complex is poorly soluble. Preparation of the complex also 
involves a recrystallization step, which may thus be avoided if problematic. 

On the other hand, usage of a preformed complex can sometimes be more convenient in practice, as 
only one compound is used in the catalyzed reaction. Additionally, successful preparation of a 
crystalline Ru catalytic complex can allow its characterisation by single-crystal X-ray diffraction 
analysis, providing the molecular geometry, which can be used in molecular modelling amongst other 
applications. In the remainder of this section various applications of the type 1 catalysts are discussed. 

2.2. ATH Catalyzed by 1 in Water 

Reactions carried out in water are very desirable as they are “green chemistry compatible” – in fact, 
enzyme-catalyzed reactions in nature proceed exclusively in aqueous media. Generally, such reactions 
may either form homogeneous (i.e., both catalyst and substrate are soluble in water) or heterogeneous 
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(one of the components being insoluble in water) systems [58]. The substrate and/or the catalyst often 
have low water solubility and, in contrast, the hydrogen donor can be hydrophilic. Numerous methods 
of overcoming these difficulties have been published. 

In 2004, the ATH system under discussion was first reported to be practicable in water with 
surprisingly good results for the hydrogenation of aromatic ketones catalyzed by 1b. In this work [59], 
Wu, Xiao et al. showed that the reaction proceeded much faster in HCOONa/H2O than in the 
HCOOH/triethylamine azeotrope. While in the HCOONa/H2O system acetophenone was completely 
reduced within 2 h (entry 1 in Table 2), in the azeotrope it took a reaction time of 12 h to reach almost 
full conversion (entry 2). Their explanation of this observation was based on the assumption that 1b 
was more soluble in the substrate (organic phase) than in water. Following this, they revealed a strong 
pH dependence of the ATH of aromatic ketones in water using 1b and HCOOH/triethylamine [60], 
proposing two different catalytic cycles for the reaction. While under basic conditions they expected 
the standard metal-ligand bifunctional mechanism to take place [61], low pH values were connected 
with protonation of the amido nitrogen of the TsDPEN ligand, which caused its partial decoordination. 
This phenomenon explained the loss of activity of 1b under acidic conditions. Optimal pH values were 
described as between pH 5 and 8, which was effectively maintained by a suitable aqueous solution of 
HCOOH/triethylamine. Remarkably, this optimization of the reaction conditions allowed use of S/C 
ratios as high as 10,000. 

Catalyst 1b has also been integrated into micelle-like microreactors created from 
cetyltrimethylammonium bromide (CTAB) [62], which provided lipophilic reaction compartments 
where the ATH process could be accelerated. The model substrate, acetophenone, was reduced in up to 
98% ee (Table 2, entry 3) by this catalytic system. Interestingly, the catalyst was reusable 6 times, 
where ee remained at ~95% and the catalyst activity decreased with each run. In addition to mere 
CTAB, the authors also tested combinations of surfactants, namely sodium dodecyl sulfate (SDS) with 
CTAB, where they found optimal reaction conditions with the ratio of SDS:CTAB being 2:1. 

Table 2. ATH of acetophenone catalyzed by 1b in water [a]. 

Entry 
Catalyst 
config. 

Solution 
Time; Temp.; 

Conversion (%) 
% ee 

(config) [b] 
Ref. [c] 

1 (R,R) H2O/HCOONa 2 h; 40 °C; >99 94 % (R) [59] 
2 (R,R) HCOOH/Et3N 12 h; 40°C; 98 97 % (R) [59] 
3 (R,R) H2O/HCOONa/CTAB [d] 4 h; 28 °C; >99 95 % (R) [62] 
4 (S,S) H2O/HCOONa/PEG 15 h; 40 °C; >99 96 % (S) [63] 

[a] Molar ratio substrate/catalyst (S/C) = 100; The catalyst was formed in situ from the  
[RuCl2(η6-p-cymene)]2 dimer and TsDPEN; [b] See corresponding references for details on 
determination of ee and product configuration; [c] Reference containing data for a given entry.  
[d] CTAB = cetyltrimethyl-ammonium bromide. 

A remarkable work was published in 2007 [63], where a mixture of polyethylene glycol (PEG) and 
water was successfully applied in the ATH of aromatic ketones catalyzed by 1b, using HCOONa as the 
source of hydrogen (Table 2, entry 4). A mixture of PEG:H2O (9:1, v/v) was found to be the optimal 
reaction solvent, which allowed 14 repetitions of use without deterioration in enantioselectivity and 
with only slightly decreased reactivity. Using this method chiral 1-phenylethanol was obtained in  
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94-96% ee (S/C = 100, 40 °C, 15-20 h for consecutive runs 1-9, and 20-40 h for runs 10-15). After 
each run, the product was easily extracted with hexane and the polymeric phase washed with HCOOH 
to regenerate the sodium formate it contained. ICP analysis showed that >99.9% of 1b remained in the 
PEG phase. 

Wang et al. [64] developed a reaction protocol for the ATH of ketones with 1b and HCOONa in a 
mixture of water/dichloromethane, which was rather problematic as the substrate and catalyst  
were more soluble in the organic solvent, whereas the HCOO– anion was present in the aqueous phase. 
The reaction was thus limited by the transport through the phase boundary. Their solution to this 
problem was to create an emulsion system by applying ultrasonic irradiation and a surfactant 
tetrabutylammonium iodide (TBAI), which caused a significant increase in the surface area between 
the organic and hydrophilic phases. Notably, this method facilitated the ATH of solid ketones, which is 
often slow or unfeasible when conducted in neat water due to their low water solubility. The high 
surface area created by emulsions provided proper contact of all the reaction components and the ATH 
was thus accelerated. 

These examples demonstrate that the RuII catalysts 1 can also be effectively used in aqueous  
media. However, most ATHs in water using 1 have been described in conjunction with structural 
modifications of the catalyst, which is discussed further in sections 3.1. and 3.2. 

2.3. Attempts to Immobilize Unmodified Complexes 1 

Heterogeneous catalysts are heavily favoured in industry as they can be easily separated from the 
reaction mixture and the resulting product does not contain any residual catalyst, i.e., unwanted 
compound(s) of heavy metals, which are expensive and may be harmful to the environment. 
Unfortunately, the structure of catalyst 1 is not particularly suitable for heterogenization without any 
further modification. The only reactive groups of the species are Ru-Cl and NH2 of TsDPEN, which, 
however, directly participate in the ATH mechanism [61,65] and thus should not be occupied by the 
solid support. Therefore, examples of immobilization of the unmodified complexes 1 are very scarce. 

In 2003, de Smet, Vankelecom, et al. [66] used selective polydimethylsiloxane (PDMS) membranes 
to separate catalyst 1b, aiming for a flow arrangement of ATH. After determination of the optimal 
conditions (mixture of methanol/isopropanol (30:70)), the membrane enabled the substrate and product 
to permeate and, simultaneously, was able to retain 1b completely. This way, catalyst phase and bulk 
phase were separated by the membrane. In the ATH of acetophenone, 4 consecutive runs at a constant 
ee (95%) were performed, however 5% leaching of Ru was observed. To the best of our knowledge, 
this interesting idea has not been developed since. 

Šiklová and co-workers [67] attempted to immobilize 1b in the channels of MCM-41 molecular 
sieve functionalized by (3-aminopropyl)triethoxysilane (APTES). Their supported catalyst was used in 
the ATH of a cyclic imine (1-methyl-3,4-dihydroisoquinoline) to give 89% ee (Table 3, entry 1), 
which was the same value as they obtained for the homogeneous system. However, the reaction rate 
was lower in the case of the supported catalyst. This observation was ascribed to diffusion processes 
occurring within the channels of the solid material. 

A very interesting concept was developed by Li, Yang and co-workers [68], who encapsulated 1b in 
a mesoporous “cage”, i.e., in the pores of the SBA-16 material. This was done by narrowing the pore 
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size of SBA-16 by silylation with diphenyldichlorosilane. This complex was able to perform the ATH 
of acetophenone with 93% ee (Table 3, entry 2) and was reported to be reusable at least 6 times, 
although with a gradual decrease in catalytic activity. The concept of a mesoporous nanocage 
represented by SBA-16 was also applied in different catalytic systems [69-71]. 

Table 3. ATH of acetophenone catalyzed by immobilized 1b. 

Entry 
Catalyst 
config. 

Substrate Solution 
S/C [a]; Time; Temp.; 

Conversion (%) 
% ee 

(config) [b] Ref. [c] 

1 (S,S) [d] DHIQ [e] HCOOH/Et3N; 
acetonitrile 

200; 7 h; r.t.; 99 89% (R) [67] 

2 (S,S) [f] acetophenone H2O/HCOONa; Et4N+Br 100; 5 h; 30 °C; >99 93% (S) [68] 
[a] Molar ratio substrate/catalyst; [b] See corresponding references for details on determination of ee 
and product configuration; [c] Reference containing data for a given entry; [d] 1b was immobilized in 
functionalized MCM-41; [e] DHIQ = 1-methyl-3,4-dihydroisoquinoline; [f] 1b was immobilized in a 
nanocage of SBA-16. 

2.4. ATH Catalyzed by 1 in Ionic Liquids 

Ionic liquids are a desirable medium for conducting catalyzed reactions as they are ranked amongst 
the green solvents and in addition, they can facilitate catalyst recycling. A few examples of their use in 
ATH with 1 have been published. 

In 2005 [72], the ATH of acetophenone was examined using 1a in the ionic liquid  
1-butyl-3-methylimidazolium hexafluorophosphate, also known as [bmim][PF6]. The reaction, 
employing HCOOH/triethylamine, gave 1-phenylethanol in 93% ee (96% conv., 24 h). The recycling 
is discussed in section 3.4. 

The performance of 1b in nine different ionic liquids was examined by Joerger et al. in 2006 [73]. 
Although the catalytic activity was found to be lower than under Noyori’s original conditions, high ees 
(up to 97%) were obtained for the ATH of acetophenone. The catalyst could be recycled no more than 
4 times, despite employing various methods (bulb-to-bulb distillation of the product, extraction). 

Huťka and Toma [74] optimized the reaction conditions for the ATH of a variety of ketones in 
several ionic liquids (ethylmethylimidazolium ethylsulfate, ECOENG500, [bmim][BF4]), where aryl 
alkyl ketones were reduced with the highest enantioselectivity. Their results further showed a very 
small dependence of ee upon temperature. 

3. Modifications of the η6-Arene/N-sulfonyldiamine-RuII Complexes 

Perhaps the most interesting feature of asymmetric catalysis is the modularity of catalytic 
complexes. On the basis of the first successful catalytic systems, numerous alternative species are 
derived which mimic or exceed the properties of the original complex [75]. This basic idea has 
inspired many researchers to explore possible modifications of known catalysts, which would lead to 
improved catalytic behaviour of these species. Herein we present an overview of direct modifications 
to the structure of catalyst 1. 

The nature of the Noyori’s η6-arene/N-arylsulfonyl-1,2-diphenylethylenediamine-ruthenium(II) 
homogeneous catalyst 1 for the ATH of imines and ketones allows us to modify both moieties of the 
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compound, i.e., the η6-arene ligand and the chiral diamine. The structure of the chelate diamine ligand (1) 
is responsible for the configuration of the major product enantiomer [61,76], while changing the ligand 
configuration readily changes the product configuration and (2) contributes to the asymmetric bias in 
enantioselective reactions [61]. However, the latter is mainly governed by the selection of the η6-arene 
ligand substituents, which affect the structure of transition states of the hydrogenation process and thus 
alter the reaction enantioselectivity [61,77]. Moreover, both the η6-arene ring and the N-sulfonyl 
fragment influence the catalyst activity [52,54,61,77]. 

Thus, successful ligand modification is not a trivial process owing to the complicated factors governing 
the catalyst activity and capability of asymmetric induction in hydrogenation reactions. In this text, the 
variations of 1 discussed are divided into several sections, according to the purpose of the modifications. 
Therefore, structural alterations leading to improvements e.g., in catalyst immobilization or ATH in water 
and ionic liquids are discussed. However, due to the large number of derivatives of 1, the scope of this 
review is limited and hence examples of straight-forward modifications of 1 (see e.g., [78-83]) will not be 
discussed in this work. Likewise, Wills’ well-known tethered complexes (see e.g., [84-87]) are not covered 
as they have been reviewed elsewhere [41,88]. 

3.1. Modifications of 1 Facilitating ATH in Aqueous Media 

Small alterations of the diamine ligand in 1 led to the development of noteworthy catalytic systems 
enabling the implementation of ATH in water. This topic has also been reviewed recently [41,89,90]. 
In general, the derivatives generally bear a polar functional group which increases their water 
solubility. The structures are depicted in Figure 2. 

Figure 2. Modifications of TsDPEN used in ATH in water. 

 
 
The first hydrophilic modifications of catalytic complex 1b appeared in 2001, when Bubert et al. [91] 

introduced a sulfonic acid group in the para- position of the N-arylsulfonyl fragment of TsDPEN. The 
novel ligand 2 furnished chiral 1-phenylethanol in 94% ee in the ATH of acetophenone using 
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[RuCl2(η6-p-cymene)]2 (Table 4, entry 1). At the same time, the ligand was also used in rhodium- and 
iridium-based catalysts, showing both higher activity and selectivity in the ATH of acetophenone 
under identical conditions [92]. 

In 2003, Deng and co-workers disclosed a TsDPEN ligand modification bearing two  
ortho-sulfonate groups (3, Scheme 2) [93]. The ligand was easy to prepare and water-soluble. The first 
experiments on the ATH of ketones with 3 were carried out using the [RuCl2(η6-p-cymene)]2 ligand 
and sodium formate as a hydrogen source instead of HCOOH/triethylamine. In addition, the presence 
of sodium dodecyl sulfate (SDS) or 15-crown-5 was found to be necessary to increase the reaction rate.  

Table 4. ATH of ketones and imines in water using modified diamine ligands [a]. 

Entry Ligand Substrate Solution 
Time; Temp.;  

Conversion (%) 
% ee 

(config) [b] 
Ref. [c] 

1 (S,S)-2 acetophenone H2O/i-PrOH/ 
t-BuOK 

48 h; 22 °C; 96 94 (S) [91] 

2 (R,R)-3 acetophenone H2O/HCOONa; SDS [d] 24 h; 40 °C; >99 95 (R) [93] 
3 (R,R)-3 α-bromo-

acetophenone 
H2O/CH2Cl2/ 

HCOONa; SDS 
24 h; 28 °C; 87 

(isol. yield) 
94 [93] 

4 (R,R)-3 DHIQ [e] H2O/HCOONa; CTAB [f] 10 h; 28 °C; 97 
(isol. yield) 

95 (S) [94] 

5 (S,S)-4 acetophenone H2O/HCOONa 0.5 h; 28 °C; 33 95 (S) [95] 
6 (R,R)-5c acetophenone H2O/HCOONa 2 h; 40 °C; 100 94 (R) [96] 
7 (R,R)-5d acetophenone H2O/HCOONa 2 h; 40 °C; 100 92 (R) [96] 

[a] Molar ratio substrate/catalyst (S/C) = 100; The catalyst was formed in situ from the  
[RuCl2(η6-p-cymene)]2 dimer and the corresponding ligand; [b] See corresponding references for 
details on determination of ee and product configuration; [c] Reference containing data for a given 
entry; [d] SDS = sodium dodecyl sulfate; [e] DHIQ = 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline; 
[f] CTAB = cetyltrimethylammonium bromide. 

Under these conditions, a range of aromatic ketones were successfully reduced, including  
α-bromoacetophenone, which was complicated when the HCOOH/triethylamine azeotrope was used [97]. 
Chiral 1-phenylethanol was obtained in 95% ee (entry 2) and the ATH of α-bromoacetophenone in a 
H2O/CH2Cl2 mixture proceeded with 94% ee (entry 3). 

The sulfonated ligand 3 was subsequently applied to the ATH of imines and iminiums under similar 
conditions [94]. However, when SDS was used as a surfactant both yield and enantioselectivity 
decreased. Therefore, other surfactants had to be tested and cetyltrimethylammonium bromide  
(CTAB) gave the best results (entry 4). A variety of cyclic imines (isoquinolines, β-carbolines,  
N-sulfonylimines) were successfully reduced this way, although in the case of some acyclic imines, 
this catalytic system has been found to be unsuitable. When the 3-based catalyst was tested for 
recycling, the enantioselectivity remained constant and yield slightly decreased with repeated catalyst 
use. The catalytic system developed was also utilized for the hydrogenation of tetra-alkyl-substituted 
iminium substrates, which were found to be more reactive than their tri-alkylated imine analogues. 

In 2007 Li, Deng et al. introduced an o,o’-aminated TsDPEN ligand 4 for ATH in water  
conducted without the presence of surfactants [95]. Although the catalyst, formed in situ with  
[Ru(η6-p-cymene)Cl2]2, was not overly active in the ATH of acetophenone using HCOONa (entry 5), 
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its [Cp*RhCl2]2 analogue furnished 97% conversion under identical conditions. Many other aromatic 
ketones were also reduced using this complex, mostly with excellent enantioselectivity (>95%). 

Zhou and co-workers [96,98] synthesized water-soluble ligands 5a-5d, which, when combined with 
[Ru(η6-p-cymene)Cl2]2 and HCOONa, reduced aromatic ketones with great enantioselectivity (entries 
6 and 7). Their water solubility was promoted by a quarternary ammonium group (imidazolium [98], 
or triethylammonium and pyridinium [96]) which was attached to the TsDPEN moiety. The ligands 
were tested for recycling (five or six consecutive runs) in the ATH of acetophenone, where their 
activity only slightly decreased and ee remained constant at 93% in the case of 5c (100% conv.,  
S/C = 100, 2-3 h, 40 °C) [96]. The 5a/5b based catalysts showed great activity (quantitative 
conversions within 2 hours even after 6 runs), although erosion of ee was observed [98]. Ligands 5a 
and 5b were also used for ATH in ionic liquids [99] (see section 3.4.). 

3.2. ATH Conducted on Immobilized Catalysts Derived from 1 

A variety of approaches to the immobilization of 1 have emerged, offering solid catalysts applicable 
in heterogeneous ATHs of ketones and imines. This generally involved introduction of a functional 
group onto the aromatic rings of the diamine ligand, which provided the necessary linkage to the  
solid material. 

Perhaps the first attempt at heterogenization of 1 was published in 1997 [100]. The TsDPEN  
ligand was replaced by N-[(4-vinylphenyl)sulfonyl]-1,2-diphenylethylene-1,2-diamine, which was 
subsequently copolymerized with styrene (1:10) into a linear polymer (6a), or with styrene and 
divinylbenzene (1:10:0.5) into a cross-linked polymer (6b). These two ligands were tested with 
[Ru(η6-benzene)Cl2]2, [Ru(η6-p-cymene)Cl2]2 and [Ir(COD)Cl2]2 precursors in the ATH of 
acetophenone using isopropanol as the hydrogen source. Although the iridium-based catalysts were 
both more active and selective (up to 94% ee at 96% yield after 48 h), their stability was 
disappointingly low. The ruthenium complexes were somewhat more stable (i.e., reusable up to 4 
times) but they gave significantly lower ees and were less active (see Table 5, entry 1). 

In 1998 [101], Bayston et al. immobilized 1 onto aminomethylated polystyrene (PS), with (7b) or 
without (7a) polyethylene glycol (PEG) spacer units, creating orange/red polymeric beads. The  
PEG-containing ligand 7b was used with [Ru(η6-p-cymene)Cl2]2 in the ATH of acetophenone in a neat 
HCOOH/triethylamine mixture, and gave (S)-1-phenylethanol in 96.7% ee (Table 5, entry 3). Ligand 
7a was more active when cosolvents were used (DMF, CH2Cl2), giving the product in amazing > 99% 
ee (entry 2). However, both catalysts were only reusable twice. 

In 2004, many contributions in the field of heterogeneous ATH with modified 1 appeared. Li, Xiao 
and co-workers attempted to attach the TsDPEN ligand via its phenyl rings to a polyethylene glycol 
support, creating an immobilized ligand 8 (PTsDPEN) [102]. When hydrogenating acetophenone in 
neat HCOOH/triethylamine mixture using 8 combined with [Ru(η6-p-cymene)Cl2]2, 94% ee was 
obtained (entry 4). Efforts were made to reuse the catalyst by precipitation with diethyl ether, however, 
only three runs were practicable due to a rapid loss of catalytic activity. The use of 8 was  
also investigated for the ATH of ketones in water using HCOONa as a hydrogen donor, which  
caused a huge increase in the reaction rate [103]. In the ATH of acetophenone using 8 with  
[Ru(η6-p-cymene)Cl2]2, 1-phenylethanol (ee 92%) was obtained in full conversion within 1 hour (entry 5). 



Molecules 2011, 16                            
 

 

5471

Furthermore, the PTsDPEN-based catalyst was found to be much more stable in the aqueous phase, 
which enabled more efficient catalyst recycling by precipitation with diethyl ether. The first 12 
consecutive runs were shown to be feasible at a constant ee without a significant loss in activity. 
Ligand 8 therefore seemed to be highly attractive. 

Table 5. ATH of ketones and imines using immobilized derivatives of 1 [a]. 

Entry Ligand Substrate Solution 
S/C [b]; Time; Temp.;  

Conversion (%) 
% ee 

(config) [c] 
Ref. [d] 

1 (S,S)-6b acetophenone i-PrOH/KOH 20; 48 h; – ; 23 84 (S) [100] 
2 (S,S)-7a acetophenone HCOOH/Et3N/ 

CH2Cl2 
100; 18 h; 30 °C; 71 > 99 (S) [101] 

3 (S,S)-7b acetophenone HCOOH/Et3N 100; 28 h; 30 °C; 95 96.7 (S) [101] 
4 (R,R)-8 acetophenone HCOOH/Et3N 100; 20 h; 50 °C; 95 94 (R) [102] 
5 (R,R)-8 acetophenone H2O/HCOONa 100; 1 h; 40 °C; 99 92 (R) [103] 
6 (R,R)-9a acetophenone HCOOH/Et3N 100; 6 h; 40 °C; >99 97 (R) [104] 
7 (R,R)-9b acetophenone H2O/HCOONa; 

TBAB [e] 
100; 2 h; 40 °C; >99 96 (R) [105] 

8 (S,S)-10b 2-cyano-
acetophenone 

HCOOH/Et3N 100; 17 h; 30 °C; 98 
(isol. yield) 

97 (S) [107] 

9 (S,S)-11 DHIQ [f] HCOOH/Et3N/ 
CH2Cl2 

100; 12 h; r.t.; 100 
(isol. yield) 

91 (R) [108] 

10 (R,R)-12b acetophenone H2O/HCOONa 100; 3 h; 40 °C; 100 98 (R) [109] 
11 (R,R)-13b acetophenone H2O/HCOONa 100; 3 h; 40 °C; 100 98 (R) [109] 
12 (R,R)-13a DHIQ [f] H2O/HCOONa; 

CTAC [g] 
100; 24 h; r.t.; 69 94 (S) [110] 

13 (S,S)-14 acetophenone H2O/HCOONa 100; 2 h; r.t.; >99 96 (S) [111] 
14 (S,S)-15 DHIQ [f] HCOOH/Et3N/ 

CH2Cl2 
100; 1.5 h; 40 °C; 99 94 (R) [112] 

15 (R,R)-16 acetophenone H2O/HCOONa 100; 9 h; 40 °C; 100 97 (R) [113] 
[a] The catalyst was formed in situ from the [RuCl2(η6-p-cymene)]2 dimer and the corresponding 
ligand; [b] Molar ratio substrate/catalyst; [c] See corresponding references for details on 
determination of ee and product configuration; [d] Reference containing data for a given entry.  
[e] TBAB = tetrabutylammonium bromide; [f] DHIQ = 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline; 
[g] CTAC = cetyltributyl-ammonium chloride. 

Liu, Tu et al. chose the N-arylsulfonyl group of TsDPEN as a linker to a solid support, which was 
represented by amorphous silica gel (in 9a) and mesoporous silicas (MCM-41 in 9b and SBA-15 in  
9c) [104,105]. These inorganic solids were selected for their high stability at high temperatures and in 
organic solvents. Surprisingly, cheap amorphous silica gel exceeded both MCM-41 and SBA-15 in 
performance. When conducting the ATH of acetophenone in neat HCOOH/triethylamine mixture with 
9a and [Ru(η6-p-cymene)Cl2]2 [104], the product was obtained in full conversion after 6 hours (Table 5, 
entry 6). When catalyst recycling was attempted, no more than five runs were feasible, which was 
caused by severe leaching of the ruthenium. The best results were obtained when o- and m-fluorinated 
acetophenones were tested for recycling where 10 consecutive runs were successfully accomplished 
(ee 93-94%, activity decreasing). However, as the activity of this catalyst in the HCOOH/triethylamine 
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azeotrope was only moderate, HCOONa was also used for the ATH in water [105], with 
tetrabutylammonium bromide (TBAB) applied as an additive, which was chosen after screening a 
number of surfactants and phase transfer catalysts. The reaction rate was markedly accelerated; 
optically enriched 1-phenylethanol was obtained quantitatively within 2 hours and in 96% ee (entry 7). 
In terms of reusability the acetophenone was recycled 6 times, and 11 runs were achieved in the case 
of 4’-bromoacetophenone. Further experiments were carried out on these complexes [106], giving 
results consistent with the initial data. 

Two novel polystyrene-supported ligands 10a and 10b (Figure 3) were synthesized by attaching 
modified TsDPEN to aminomethylated polystyrene [107]. These were examined in the ATH step of 
the enantioselective synthesis of (S)-fluoxetine (entry 8). The final pharmaceutical product was 
obtained in 97% ee and contained less than 0.04 ppm of ruthenium. 

Figure 3. Immobilized TsDPEN-based ligands (I). 

 

Another work dealing with the immobilization of 1b onto an inorganic support was published in 2007 
by Huang and Ying [108]. They compared silica gel and siliceous mesocellular foam (MCF), with the 
latter giving the best results when used for immobilization and subsequently used in ATH. Ligand 11 
immobilized on MCF, used in combination with [Ru(η6-p-cymene)Cl2]2 and HCOOH/triethylamine, 
catalyzed the ATH of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (entry 9) and several aromatic 
ketones with high yield and enantioselectivity. The ligand was reported to be reusable at least 6 times, 
although leaching of both Ru and ligand was observed. The group of Itsuno [109] modified the 
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previously described polystyrene-supported ligand 6a [100] by introducing p-styrenesulfonate instead 
of styrene in the copolymerization (ligands 12a and 12b in Figure 4). 

Figure 4. Immobilized TsDPEN-based ligands (II). 

 

Analogously, the cross-linked polymer (13a,13b) was obtained by copolymerization with  
p-styrenesulfonate and divinylbenzene. While the original ligands (6a,6b) were described as shrinking 
in water, these novel analogues were much more compatible with ATH in water thanks to the extra 
sulfonyl pendant groups. As cations, either Na+ (in 12a and 13a) or benzyltributylammonium (in 12b 
and 13b) were used, which allowed the modification of the lipophilic properties of the ligand. A very 
interesting observation was the enhanced enantioselectivity (98% ee) in the ATH of acetophenone 
using 12b and 13b with [Ru(η6-p-cymene)Cl2]2 and HCOONa (entries 10 and 11). The authors 
attributed this to the creation of microenvironments in the polymer structure causing stronger 
asymmetric bias. Reusability of the 13b-containing catalyst was also addressed, where 5 repeated uses 
were reported. Two years later [114], this work was extended by two more pendant groups, carboxylate 
and alkanesulfonate, both again with Na+ or benzyltributylammonium cations. Nevertheless, neither of 
these surpassed their first ligands containing the arenesulfonate group. In 2009 [110], they further 
examined this concept in the ATH of imines. The sulfonylated polymers complemented with Na+ or 
benzyltributylammonium were found suitable for the ATH of cyclic imines in water utilizing 
HCOONa (entry 12). 
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Inspired by previous works on PTsDPEN (8) [102,103] (vide supra), Chan et al. introduced a 
polyethylene glycol chain in the para-position of the N-arylsulfonyl fragment of TsDPEN, creating 
PEG-BsDPEN (14) [111]. They found that the enantioselectivity of the acetophenone hydrogenation 
was slightly dependent on the amount of HCOONa. The catalyst was fairly active and recyclable, 
which could be seen from the 8th run where 96% conversion and 95% ee were reached within 4 hours 
(the first run is listed as entry 13). This ligand was then successfully applied in the syntheses of  
(R)-salmeterol [115] and (R,R)-formoterol [116]. 

Li et al. [112] extended the possibilities of immobilization in siliceous mesocellular foam (MCF) by 
grafting it with magnetic nanoparticles, aiming for an easily-separable heterogeneous catalyst (ligand 15 in 
Scheme 4). The area of applicability of nanoparticles in catalysis has been reviewed very recently [117-120]. 
The activity of the 15-based catalyst was very good; for example, 6,7-dimethoxy-1-methyl-3,4-
dihydroisoquinoline was reduced with 94% ee within 1.5 h, when [Ru(η6-p-cymene)Cl2]2 and 
HCOOH/triethylamine in dichloromethane were used (entry 14). It was successfully recycled nine 
times, with a slight erosion of ee (94-90%) and a decrease in activity caused by mechanical stirring and 
mild Ru leaching (11 mol% after nine runs). Several aromatic ketones were tested as well with good 
results achieved. 

Another polyethylene glycol-supported ligand (16) was synthesized in 2010 [113]. In the ATH of 
acetophenone using [Ru(η6-p-cymene)Cl2]2 and HCOONa, 97% ee was observed (entry 15). However, 
the catalyst was not particularly suitable for recycling as only three consecutive runs could be 
performed due to a marked decrease in both activity and ee. 

Table 6. ATH of acetophenone using dendritic catalysts [a]. 

Entry Ligand Solution Time; Temp.; Conversion (%) % ee (config.) [b] Ref. [c] 
1 (S,S)-17 [d] HCOOH/Et3N 20 h; 28 °C; >98 96.5 (S) [125] 
2 (R,R)-18a HCOOH/Et3N 20 h; 28 °C; 99 97.6 (R) [57] 
3 (R,R)-19 HCOOH/Et3N 20 h; 28 °C; 97 97.1 (R) [57] 
4 (R,R)-20 [e] HCOOH/Et3N 20 h; 28 °C; 97 97.1 (R) [128] 
5 (R,R)-21 [f] HCOOH/Et3N/ 

CH2Cl2 
20 h; 28 °C; 97 96.1 (R) [129] 

6 (S,S)-17 [e] i-PrOH/i-PrOK 48 h; 25 °C; 65 95 (S) [130] 
7 (S,S)-22 H2O/HCOONa; 

TBAI [g] 
4 h; 40 °C; > 99 97 (S) [131] 

[a] Molar ratio substrate/catalyst (S/C) = 100; The catalyst was formed in situ from the  
[RuCl2(η6-p-cymene)]2 dimer and the corresponding ligand; [b] See corresponding references for 
details on determination of ee and product configuration; [c] Reference containing data for a given 
entry; [d] For all generations (n = 1-3), similar performances were observed; [e] Data for the third 
generation (n = 3); [f] Data for the second generation (n = 2); [g] TBAI = tetrabutylammonium 
iodide. 

3.3. ATH Conducted on Dendrimeric Catalysts Derived from 1 

Although the dendrimeric modifications of 1 partially overlap with the area of catalyst 
immobilization techniques treated in section 3.2., we set this group apart due to its exclusivity. The 
dendrimeric structures impart some unique properties to the catalysts, which are hardly achievable by 
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other methods [121-123]. It is worth noting that the globular shape of the dendrimers allows for 
membrane filtration [124] or precipitation as a means of recycling the catalyst. Recent examples of 
dendrimeric catalysts derived from 1 are given above (Table 6). 

In 2001, Chen, Deng and co-workers [125] applied Fréchet’s polyether dendritic structures [126] to 
the TsDPEN ligand in the effort to find a recyclable catalyst. ATH of acetophenone using their 
dendritic ligands 17 (Figure 5) revealed they were recyclable up to five times, with constant 
enantioselectivity (ee > 96%) and decreasing catalyst activity. 

Figure 5. Dendritic TsDPEN-based ligands. 
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The same group also developed a set of ligands where the TsDPEN units were located at the 
periphery of the dendrimer [57], believing that the diamines would be more accessible by the substrate 
molecules than in the former case [125], which would accelerate the reaction. For the first generation, 
tetrakis(2-carboxyethoxymethyl) methane was chosen as the core unit bearing 4 TsDPEN units 
connected via amide linkages, with (18b) or without (18a) glycine residues. As the second generation, 
a more complex ligand 19 bearing 12 diamine units was synthesized on the basis of Newkome’s 
cascade polymers [127]. In the ATH of acetophenone, the performance of 18a, 18b and 19 was 
compared with their monomeric analogues to find that both activity and enantioselectivity were almost 
identical for dendrimeric and monomeric ligands. These ligands proved applicable in the 
stereoselective hydrogenations of a number of aromatic ketones and imines. 

Finally, Deng’s group synthesized unique hybrid dendritic catalysts 20 [128] by coupling the 
Fréchet- and Newkome-type ligands mentioned above. Catalyst recycling by precipitation was in the 
scope of this study, while it was shown that polyether dendrons of the Fréchet type [125] (17) were 
more suitable for recycling (up to six runs) due to their higher stability. In contrast, the diamine units 
in hybrid dendrimers 20 were located too far from the polyether moiety and the catalysts based on such 
dendrimers were less stable. The hybrid dendrimers therefore help to reveal that proximity of the 
diamines and the polyether dendrons was important for the catalyst stability. 

Alternative dendrimeric ligands 21 were described in 2005, linking the diamine to the dendrons via 
the phenyl rings of TsDPEN [129]. The dendrimers were synthesized up to the third generation, and 
generations 1 and 2 were slightly more active than their amino-functionalized relatives [125]. 
However, the activity of the third generation dropped significantly, probably due to the steric 
inaccessibility of the active site by the substrate, caused by the bulky dendrons. The second generation 
was also tested for recyclability, although substantial leaching of the catalyst was observed  
(about 10 mol% in each run, determined by ICP) and therefore only four consecutive runs could be 
performed with conversion dropping by 5% each time. An interesting feature of these ligands was the 
possibility of changing the N-arylsulfonyl moiety, leading to higher enantioselectivities in some 
hydrogenations. 

The group of Rothenberg developed a multilayered cylinder for membrane-like separation of the 
catalyst [130]. The cylinder was made of macroporous α-alumina covered by a thin layer of 
nanoporous γ-alumina. Because the steric bulk of 1b had to be increased to prevent it penetrating the 
nanopores it was attached onto a third-generation dendrimer as reported by Deng (ligand 17) [125]. 
Their membrane cup was capable of entrapping more than 99.7% of the Ru compounds after 3 days of 
stirring. Although this ceramic cylinder was tested with 17 (entry 6), it has the potential to be applied 
in a variety of catalyzed reactions where the catalytic species has sufficiently high molecular weight. 

A fluorinated dendritic TsDPEN ligand 22 (FTsDPEN), which surpassed all previous dendritic 
catalysts based on 1 in terms of reusability, was introduced very recently [131]. 22 was tested with 
[Ru(η6-p-cymene)Cl2]2 in 30 consecutive runs of ATH of acetophenone using aqueous HCOONa and 
TBAI (S/C = 100, 40 °C). During the first 16 runs, ee was maintained between 93-95% and reaction time 
was 4-8 hours. From run 16 to 26, 12-24 hours were needed to achieve full conversion, while ee was 
within the range of 88-93%. The final runs showed a significant decrease in the catalyst activity. The 
recyclability of 22 was therefore very promising in comparison with the preceding studies [63,128], none 
of which achieved so many effective repeated uses. 
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3.4. ATH Conducted in Ionic Liquids Using Modified Catalysts 1 

This section covers the ligand modifications connected with usage in ionic liquids (Figure 6) and is 
closely linked with section 2.4. where unmodified complexes 1 are addressed. 

Figure 6. Ligands designed for ATH in ionic liquids. 

 

Geldbach and Dyson [132] introduced an imidazolium group onto the η6-aromatic moiety  
of 1 creating its derivative 23, which allowed immobilization in the ionic liquid  
1-butyl-2,3-dimethylimidazolium hexafluorophosphate. Since KOH with isopropanol as a hydrogen 
source caused a sharp decrease in the catalytic activity, the HCOOH/triethylamine azeotrope was 
selected as an alternative. In this arrangement, the ATH of acetophenone was examined in comparison 
with original 1b. The best recycling results were obtained with 1b placed in ionic liquid, which 
afforded 5 consecutive runs with negligible loss in activity and >99% ee (Table 7, entry 1). After each 
run, the product was extracted with hexane and the ionic liquid containing the catalyst was dried under 
reduced pressure. 

Table 7. ATH of acetophenone performed in ionic liquids. 

Entry Ligand Solution 
S/C [a]; Time; Temp.;  

Conversion (%) 
% ee (config.) [b] Ref. [c] 

1 (R,R)-23 [d] HCOOH/Et3N/ 
[C4C1C1Im]PF6 [e] 

200; 24 h; 35 °C; > 99 > 99 [132] 

2 (S,S)-24 [f] HCOOH/Et3N/ 
[bmim][PF6] [g] 

100; 24 h; r.t.; 98 92 (S) [72] 

3 (R,R)-5a [h] HCOOH/Et3N/ 
[bmim][PF6] [g] 

100; 8 h; 40 °C; 100 97 (R) [99] 

[a] Molar ratio substrate/catalyst; [b] See corresponding references for details on determination of ee 
and product configuration; [c] Reference containing data for a given entry; [d] The catalyst was formed 
in situ from (R,R)-TsDPEN and the corresponding ligand; [e] 1-butyl-2,3-dimethylimidazolium 
hexafluoro-phosphate; [f] The catalyst was formed in situ from the [RuCl2(η6-benzene)]2 dimer and 
(S,S)-24; [g] [bmim][PF6] = 1-butyl-3-methylimidazolium hexafluorophosphate; [h] The catalyst was 
formed in situ from the [RuCl2(η6-p-cymene)]2 dimer and (R,R)-5a. 
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Ohta et al. [72] attached an imidazolium tag in the para- position of the TsDPEN ligand, creating  
24. They found that both 1a (cf. section 2.4.) and the newly synthesized ligand, complexed to  
[Ru(η6-benzene)Cl2]2 in situ, were soluble in [bmim][PF6] under the reaction conditions and were 
suitable for recycling. The results obtained were very similar (5 consecutive runs, ~93% ee) but the 
imidazolium-containing ligand showed slightly better performance. 

After successfully performing the ATH of aromatic ketones in water [98], Zhou et al. attempted  
to use their imidazolium-based ligands 5a and 5b (Scheme 2) also in ATH in the ionic liquid 
[bmim][PF6] [99]. They used the [Ru(η6-p-cymene)Cl2]2 precursor and HCOOH/triethylamine 
azeotrope for the ATH of acetophenone and obtained 1-phenylethanol in 97% ee (entry 3). Therefore, 
the reaction rate was about four times lower in comparison with the ATH in water [98]. Unfortunately, 
no more than 3 recycling runs were accomplishable due to a sharp decrease in catalytic activity. 

3.5. Biomimetic Modifications of 1 

Some very interesing works have dealt with modifications of 1 aiming to approach enzyme-like 
performance. Although artificial metalloenzymes have been receiving increasing attention lately [133-135], 
not many works have focused upon the area of Noyori-type ATH of ketones and imines. The group of 
Ward et al. have done the most in this field [136-140]. In 2005 [136], they successfully anchored a RuII 
complex [(η6-arene)RuCl(25)], bearing a biotinylated achiral ligand (25 in Figure 7), in a protein 
molecule of tetrameric streptavidin. The complex was tested in the ATH of acetophenone which 
revealed that the p-substituted ligand (p-25) was the best option. Interestingly, when η6-p-cymene was 
used in the complex, (R)-1-phenylethanol was produced, while with η6-benzene, the (S) enantiomer 
was observed. However, the ee values were modest and the catalytic activity was low. Therefore, they 
attempted to optimize the artificial enzyme by point mutations in streptavidin. It was shown that the 
mutations closest to the active site increased the catalytic activity, the most remote mutations enhanced 
the enantioselectivity, and double mutations combined the two. Eventually, after pH optimization with 
an appropriate buffer, (R)-1-phenylethanol was obtained in 85% ee and 90% conversion after 64 hours 
(S/C = 100, 55 °C). It needs to be emphasized that the induction of chirality was largely brought about 
by protein-substrate and protein-complex interactions. 

In 2006 [137], the Ward group continued the development of this intriguing hydrogenation system 
and tested 20 forms of streptavidin against 21 modifications of RuII complexes in the ATH of three 
different substrates at once. In the first instance, to accelerate the screening process, they screened only 
two forms of streptavidin with all 21 Ru catalysts. Based on the results, five catalysts were selected 
and further tested with 20 streptavidin isoforms. With this extensive pool of data, the authors 
confirmed that η6-p-cymene was pro-(R) and η6-benzene mainly pro-(S), although in the latter case it 
could be reversed to pro-(R) when certain mutations in streptavidin were applied. As a result, the most 
promising combinations of biotinylated complexes with particular streptavidin mutants were identified, 
and evaluated in the ATH of several ketone substrates. Furthermore, docking studies formed a significant 
part of this work, as they gave a valuable insight on the structure of the artificial metalloenzymes. 
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Figure 7. Ligands and complexes in biomimetic applications. 

 

There has been a constant development in the area of Ward’s biotin-streptavidin species. Remarkably, 
one variant of their artificial hydrogenases, identified by employing a designed evolution protocol, was 
shown to reduce dialkyl ketones with up to 90% ee [138]. It has always been a great challenge to reduce 
such substrates with high enantioselectivity, since aromatic ketones facilitate the enantiodiscrimination by 
their disposition for the formation of a CH/π interaction with the η6-arene [77], which cannot be expected in 
the case of aliphatic ketones. Very recently, the concept was also applied to a cyclic imine [140], although 
with an iridium atom instead of ruthenium. Upon optimizing the reaction conditions, (R)-salsolidine 
was obtained in 96% ee and (S)-salsolidine could be synthesized in 78% ee. 

A very interesting paper by Polborn and Severin [141] also belongs primarily in this section, in spite 
of the fact that it is based on immobilization of modified (η6-arene)RuCl(ethylenediamine) 26. This is 
because their work goes beyond ordinary immobilization and seeks to attain substrate specificity via 
molecular imprinting (see also [142]) by a product-like molecule. As the authors wished to selectively 
hydrogenate benzophenone on this novel catalyst, the diphenylphosphinato ligand was selected for the 
coordination to the Ru atom as a pseudosubstrate. This association complex was then copolymerized 
with ethylene glycol dimethacrylate (EGDMA). Finally, the diphenylphosphinato ligands were 
selectively removed and re-substituted by chloro ligands, which created a highly substrate-specific 
molecularly-imprinted cavity adjacent to the catalyst active site. The molecular imprinting led to 
significant acceleration of the ATH of benzophenone, which proceeded with notable substrate 
selectivity when more ketones were present in the mixture. The complex was also found to be 
regioselective to diarylketone groups in more complex substrates. 

Weng, Tada and co-workers [143] used this concept as well, but they performed the immobilization 
of modified 1b (N-p-styrenesulfonyl-DPEN instead of TsDPEN, according to [100]) on functionalized 
solid SiO2. The molecular imprinting was carried out by the product molecule in question. Hence, after 
anchoring the catalyst, (R)-1-(o-fluorophenyl)ethanol (i.e., the product of ATH of o-fluoroacetophenone) 
was coordinated onto the complex as a template. This association complex, representing a monomeric 
unit, was subject to stacking of surface matrix overlayers. This was performed by four different 
methods, out of which photopolymerization was eventually utilized in the case of the catalytic species 
used for subsequent testing in ATH. The final step was the removal of the template from the 
immobilized complex, which formed the molecularly-imprinted cavity. The novel solid catalyst was 
thoroughly characterized by analytical methods and the heights of polymer matrices were determined, 
locating the optimal height for the hydrogenation process (2 nm). Eight different substrates were tested 
using this catalyst with HCOONa in water with SDS, and the results were promising. The reaction rate 
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was indeed highest in the case of o-fluoroacetophenone (except for 2-acetylfuran which was apparently 
very compatible with the imprinted cavity) and the corresponding (R)-1-(o-fluorophenyl)ethanol was 
obtained with 91% ee, which was a considerably higher value than the previously reported one [106]. 

4. Mechanistic Considerations 

For every chemical reaction it is highly desirable to have a deep understanding of its mechanism. In 
the case of asymmetric reactions, it is even more important as it provides the rationale for the 
enantiofacial discrimination which is not always a trivial issue. In this text, we focus on the reaction 
mechanism of asymmetric transfer hydrogenations on complexes 1. 

4.1. ATH of Ketones Catalyzed by 1 in the Presence of Isopropanol and a Strong Base 

In 2000 [144], Noyori et al. published a seminal work where the fundamental features of the ATH 
of ketones using 1, coined as metal-ligand (M-L) bifunctional catalysis, were proposed. The initial 
calculations upon this reversible system were performed using formaldehyde as a substrate, and 
simplified structures of the catalytic complexes, i.e., RuH(η6-benzene)(ethylenediamine) 27 or  
RuH(η6-benzene)(ethanolamine), were used (Scheme 1). According to these findings, the substrate 
does not coordinate directly to the Ru centre, but forms a C=O…H-N hydrogen-bonded intermediate 28 
with the ruthenium complex, which evolves into a six-membered cyclic transition state (TS) 29. The 
hydrogen bond is supported by a so-called “NH effect”: the N-H bond in the chelating ligand is 
markedly more polar when in a complex with ruthenium. Thus, the six-membered TS results in a 
transfer of the proton from the NH group to the carbonyl oxygen, and a hydride transfer from Ru onto 
the C=O carbon atom. This novel mechanism was also compared with a β-elimination/insertion 
mechanism, which was shown to be energetically and sterically unfavoured. 

Scheme 1. The original metal-ligand bifunctional mechanistic concept [144]. 

 

The M-L bifunctional mechanism was further studied in the case of ATH of benzaldehyde using 
RuCl(η6-benzene)(ethanolamine) 30 and isopropanol as a hydrogen donor (Scheme 2) [61]. The  
Ru-hydride 32 conveys a proton and a hydride to the C=O bond of benzaldehyde, which affords the 
alcohol product and a 16e unsaturated Ru complex 31 [65]. Two TSs 33fav and 33dis are considered for 
the hydrogen transfer, one of which (33fav) has lower energy due to the CH/π interaction (vide infra). 
However, benzaldehyde is not a prochiral compound and thus both TSs yield benzyl alcohol. The 16e 
complex 31 is then regenerated to 32 through a hydrogen transfer from isopropanol, with acetone 
formed as a by-product. The Ru-hydride molecule 32 always arises from the 16e complex 31, which is 
initially formed from the Ru-Cl precursor 30 by elimination of HCl by a strong base like KOH or  
t-BuOK. 
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Scheme 2. Metal-ligand bifunctional mechanism: ATH of benzaldehyde using 30 and  
i-PrOH [61]. 
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The other important mechanistic aspect is the enantioselectivity of ATH. In this hydrogenation 
system, several factors evoke the asymmetric bias: (1) Employing the chiral chelating ligands like 
TsDPEN makes Ru complexes 1 chiral at the Ru atom, which is an essential prerequisite for 
conducting asymmetric reactions with these complexes. The configuration of the chelate is responsible 
for the configuration of the major product enantiomer [61,76,144]. When an (S,S)-diamine is used, the 
configuration at Ru is R, and (S)-1-phenylethanol is afforded preferentially in the ATH of 
acetophenone. With an (R,R)-diamine, the configuration at Ru is S, and (R)-product is obtained 
accordingly; (2) The η6-arene ligand is capable of a weak, attractive CH/π interaction with the aromatic 
ring of the substrate molecule [77]. This, among others, explains why aromatic ketones and imines are 
reduced by these complexes much more easily than aliphatic substrates. The CH/π attraction is the 
reason why two TSs of different energies are formed, as shown in Scheme 9. The TS characterized by 
lower energy (denoted as favourable TS or favTS) is formed with higher probability and leads to the 
desired product enantiomer, whereas the less probable TS (called disfavourable TS or disTS) affords 
the unwanted product enantiomer. FavTS is stabilized by the CH/π interaction and for that reason, it is 
energetically more probable. The character of the CH/π interaction can be affected by the selection of 
the η6-arene ligand. When η6-benzene is used, C(sp2)H/π attraction takes place, which is different from 
the C(sp3)H/π interaction in the case of e.g., η6-hexamethylbenzene. 

Therefore, the hydrogenation proceeds in the outer coordination sphere of the ruthenium atom, 
where the chelating ligand plays a pivotal role. According to Clapham’s classification of hydrogenations 
catalyzed by Ru-hydride complexes, this mechanism belongs to the TOL group [45]. 

4.2. ATH Catalyzed by 1 in the Presence of the HCOOH/Triethylamine Azeotrope 

A great deal of ATHs using 1 are carried out in the presence of the HCOOH/triethylamine 
azeotrope. Utilizing formic acid entirely changes the reaction behaviour, rendering it almost 
irreversible because gaseous CO2 is formed as a by-product. This is in a marked contrast to the 



Molecules 2011, 16                            
 

 

5482

reductions using isopropanol as a hydrogen source, where the resulting acetone can react in the reverse 
direction and cause the overall reversibility. However, CO2 needs to be effectively removed by stirring 
or N2-bubbling in order to reach highest reaction rates and the desired irreversibility [145] as it is 
assumed that it can form a ruthenium-formate complex 35 by insertion into the Ru-H bond of 36 
(Scheme 3) [146], which is not favoured in this context. 

Scheme 3. Structures observed in the reaction mixture when HCOOH/triethylamine is used 
in ATH. 
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In this case, the reaction mechanism has not yet been fully understood. In addition to the  
Ru-hydride 36 and the 16e complex 34, a Ru-formate species 35 is formed at the beginning of the 
reaction from HCOOH and 34 [146]. At low temperatures, only 35 was observed by NMR, while 
raising the temperature led to decarboxylation and formation of 36 [147]. Therefore, 36 is thought to 
arise from 35, which is formed first. 

4.3. Mechanism of ATH Catalyzed by 1 in Water 

As this review has extensively dealt with ATH of ketones and imines in aqueous media, some 
mechanistic considerations on these reactions are presented here. The group of Xiao recently published 
an in-depth study on the ATH of acetophenone conducted in water with 1b and HCOONa [148]. They 
arrived at a number of very interesting conclusions, promoting the role of H2O from a mere solvent to 
a highly important, actively involved species. It was found to facilitate the decarboxylation of 35 to 36, 
rendering the Ru-hydride 36 formation very fast with 35 not observable by NMR. The 16e complex 34 
is supposedly stabilized by the water molecule via a transformation into Ru-aqua or Ru-hydroxyl 
species which were observed by NMR at −80 °C. Perhaps the most striking conclusion is the active 
participation of water in the TSs which was deduced from density functional theory (DFT) 
calculations. The water molecule is assumed to hydrogen-bond to the oxygen atom of the ketone C=O 
group, which lowers the energy of the TS by ~4 kcal mol–1, and thus facilitates hydrogen transfer. 
Furthermore, the catalytic cycles significantly differ under acidic, basic and neutral conditions, the 
latter of which are favoured. Acidic conditions severely decrease both the reaction rate and 
enantioselectivity as a result of the partial decoordination of the TsDPEN ligand through protonation 
of its amido nitrogen [60].  

We believe that these selected mechanistic aspects demonstrate the importance of water in the 
mechanism of ATH conducted in aqueous solutions. The positive effects introduced by the H2O 
molecule to the reaction mechanism further support its use instead of traditional organic media. 
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4.4. ATH of Imines Catalyzed by 1 in the Presence of the HCOOH/Triethylamine Azeotrope 

Initially, the stereoselective transfer hydrogenations of imines were carried out with 
HCOOH/triethylamine as isopropanol turned out to be completely ineffective [53]. Recently, it has 
been found that imines can only be reduced under acidic conditions [149], which conforms to the 
inapplicability of isopropanol as a hydrogen source. However, inherent imine protonation is not 
compatible with the original mechanism described in Section 4.1. In 2009, Wills and co-workers 
discussed all possible favTSs for the ATH of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline 
catalyzed by 1 [82] which created a further discrepancy with the original mechanism with regard to the 
absolute configuration of the product of ATH (Scheme 4). If the standard six-membered favTS 
structure were applied with (S,S)-1b, the outcome [(S)-amine] would be a different enantiomer from 
the one observed experimentally, i.e., (R)-amine. This evidence suggests that a different pathway 
should be considered for the ATH of imines. This issue is further addressed in Section 4.5. 

Scheme 4. Major differences in ATH of ketones and imines using the catalyst (S,S)-1b. 
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4.5. Molecular Modelling 

Modelling the intermediates and TSs in silico grants us very specific information on their 
geometries. The M-L bifunctional mechanism was elucidated by performing high-precision ab initio 
calculations [61,77,144]. These computational methods are capable of providing 3D models which tell 
us much about the steric properties of a given compound. In addition, the energy values obtained can 
help us predict for example thermodynamic properties, reactivity, or even enantioselectivity [150]. 

In our recent paper [151], we proposed the TS structures for the ATH of acetophenone (a ketone) 
and 1-methyl-3,4-dihydroisoquinoline (an imine) catalyzed by (S,S)-1b. This imine molecule was 
selected for its simplicity since all ruthenium complex structures were treated “as is” without any 
simplifications, which resulted in very high hardware demands. All calculated TSs conformed to the 
product configurations observed experimentally. (R)-1-methyl-1,2,3,4-tetrahydroisoquinoline and  
(S)-1-phenylethanol were thus obtained as the outcomes from favTSs.  
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Figure 8. Cut-off input geometries for TS optimization. The C(sp3)H/π interaction is 
shown in green. The unnecessary hydrogen atoms have been omitted for clarity. 

 
 
All calculations were performed at the density functional theory (DFT) level, using the B3LYP [152,153] 

hybrid functional. For all atoms except ruthenium, the 6-31G(d,p) basis set was used; ruthenium was 
treated with the LANL2DZ basis set and effective core potential (ECP) [154]. The initial Ru-hydride 
model 36 was obtained by optimizing the X-ray coordinates of 1b published by Noyori in 1996 [53], 
where the chlorine atom was substituted by a hydrogen atom. As all other models were constructed and 
optimized “from scratch”, finding the TS structures was a rather difficult task. Optimizations of the 
TSs (Figure 8) were performed by the QST3 method, where three input geometries need to be 
specified: the reactant (37), the product (38) and an initial guess of the TS structure (39). Successful 
convergence of a TS optimization process is highly sensitive and the initial guesses need to be very 
precise. For that reason, the screening was accelerated by utilizing cut-off geometries of the Ru 
complex formed by replacing all three aromatic rings of TsDPEN with methyl groups. This operation 
significantly reduced the number of atoms present and the calculations were thus much faster, which 
allowed us to encounter the TS geometries more promptly. The optimized cut-off TSs (e.g., 40 in 
Figure 1) were then rebuilt into full-scale structures and used for the real TS optimizations. 

In this way we obtained the full-scale TS structures (41,42) depicted in Figure 9. The C(sp3)H/π (for 
41) and C(sp2)H/π (42) attractions are depicted in green. It can be seen that the imine is N-protonated 
and only one hydrogen is transferred from Ru-H to the carbon atom of the C=N bond. The (S,S)-ligand 
leads to the (R) configuration of the amine product. Another important attraction, which has not been 
described before, was revealed between the =NH+- group of the substrate and the O=S fragment of 
TsDPEN ligand. It was found to significantly contribute to the stabilization of TSs. 
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Figure 9. Optimized structures of favTSs utilizing C(sp3)H/π (41) or C(sp2)H/π (42) 
interactions (shown in green). The unnecessary hydrogen atoms have been omitted  
for clarity. 

 
 
However, it was necessary to explore in detail which CH/π attractive forces (i.e., C(sp2)H/π or 

C(sp3)H/π) were exploited in this particular reaction. This was due to the use of η6-p-cymene in our 
calculations, which hypothetically allowed both options. The symmetry of the p-cymene ring allows 
four different sites which can be used in a CH/π attraction. Out of these, two were shown to be 
probable, one of them being C(sp3)H/π and the other C(sp2)H/π (in 41 or 42, shown in Figure 2). 

To sum up, imines apparently cannot be reduced without the necessary N-protonation, which can 
occur in situ e.g., in the HCOOH/triethylamine H2-donor mixture. Upon hydrogenation by complexes 1, 
a different product configuration is observed while only ketones conform to the original M-L 
bifunctional mechanism. In the case of imines, different structures of the TSs have been suggested and 
they are in agreement both with the substrate protonation and the absolute configuration of the product. 

5. Conclusions 

The purpose of this review was to give an account on the group of Noyori’s renowned  
η6-arene/N-arylsulfonyl-1,2-diphenylethylenediamine-ruthenium(II) catalysts 1. The catalysts were 
discussed in the context of their immobilization, recyclability, use in aqueous media and other specific 
applications which very often bring about notable improvements. Although the original catalysts 1 
could be used in some situations of this kind, most of the work dealt with slight modifications of the 
catalyst structure. Frequently, this led to enhancements in the catalytic activity, chemo-, regio- and 
enantio-selectivity, reusability, or extended the substrate scope. 

It can be seen that this catalytic system for the ATH of ketones and imines is already very well 
established. The reaction mechanism has been largely characterized, which allows for precise 
optimization of reaction conditions for a given substrate. However, some aspects are still shrouded in 
secrecy, especially when considering the ATH of imines using the HCOOH/triethylamine azeotrope as 
a hydrogen donor. 
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