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A B S T R A C T

As global obesity rates continue to rise, it is important to understand the origin, role and range of

human variation of body mass index (BMI) in assessing health and healthcare. A growing body of evi-

dence suggests that BMI is a poor indicator of health across populations, and that there may be a

metabolically healthy obese phenotype. Here, we review the reasons why BMI is an inadequate tool for

assessing cardiometabolic health. We then suggest that cold climate adaptations may also render BMI

an uninformative metric. Underlying evolutionary and environmental drivers may allow for heat

conserving larger body sizes without necessarily increasing metabolic health risks. However, there may

also be a potential mismatch between modern obesogenic environments and adaptations to cold cli-

mates, highlighting the need to further investigate the potential for metabolically healthy obese pheno-

types among circumpolar and other populations as well as the broader meaning for metabolic health.

Lay Summary: Global obesity rates are on the rise; however, body mass index (BMI) is a poor indicator

of metabolic health. Here, we propose that cold climate populations may exhibit high BMIs,

but relatively healthy metabolic profiles (metabolically healthy obesity) due to environmental and

evolutionary pressures associated with inhabiting a cold climate.
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physical activity
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INTRODUCTION

Global obesity rates continue to reach all-time highs as over

10% of the human population is living with obesity. With over

108 million children and 604 million adults living with obesity,

the risks of associated metabolic health issues are on the rise

globally, but especially in developing nations [1]. Risk factors

associated with unhealthy weight gain include hypertension, in-

sulin resistance, cardiovascular disease and cancer. As a result,

obesity is associated with high rates of all-cause mortality [2, 3].

Obesity is also associated with an additional economic burden.

Individuals living with obesity accrue medical costs estimated

to be 30% higher than those considered to be at a healthy

weight [4]. These increases in health care costs rise to 42.7% for

individuals with obesity in the USA [5].

The definition of obesity and the statistics used to assess

health status and economic consequences rely heavily on the

body mass index (BMI, kg/m2) metric. However, this overre-

liance on BMI to assess cardiometabolic health across all popu-

lations is facing greater scrutiny. Populational variation arising

from evolutionary, ecological and cultural histories could signifi-

cantly impact the relationship between BMI and markers of car-

diometabolic health such that current BMI standards and

associated comorbidities do not accurately represent all popula-

tions. Here we briefly review the development and use of BMI.

We then discuss the mounting criticisms of this metric framed

within the metabolically healthy obese phenotype—the ‘fit and

fat’ hypothesis—a hypothesis that is still quite controversial.

Finally, we suggest that cold climate populations, due to their

evolutionary history, might be the most logical candidates for

garnering greater evidence in support of the metabolically

healthy obese phenotype (Fig. 1).

Historical background and shortcomings of BMI

BMI was originally developed by 1800 s statistician Adolphe

Quetelet [7]. Quetelet was interested in means of human an-

thropometric measures, believing a statistical norm fitting with-

in a classic bell curve represented the norm for man [7, 8]. Of

particular interest to Quetelet was the relationship between

weight and height. From looking at French and Scottish men,

he found that weight scaled best to the square of height, which

he called the Quetelet Index [7, 8]. Roughly 140 years later,

physiologist Ancel Keys sought a weight-to-height metric that

most accurately represented body adiposity for medical applica-

tions. Keys tested various ratios using data among 7426 men

from the USA, Japan, Finland, Italy and Bantu men of South

Africa. Keys et al. determined that the Quetelet Index, then

renamed Body Mass Index, best fit their data. Though Keys

admitted that BMI was imperfect, he contended it was better

than other ratios at determining obesity and was a simple tool

that could be applied to all populations [8]. The word ‘all’ is

emphasized here as Keys did not have global representation.

BMI did not produce an accurate representation of the included

Bantu population, and no women were included in this ana-

lysis—calling into question the broad applicability of BMI for

identifying obesity or body adiposity. However, despite these

issues, in 1985 the National Institutes of Health adopted BMI

as an obesity identifier, and in 1998 revised the definition to

lower the BMI thresholds for ‘overweight’ and ‘obese’ to the

current categories and ranges we use today [9]. In all of this, it

should be noted that Quetelet was quite explicit that his index

should be used for statistical purposes and not to assess indi-

viduals or health [10].

Since the NIH adoption, BMI has become near synonymous

with health and numerous comorbidities. High blood pressure,

high cholesterol, type 2 diabetes, osteoarthritis, some cancers

and coronary heart disease among others have all been corre-

lated with a high BMI [11, 12]. However, one of the chief weak-

nesses of BMI is that it does not take body composition,

particularly body adiposity versus fat-free mass, into account as

adiposity levels are typically more indicative of cardiometabolic

health than is any metric of overall body size [13, 14]. Some

medical practitioners have recently called for the medical com-

munity to follow the Adiposity-Based Chronic Disease concept,

which focuses more on obesity manifested pathophysiology

such as the above-mentioned cardiometabolic risk factors ra-

ther than a crude measure of body size alone [13, 15].

As more data are collected, the more obvious it becomes that

BMI does not accurately indicate obesity or metabolic risk fac-

tors similarly across different populations. For example, it has

been documented that there is a disconnect between body fat

percentage and BMI among Asian populations such that these

populations exhibit a low BMI despite a high body fat percent-

age [16, 17]. Furthermore, BMI underestimates potential health

risks among Asian populations, particularly type II diabetes

prevalence in Japan [12, 18], and overestimates adiposity

among Black populations, especially among Black women as

was found in Australia [19].

Why metabolic health is not necessarily associated

with BMI

In a European study comparing metabolic health markers

among individuals with obesity, 12% of participants did not pre-

sent any of the metabolic syndrome symptoms such as elevated

blood pressure, fasting glucose or cholesterol levels associated

with having a BMI � 30 [20]. In a UK study using the homeosta-

sis model assessment of insulin resistance to define metabolic

health, up to 40% of participants classified as obese were con-

sidered metabolically healthy [21]. While obesity increases the

risk of metabolic syndrome over time, younger and female
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individuals with high BMIs were more likely to be metabolically

healthy relative to their older and/or male counterparts [22].

The role of physical activity further complicates the utility of

any simplistic metric to accurately assess obesity-associated

risk factors. Physical activity has numerous cardiometabolic

benefits that may even counteract the potentially harmful effects

of a high BMI, or more accurately, high adiposity, may have on

the body [23–26]. Observational studies have demonstrated

that physical activity and physical fitness can attenuate the

health risks of high levels of adiposity such as type II diabetes,

certain cancers, depression and cardiovascular disease as well

as increase the levels of healthy high-density lipoprotein choles-

terol (see [27]). These studies suggest a ‘fit, but fat’ or metabol-

ically healthy obese phenotype, in which one can exhibit a high

BMI and adiposity but not suffer negative health consequences

[2, 23–26, 28, 29]. However, it should be noted that some dis-

pute the potential for a metabolically healthy obese phenotype,

suggesting that current data, which are largely cross-sectional,

are insufficient to support this hypothesis [30]. Studies that con-

test the existence of a fit, but fat phenotype often rely solely on

BMI to define obesity, without consistent measure of metabolic

and cardiovascular health, and these studies rarely control for

physical activity levels and fitness (e.g. [30–32]). This is a

common concern with a number of the large meta-analyses

examining BMI and cardiometabolic risk factors as most do not

incorporate measures of physical activity and/or cardiovascular

fitness levels such as frequency of exercise or maximal exercise

oxygen consumption—commonly known as VO2 max [33].

Numerous studies have found that risks associated with a

high BMI are greatly reduced by high levels of physical activity

Figure 1. The different characteristics present among cold climate populations that may confer a metabolically healthy obese phenotype. * the relationship of

greater adiposity among cold climate populations may be stronger among females rather than males [6]
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and/or high levels of cardiorespiratory fitness. Cardiorespiratory

fitness here is defined as the ability of the circulatory and re-

spiratory systems to supply oxygen during sustained physical

activity [34]. Data from over 4600 adults ages 20–49 who took

part in the National Health and Nutrition Examination Survey

revealed that roughly 17.4% of the adults classified as ‘over-

weight’ and 8.9% of adults classified as ‘obese’ had a high de-

gree of cardiovascular fitness [23]. This study established that at

least in this population, there is a phenotype of being ‘over-

weight’ or ‘obese’ but also cardiovascularly fit. It should be

noted that older individuals (�50 years) were not included in

this study—ages at which there is typically a reduction in car-

diovascular fitness and increase in cardiovascular disease.

Other work has looked specifically at physical activity, BMI,

and health outcomes. For example, among over 43 200

women and men from the Aerobic Center Longitudinal Study

in the USA with a mean age of just of over 46 years in age it

was found that when adjusting for fitness levels, metabolically

healthy obese (determined by body fat percentage) individuals

had significantly lower cardiovascular hazard ratios relative to

their non-metabolically healthy obese counterparts. Metabolic

health was determined by measures of blood pressure, HDL

cholesterol, triglyceride levels and fasting glucose levels.

Individuals were considered metabolically healthy if only 0–1

of these metrics were outside of recommended values.

Furthermore, there were no significant differences in cardio-

vascular health ratios between metabolically healthy obese

individuals and metabolically healthy normal-fat individuals

[33]. Similar results were found among over 47 200 Finnish

women and men [3] and �40 000 women part of the

Women’s Health Study [35]—regular physical activity was

strongly associated with reduced all-cause mortality or coron-

ary heart disease in these studies, respectively. Similarly, work

among reindeer herders in sub-Arctic Finland found that des-

pite 75% of the participants being overweight or having obes-

ity, their metabolic health markers (total cholesterol, HDL

cholesterol, LDL cholesterol, glucose and triglycerides) were

relatively normal [36].

Among the potential reasons for the disconnect between BMI

and cardiometabolic health among this sample is the high level

of physical activity. Reindeer herders are highly active—they ex-

pend a mean of �4200 kcal/day during their annual herd

roundup, which puts their total energy expenditure at a level

similar to that of hot climate farming populations [37].

However, the high levels of physical activity may not be the only

reason for the BMI-health disconnect. Cold climate adaptations

could also impact the relationship between body size and meta-

bolic health. All of these studies add further evidence that the

metabolically healthy obese phenotype does exist, and that hav-

ing obesity (at least as defined by BMI) does not necessarily

mean poor metabolic health.

Evolutionary and environmental drivers of metabolically

healthy obesity

Numerous well-known cold climate adaptations that appear

among circumpolar populations include a larger body size with

a reduced body surface area [6, 39, 40], high resting metabolic

rates [38, 41, 42], shivering thermogenesis and brown adipose

tissue activity [36, 43, 44], oscillating vasoconstriction and vaso-

dilation [45], as well as numerous cultural mitigation strategies

[46]. Less well studied, however, is if cold climate adaptations

may affect the relationship of body size and adiposity to bio-

markers of cardiometabolic health. Notable exceptions include

work done among Indigenous Siberians, examples from this

work appear throughout this commentary [43, 47–52]. Below is

a brief review of some cold climate adaptations that may con-

tribute to a metabolically healthy obese phenotype.

Bergmann’s [53] ecogeographical rule predicts that body size

increases with lower ambient temperature—essentially reduc-

ing body surface area while increasing metabolic heat output

has been found to still hold true among human populations

[39, 54, 55]. Furthermore, both fat-free mass [56] and adipose

tissue are highly insulative. Laboratory studies have demon-

strated that when submerged in cold water, individuals with

greater body fat experienced a reduced drop in body tempera-

ture and a mitigated metabolic response relative to those with

less body fat [57]. Thus, it is believed that greater body size and

greater body adiposity were crucial evolutionary adaptations to

cold climates—as these features would increase metabolic heat

production while also reducing heat lost to a cold environment.

Early work among Inuit populations [58, 59] found that indi-

viduals in these communities tended to have larger, though

leaner bodies, especially among males [6]. Furthermore, it was

found that skinfold thickness measures did not correlate well

with body fatness as determined by the deuterium oxide dilu-

tion method. This work indicates a large-bodied phenotype, but

also revealed a high degree of physical fitness [6]. As such, the

high body mass index among reindeer herders mentioned

above, like North American cold climate populations, should

not come as a surprise.

We now recognize that adipose tissue operates like an organ

with its own suite of hormonal and regulatory functions [60–64],

which means that it can also display dysfunction. Moreover, the

location and distribution of body fat is a key variable affecting

the relationship between body adiposity and metabolic health.

Visceral fat, located around the abdominal organs, is associated

with an increased risk of type II diabetes, cardiovascular dis-

ease, inflammation, hormonal imbalances and fatty liver dis-

ease relative to subcutaneous fat which is located between the

skin and muscle [60, 65, 66].

Fat distribution patterns also vary between populations.

Despite having lower average BMIs, East and South Asian pop-

ulations tend to have greater total body fat and higher body fat
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percentages compared to Europeans [16, 66, 67]. Individuals of

Chinese and South Asian descent have greater amounts of vis-

ceral and subcutaneous abdominal adipose tissue than

Europeans with similar BMIs [68]. Africans, however, have less

visceral and more subcutaneous fat relative to Europeans of

similar weight and age [69, 70]. These variations in visceral fat

distribution between populations explain in part why Asians,

despite having lower average BMI measurements, tend to have

higher rates of type II diabetes compared to Africans and

Europeans [71]. As such, some have called for new diagnostic

approaches to metabolic disease and obesity with a greater

focus on adiposity, especially visceral adiposity, either through

measures of waist-to-hip ratio or body composition [13, 15].

Cold climate populations tend to have high resting metabolic

rates (RMR, kcal/day) in order to maintain core body temperature

despite cold ambient temperatures [38, 42, 72, 73]. The high RMR

is thought to be driven, though not yet proven, by high thyroid hor-

mone levels [72, 74]. Though an important cold climate adaptation

and one that does lead to greater energy expenditure, high RMRs

may also be associated with high blood pressure. A study examin-

ing this relationship among Nigerians and African-Americans

found that individuals with high RMRs did have high blood pres-

sure independent of body size [75]. The positive association be-

tween blood pressure, particularly systolic blood pressure, and

RMR was also found among three Indigenous cold climate popu-

lations in Siberia: the Sakha, Evenki and the Buryat [49].

Hypertension is common among cold climate populations and is

likely the result of numerous interacting factors including high

RMRs, diets high in salt, fat, and alcohol, psychosocial stress, and

socioeconomic status. However, it has been suggested that

increased sympathetic tone, thyroid hormone levels, oxidative

stress, and/or developmental patterns (i.e. low birth weight) may

be driving this causal link between high RMR and hypertension

[49, 75]. These results paint an ever more complicated picture of

cold climate population health and the apparent disconnect with

body shape and size.

Brown adipose tissue (BAT), a type of mitochondria dense fat,

has received a great deal of recent attention both for its ability to

increase heat production during cold exposure and for how it may

alter metabolic rate and circulating blood glucose and fatty acid

levels [43, 44, 76, 77]. BAT has been identified among cold [36, 42]

and temperate climate populations [72, 73] during acute cold ex-

posure, and has been shown to increase metabolic rate from 3 to

9.5% depending on the population. For example, reindeer herders

in sub-Arctic Finland trended on the higher end of that metabolic

rate increase (8.7%) and preferentially metabolized fatty acids ra-

ther than glucose [80].

The evolutionary impact of BAT activity may result in more

than just thermal protection by significantly altering blood glu-

cose and fatty acid levels. In a small study conducted among

seven males, acute cold exposure elicited a 63% increase in

fatty acid utilization and a 588% increase in glucose utilization

[81]. Among the Sakha, glucose levels, but not fatty acid levels,

were positively correlated with BAT activity [43]; a similar prefer-

ence for glucose utilization was also found among a population

of females and males in Albany, NY [78]. Chondronikola et al.

[82] found that the increase in metabolic rate associated with

BAT was 70% fueled by free fatty acids and 30% by glucose,

while others found an increase in LDL and HDL cholesterol lev-

els [83]—indicating a high degree of variation in BAT substrate

utilization. Other work has also shown that BAT activation com-

plicated the relationship between BMI and metabolic health.

For example, a study among 260 individuals from Japan

found that those with active BAT (48% of participants) had bet-

ter measures of body adiposity, LDL cholesterol, HDL choles-

terol and blood glucose [84]. Improved glucose metabolism has

also been confirmed among a group of males with obesity who

were part of a 10-day cold exposure treatment during which

BAT was measured, and investigators found that glucose up-

take in skeletal muscle was particularly improved during this ex-

perimental exposure [85]. Furthermore, individuals with positive

BAT activity, despite having overall greater body adiposity, had

lower visceral fat than individuals with lower overall body adi-

posity, and this lower visceral adiposity was also associated

with lower insulin resistance and inflammation as well as

improved indicators of fatty liver disease [86]. Recent work also

shows that BAT activity may contribute to increased thermogen-

esis and glucose disposal in a Samoan group, a tropical popula-

tion, suggesting BAT is a metabolically active trait across all

human populations, irrespective of the climatic environment

[87].

Though research on BAT among adult humans is still rela-

tively new, it is clear that BAT activity can alter cardiometabolic

biomarker profiles during mild cold exposure though long-term

effects have not been explored. Populations who utilize BAT ac-

tivity as an adaptation to cold conditions may have a broader

range of healthy baseline glucose and cholesterol levels that

does not necessarily indicate a cardiometabolic concern; how-

ever, this hypothesis needs to be tested. A great deal more re-

search measuring seasonal BAT activity and associated

cardiometabolic biomarker levels as well as data on cardiovas-

cular disease mortality and diabetes incidence are needed to

test this hypothesis.

Finally, cold climate diets may influence metabolic health.

Traditional cold climate diets are relatively high in protein and

fat while relatively low in carbohydrates, with those calories

obtained from hunted, foraged, and raised/grown foods (i.e.

[38, 88, 89]). Given the consumed meat tends to be from wild

or semi-domesticated mammals and fish, the diets are high in

the ‘good’ HDL cholesterol. Shepard and Rode [89] argued that

this more traditional diet may play a role in the relatively low

rates of type II diabetes and cardiovascular disease. The
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combined evidence of larger body sizes, higher resting metabol-

ic rates, modulation of cardiometabolic health biomarkers by

BAT and diet suggest that perhaps we should be more closely

examining cold climate populations for metabolically healthy

obese phenotypes as they may be more common among these

populations (Fig. 1). However, many Indigenous cold climate

populations today are suffering from an epidemic of poor cardi-

ometabolic health.

Metabolic health in circumpolar populations

Historical work among circumpolar populations revealed rela-

tively low mortality from cardiovascular disease and incidence

of diabetes as well as lower blood glucose and lipid levels [90,

91]. A disconnect between BMI, body adiposity and metabolic

health has been observed among Inuit populations in Canada,

Greenland and the USA. Individuals in these populations dis-

play high rates of obesity and high adiposity but exhibit lower

metabolic risk indicators (glucose and blood pressure values,

though cholesterol levels were rising) relative to Euro-

Canadians of the same BMI [92, 93]. Young’s work among the

central Canadian Arctic Inuit found that increasing rates of

obesity and greater centralized adiposity were associated with

higher blood pressures and cholesterol levels, though there was

no change in glucose and insulin [92]. However, in a later study,

Young et al. [93] learned that though there was evidence for wor-

sening blood pressure and cholesterol levels with increasing

rates of obesity, the worsening health metrics were more preva-

lent among Euro-Canadians than among Indigenous Inuit from

Canada, Alaska and Greenland.

Recent drastic changes in diet, physical activity levels and

cold exposure due to climate change are further driving this

trend of worsening health [42, 91–95]. Rising rates of high blood

pressure, smoking, and central adiposity among circumpolar

populations of North America expose a large percentage of

Indigenous individuals to increased risks of cardiovascular dis-

ease, especially in women [96]. In recent years, rates of diabetes

mellitus were three times more prevalent in Native Americans

and Native Alaskans compared to age-adjusted Americans of

European descent [97]. Similar biological and behavioral risk

factors were noted to contribute to increases in cardiovascular

disease among Inuit populations in the USA, Canada, Russia

and Scandinavia as early as the late 1990s, early 2000s and con-

tinue to be prevalent today [98]. This health transition from rela-

tively healthy metabolic profiles to the recent rise in risk factors

is associated with the large-scale industrialization of the

regions, contamination of traditional foods, reduction in trad-

itional activities and activity levels and other negative socio-

economic changes [98].

Climate change may also be a contributing factor to the worsen-

ing of cold climate population health. For example, as global

temperatures continue to rise and in conjunction with modern tech-

nology, cold stress is no longer quite as stressful as it once was. As

such, there may be reduced pressure to maintain high resting meta-

bolic rates among cold climate populations [38]. This reduction in

resting energy expenditure along with a reduction in physical activity

and a move away from relatively healthier traditional diets all likely

contribute to the growing trend in obesity rates and poor cardiome-

tabolic health. A detailed discussion on this potential and its theor-

etical underpinnings can be found in [94].

Increasing rates in cardiovascular disease and risks can be

traced back to the harm inflicted upon Indigenous populations

by European colonization, US policies and ensuing racism, as-

similation and inequities [48, 92, 93, 99, 100]. Over 68% of

Nunavut Inuit suffer from food insecurity, resulting from a shift

away from traditional diets to high sugar and transfatty acid

foods [101]. The impacts of government policies and systemic

racism have long-lasting effects on health through ongoing

inequities and intergenerational trauma as best described by

Godfrey and colleagues [99]. Forced relocations, pollution and

lack of safe access to healthy food continuously contribute to

rate increases in metabolic syndrome among Indigenous popu-

lations and to greater health disparities relative to whites [99].

The climate change crisis is further exacerbating mental and

physical health problems among Indigenous groups. Extreme

weather events are likely to impact remote circumpolar groups

earlier and more severely than white and/or non-circumpolar

individuals, further reducing safe and equitable access to the

foods and services needed for improved metabolic health [102].

It is also possible that we are witnessing an evolutionary mis-

match in action in which there was a benefit for larger bodies

and greater adiposity in cold climates without a negative effect

on metabolic health. However, the predisposition for greater

adiposity becomes problematic when the imposed modern en-

vironment of lower physical activity levels and highly processed

foods overwhelms and negates any potential metabolic benefits

of cold climate adaptations such as BAT activity and higher rest-

ing metabolic rates. This mismatch could well explain why evi-

dence for a metabolically healthy obese phenotype is relatively

rare among cold climate populations with the exception of the

reindeer herders in sub-Arctic Finland, who are more physically

active than other cold climate populations for whom we have

data [38]. However, a great deal more work is needed to deter-

mine the occurrence of the metabolically healthy obese pheno-

type among cold climate populations and beyond.

CONCLUSION

A growing body of evidence suggests that BMI is a poor indica-

tor of metabolic health across populations but also at the indi-

vidual level. This broadly applied metric cannot take into

account differences in body composition, physical activity levels
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and fitness, nor how certain physiological features (i.e. brown

adipose tissue) may affect metabolic health. Here we have

reviewed the various reasons why the association between BMI

and metabolic health across populations breaks down and sug-

gest that evolutionary and environmental trajectories may drive a

metabolically healthy obese phenotype. The combination of

larger body size and greater adiposity for retaining heat, higher

resting metabolic rates, and higher brown adipose tissue activity

with the ability to modulate cardiometabolic health suggest that

metabolically healthy obese phenotypes may be more frequent

among cold climate populations. However, as seen with the ten-

dency for high blood pressure among cold climate populations

this relationship is complicated and likely highly dependent on

sex, age and behavioral factors. Furthermore, we may be witness-

ing a mismatch between evolved cold climate adaptations and

the modern obesogenic environment. We suggest that further re-

search into the potential for metabolically healthy obesity among

cold climate populations is not only warranted but necessary for

us to understand how evolutionary trajectories have shaped the

full range of human metabolic health and could better inform the

ways in which individuals with obesity are treated.
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