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ABSTRACT
Objective To explore factors that potentially impact 
external validation performance while developing and 
validating a prognostic model for hospital admissions (HAs) 
in complex older general practice patients.
Study design and setting Using individual participant 
data from four cluster- randomised trials conducted in the 
Netherlands and Germany, we used logistic regression to 
develop a prognostic model to predict all- cause HAs within 
a 6- month follow- up period. A stratified intercept was used 
to account for heterogeneity in baseline risk between the 
studies. The model was validated both internally and by 
using internal- external cross- validation (IECV).
Results Prior HAs, physical components of the health- 
related quality of life comorbidity index, and medication- 
related variables were used in the final model. While 
achieving moderate discriminatory performance, internal 
bootstrap validation revealed a pronounced risk of 
overfitting. The results of the IECV, in which calibration was 
highly variable even after accounting for between- study 
heterogeneity, agreed with this finding. Heterogeneity was 
equally reflected in differing baseline risk, predictor effects 
and absolute risk predictions.
Conclusions Predictor effect heterogeneity and differing 
baseline risk can explain the limited external performance 
of HA prediction models. With such drivers known, model 
adjustments in external validation settings (eg, intercept 
recalibration, complete updating) can be applied more 
purposefully.
Trial registration number PROSPERO id: 
CRD42018088129.

INTRODUCTION
Growth in the older population raises the 
frequency of hospital admissions (HAs).1 2 The 
increase in HAs reflects not only the ageing 
population, but also the increased incidence 
of multiple (chronic) conditions.3 Moreover, 
the rising demand for healthcare services 
also leads to unplanned and potentially 

preventable HAs, which are an important 
concern for the healthcare system. These 
unplanned and potentially preventable HAs 
can be classified as ‘triple fail’ events,4 as 
they risk being an unpleasant experience for 
patients, challenging public health and raising 
health spending.5 For individual patients, 
such distressing events make them vulner-
able to further adverse events, including 
falls, increased disabilities and deterioration 
in health- related quality of life (HRQoL).6 7 
In the context of public health and primary 
care in particular, physicians have to deal with 
complex patient needs that entail a higher 
risk of mismanagement in terms of misdiag-
nosis and/or mistreatment (ie, medication 
overuse, misuse or underuse).8–10 Primary 
care thus faces the challenge of avoiding such 
‘triple fail’ HA events and instead improving 
patients’ healthcare experiences.4

One solution would be to offer timely and 
appropriate primary care interventions to 
patients at high risk of HAs. However, in order 

Strengths and limitations of this study

 ► Development of a prognostic model for all- cause 
hospital admissions using individual participant data 
yielded clinically plausible predictors.

 ► A significant risk of overfitting in internal validation, 
and the heterogeneous estimates resulting from 
internal- external cross- validation as a particular 
strength, indicated that challenging calibration may 
have limited external validation performance.

 ► While potential reasons for between- study hetero-
geneity could be explored, small samples from only 
four original studies not differentiating between ad-
mission causes were obvious limitations.
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to be effective, such preventive interventions should be 
targeted at those at genuine risk.11 Numerous predic-
tion models to identify patients at risk of (unplanned) 
hospitalisations have been developed in various popula-
tions.5 11–16 Several obstacles to good model performance 
have been identified,17 but promising methodological 
advances have neither been able to provide a break-
through in parametric modelling,18 19 nor machine 
learning.20 External validation in particular has proved 
to be a major challenge with regard to predictive perfor-
mance.21 The model must be able to provide accurate 
predictions in a new but related situation based on inde-
pendent data.22 Generally, model development should 
balance the number of (meaningful) predictor variables 
at a reasonably large sample size, while model evaluation 
also requires enough events when applying the model to a 
new situation. Even if some of these prerequisites are not 
fully met, prognostic modelling using individual partici-
pant data (IPD) from a meta- analytic (MA) summary of 
several studies can help to investigate the factors driving 
external performance.23 By using IPD- MA, model devel-
opment can profit from the enlarged casemix variability 
offered by patients from different healthcare settings, as 
well as, and more importantly, benefit from the oppor-
tunity to simultaneously perform external validation in 
an approach called internal- external cross- validation 
(IECV).24 25 By repeatedly fitting a model to all but one of 
the IPD trials (ie, training set), IECV mimics the model’s 
application in a new population, while checking predic-
tive performance in the omitted study (ie, test set).

The recently introduced PROPERmed database 
provides such an IPD framework.26 Basically, if we want 
our prediction model to perform well in new, indepen-
dent patients, between- study heterogeneity with respect 
to missing values, covariate and endpoint distribution, 
baseline risks and predictor effects (ie, the associations 
between predictors and outcome) must be adequately 
accounted for during model development.27 While 
exploring how these key elements drive (external) 
predictive performance, we are especially concerned 
with model calibration, the ‘Achilles heel’ of predictive 
analytics.28 29 This is of particular importance because 
a well- calibrated model is more useful from a clinical 
perspective than a competing model with better discrim-
inatory performance (by means of the c- statistic or area 
under the receiver operator characteristics curve, ROC), 
but worse calibration performance.30 For example, this 
can be detrimental in case of systematic overerestimation 
or underestimation of risks in a new population. Thus, 
a calibration curve is central to assess calibration: the 
calibration intercept exposes heterogeneity in baseline 
risk, and the coefficient of the logistic calibration anal-
ysis (‘calibration slope’) reveals heterogeneous predictor 
effects.31 Using an IPD- based model of all- cause HA risk 
in a way that has previously proved successful,24 we aim 
to demonstrate how external validation might be affected 
by between- study heterogeneity in baseline risk, predictor 
effects and absolute risk predictions.27 As an applied 

clinical example of numerous methods introduced by 
Steyerberg et al,27 among others, we used IPD methods to 
predict HA and thus pursued two goals: (1) we expect the 
findings in our example to help explain the poor external 
performance of previous prediction models and, looking 
beyond our particular example, (2) we aim to show that 
such an approach can guide model developers concerned 
about poor external performance to choose appropriate 
methods of model adjustment (eg, intercept recalibra-
tion, model updating), if indicated.

METHODS
Source of data and participants
We used harmonised IPD from the PROPERmed data-
base32 that stem from four trials that qualified for inclu-
sion because they recorded the precise times of study 
outcomes, namely ISCOPE (Integrated Systematic Care for 
Older PEople),33 Opti- Med (Optimised clinical medication 
reviews in older people with ‘geriatric giants’ in general prac-
tice),34 35 PRIMUM (PRIoritising MUltimedication in Multi-
morbidity in general practices) 36 37 and RIME (Reduction of 
potentially Inappropriate Medication in the Elderly; Deutsches 
Register Klinischer Studien- ID, DRKS00003610). Details 
of the origin and preparation of the source data for 
the PROPERmed database are described elsewhere.32 
In brief, they were conducted in the Netherlands and 
Germany between 2009 and 2012 to optimise pharmaco-
logical treatment in older chronically ill patients. Three 
trials (Opti- Med, PRIMUM and RIME) compared a struc-
tured medication review consisting of several interven-
tion components with usual care, whereas ISCOPE used a 
functional geriatric approach to compare usual care with 
a proactive and integrated plan.

Inclusion criteria for the study participants were iden-
tical to our previous work,38 with patients from general 
practices being eligible if they were aged 60 years or older, 
had been diagnosed with at least one chronic condition 
defined using the O'Halloran list,39 and had at least one 
chronic prescription at study baseline (≤2 weeks duration 
in PRIMUM, ≤2 months in ISCOPE and ≤3 months in 
Opti- Med and RIME).

Outcome and candidate prognostic variables
As our outcome definition could not distinguish emer-
gency from planned admissions and the source data did 
not provide information on day and overnight admis-
sions, we defined HAs as a binary outcome for all- cause 
HAs between baseline and 6- month follow- up. It is worth 
noting that ISCOPE used a longer follow- up period of 12 
months. However, as time- based interactions with predic-
tors did not reveal any statistically significant effect modu-
lation during model development, the resulting potential 
for confounding can simply be reflected in a different 
baseline risk.

We had the opportunity to use all PROPERmed vari-
ables as candidate predictors, ranging from sociode-
mographics, lifestyle variables, patient (co)morbidity, 
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medication, functional status and well- being (eg, HRQoL). 
The main candidate predictors for this prognostic model 
were age, sex, living situation, educational level, comor-
bidities according to the Diederichs list,40 potentially 
inappropriate prescriptions according to the European 
Union (EU) Potentially Inappropriate Medications list,41 
STOPP- START (STOPP: screening tool of older persons' poten-
tially inappropriate prescriptions; START: screening tool to 
alert doctors to the right treatment) criteria,42 the Dreischulte 
list,43 three indices for anticholinergic drug burden,44–49 
harmonised scales indicating depressive symptoms50–55 or 
functional decline,56–58 and two independent subscales 
from the HRQoL Comorbidity Index.59–61 In addition to 
these, we also considered the number of HAs at baseline 
(ie, during the 12 months before inclusion) as a known 
strong predictor of future HAs62 (online supplemental 
table 1).

Sample size and missing data
Outcome information on HA was complete, while there 
were sporadically missing values in predictor variables and 
most importantly, the number of prior HA at baseline was 
completely missing in the Opti- Med data source. As we 
expected the number of prior HAs at baseline to be one of 
the most predictive variable, we chose multilevel multiple 
imputation63 to ensure this variable was completely avail-
able and, vice versa, to retain all Opti- Med data when 
this information was systematically missing. We thus 
considered five iterations of each of six multiple- imputed 
(MI) datasets,64 and pooled them according to Rubin’s 
Rules.65 This procedure was extensively investigated in 
the PROPERmed database in a previous project38 with no 
impact on predictive performance with higher numbers 
of iterations and imputations. All results were compared 
with complete- case (CC) analyses, whenever applicable. 
Missing data and imputation patterns showed reasonable 
results, whereby this imputation procedure was specifi-
cally developed to adjust for within- study and between- 
study variability (online supplemental figure 1).66 67 
Furthermore, when values were missing systematically, 
we did not consider the associated candidate prognostic 
variables in any of original studies (eg, smoking status). 
Given our final estimate of the c- statistic, sample size, 
event frequency and number of candidate predictors, 
we were well aware that this setting would not allow us 
to obtain an acceptable heuristic shrinkage factor or vice 
versa, adequate likelihood of a well- performing model.68

Methods used in the statistical analysis
Aiming to explore key drivers of external validation 
performance, we applied a simplified statistical model-
ling process with a single- imputation dataset (we provided 
multiple- imputation metrics where applicable), and 
fitting only one structural model in IECV, and studying 
heterogeneity using this once defined set of predictor 
variables.

For model development, we used a fixed- effects logistic 
regression model with a stratified intercept27 to conduct 

IPD analyses and account for between- study heteroge-
neity24 in our four eligible studies. The model was thus 
developed using logistic regression and by adding study 
indicator variables through the application of effect 
coding to estimate relative effects with a global average.69 
While these study indicators, along with the basic variables 
of age and sex, were considered mandatory in model 
development, all the other 88 prognostic variables were 
evaluated in a variable selection process that used the 
so- called Least Absolute Shrinkage and Selection Oper-
ator (LASSO)70 with the ‘minCV +1 SE rule’71 to obtain 
the sparser models that result from a larger penalty.72 The 
final model was derived by using maximum likelihood to 
refit the model formula,71 whereby an estimate of over-
fitting was obtained using internal bootstrap validation.

For model evaluation, we considered the performance 
metrics of the c- statistic to indicate the discriminatory 
ability in separating events from non- events by predicted 
probabilities,73 calibration intercept to indicated baseline 
risk specification, calibration slope to indicate predictor 
effect, calibration- in- the- large (CITL) for a global assess-
ment of the former two,74 and MA measures for between- 
study heterogeneity to indicate differences between the 
four original studies.75 Internal model validation relied 
on bootstrap sampling, whereby a model was devel-
oped for each of 250 bootstrap samples. The number of 
samples drawn from each study depended on its sample 
size thus maintaining the ratio between study participants 
in bootstrap samples.76 The c- statistic for the original IPD 
was derived from these bootstrap models, and arithmetic 
means were calculated across all bootstrap samples to 
yield the optimism- corrected c- statistic. To quantify poten-
tial optimism, the uniform shrinkage factor was obtained 
by applying the mean difference in the calibration slopes 
for each bootstrap model to both the original IPD and 
in- sample bootstrap performance.38

In addition, estimates of generalisability were obtained 
using IECV, with each study just the once serving as a vali-
dation sample for a model developed in the remaining 
studies.25 The c- statistic73 and CITL74 were the numerical 
metrics of choice, while calibration plots were visually 
explored.30 We thus followed a defined calibration hier-
archy77 that considered CITL to be an important metric 
for external validation, as well as the calibration slope; 
the calibration slope was defined as the coefficient of a 
logistic calibration analysis with cumulated outcomes as 
the dependent variable and the logit of all predicted risks 
as the independent variable.31 Among available options 
for setting baseline risks (intercept) in validation (test) 
data,24 our choice of the average intercept of the IECV 
training set is considered a conservative option. After 
extracting c- statistics and CITL estimates at every stage of 
the IECV loop and obtaining their within- study correla-
tion using a non- parametric bootstrap,23 the respective 
estimates were pooled in a random- effects multivariate 
meta- analysis.75

Metrics to explore between- study heterogeneity 
included the I2 measure of heterogeneity.75 In order to 
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quantify the membership strength of a specific study, we 
built a multinomial logistic regression model with study 
indicators as the dependent variables and all selected 
prognostic variables and the outcome HAs as predic-
tors.27 74 The c- statistic of this membership model was 
derived by comparing the predicted probabilities for 
patients in one specific study with those of patients that 
were not. Separately, we used pairwise comparisons of the 
original studies to calculate Pearson correlations between 
the predictions of study- specific models.27 74

All analyses were conducted using the R software 
environment in V.3.6.1 (R Foundation for Statistical 
Computing, Vienna, Austria) with the key packages 
of caret,78 glmnet (70)(61), metaphor, mice,64 VIM,67 
pROC73 and ROCR.79

This research study was reported in accordance with 
the TRIPOD (Transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis) statement 
(online supplemental table 2).80

Patient and public involvement
Patients or members of the public were not involved in 
the design, or conduct, or reporting, or dissemination 
plans of the research.

RESULTS
We included 3804 patients from the available 
PROPERmed IPD (PRIMUM n=499, Opti- Med n=514, 
ISCOPE n=1598 and RIME n=1193) (figure 1). Overall, 
this population had a mean age of 78 years, and 60.3% 

were female. Based on the chronic conditions defining 
eligibility and in accordance with the O’Halloran list,39 
17.9% had been diagnosed with heart failure, 16.4% with 
chronic obstructive pulmonary disease, 35.7% with non- 
insulin/dependent diabetes and 12.5% had experienced 
acute myocardial infarction. In this subset of CC, 598 
(21.2 %) patients had been admitted to hospital at least 
once (table 1).

Model development yielded a structural model with 
seven prognostic variables and study- specific intercepts 
(table 2). Of the prognostic variables, the number of 
previous HAs at baseline had the highest effect and partly 
reflected pronounced casemix variability between the 
original studies (figure 2A). Similar estimates between 
CC and MI scenarios supported the use of the imputation 
procedure to deal with systematically missing numbers 
of previous HAs at baseline (online supplemental table 
3). In internal bootstrap validation, the model achieved 
an optimism- corrected c- statistic of 0.64 (95% CI 0.62 
to 0.67) with a calibration slope of 0.7 (0.6 to 0.83) 
diverging from one and thus indicating substantial poten-
tial for over- fitting. Compared with in- sample metrics for 
apparent performance, we obtained poor performance, 
especially in terms of model calibration, when pooling 
the test study data from each IECV loop (figure 2B,C).

Random- effects meta- analysis of particular studies’ test 
data in the IECV yielded a c- statistic of 0.60 (0.56 to 0.64) 
and CITL of −0.03 (-0.21 to 0.15). Between- study hetero-
geneity was striking with I2 estimates of 50.9% and 61.5 %, 
respectively. A highly variable performance resulted when 
the model was applied to each original study separately 
(figure 3). Among potential drivers of external validation 
performance, outcome frequencies and thus baseline 
risks differed strongly, while predicted risks appeared to 
show a consistent pattern (table 3). Membership c- statis-
tics revealed that the membership model had generally 
high discriminative ability with respect to identifying 
the membership of a specific study. This indicates that 
the predictors and outcome distributions of the studies 
varied considerably, with patients from the ISCOPE study 
differing the most. When study- specific models were fitted 
and applied to the complete IPD, pairwise comparisons 
revealed moderate to high correlations between the linear 
predictors of study- specific models (online supplemental 
figure 2). This suggests that mean estimates involving 
the entire IPD may enable differences to be balanced 
out. Similarly, a meta- analysis of single predictor effects 
from these study- specific models revealed heterogeneity 
(I2 measure exceeding 30 %) in age and the number of 
previous HAs at baseline (online supplemental figure 3).

DISCUSSION
Our applied example takes a pioneering approach to 
use IPD- based modelling of HAs in general practice 
in order to expose the challenges of achieving good 
external validity in such a model. Heterogeneous base-
line risks, absolute risk predictions and predictor effects 

Figure 1 Flow chart and schematic course of action. CC, 
complete cases; dHRQoL, deterioration of health- related 
quality of life; HA, hospital admission; IPD, Individual 
Participant Data; LASSO, Least Absolute Shrinkage and 
Selection Operator; MI, multiply imputed.

https://dx.doi.org/10.1136/bmjopen-2020-045572
https://dx.doi.org/10.1136/bmjopen-2020-045572
https://dx.doi.org/10.1136/bmjopen-2020-045572
https://dx.doi.org/10.1136/bmjopen-2020-045572
https://dx.doi.org/10.1136/bmjopen-2020-045572
https://dx.doi.org/10.1136/bmjopen-2020-045572


5Meid AD, et al. BMJ Open 2021;11:e045572. doi:10.1136/bmjopen-2020-045572

Open access

Table 1 Candidate prognostic variables and statistically significant univariable associations with HAs

Candidate prognostic variable

HAs (complete- case population) Descriptive 
univariable
P value

No
n=2221

Yes
n=598

Sociodemographic and lifestyle- related

  Age–mean (SD) 78.2 (6.4) 78.4 (5.8) 0.632

  Sex (female)–frequency (%) 1321 (59.5) 330 (55.2) 0.059

Morbidity related

  Cancer–frequency (%) 374 (16.8) 134 (22.4) 0.002

  Cerebrovascular disease–frequency (%) 334 (15.0) 113 (18.9) 0.022

  Coronary heart disease–frequency (%) 747 (33.6) 239 (40.0) 0.004

  Heart failure–frequency (%) 456 (20.5) 169 (28.3) <0.001

  Disease count according to Diederichs*–median (IQR) 3 (3) 4 (3) <0.001

Medication related

  No of drugs†–median (IQR) 8 (5) 8 (5) <0.001

  Polypharmacy (≥5 drugs)–frequency (%) 1787 (80.5) 503 (84.1) 0.043

  Drugs for acid- related disorders–frequency (%) 822 (37.0) 279 (46.7) <0.001

  Drugs for constipation–frequency (%) 161 (7.2) 70 (11.7) <0.001

  Cardiac therapy–frequency (%) 506 (22.8) 171 (28.6) 0.003

  Urologicals–frequency (%) 282 (12.7) 107 (17.9) 0.001

  Psycholeptics–frequency (%) 272 (12.3) 100 (16.7) 0.004

  No of Potentially Inappropriate Medications (PIM) according 
to the EU- PIM list–Median (IQR)

1 (1) 1 (2) 0.004

  Drug Burden Index–median (IQR) 0 (1) 0 (1) <0.001

  Anticholinergic Drug Burden according to Duran–median 
(IQR)

0 (1) 0 (1) 0.007

  Anticholinergic Drug Scale according to Carnahan–median 
(IQR)

0 (1) 1 (1) <0.001

  STOPP criteria†–median (IQR) 2 (1) 2 (2) <0.001

  STOPP criteria†–frequency (%) 1917 (86.3) 541 (90.5) 0.007

  Benzodiazepines–STOPP criteria D5 and K1 191 (8.6) 74 (12.4) 0.005

  First generation antihistamines–STOPP criteria D14 29 (1.3) 9 (1.5) 0.708

  Hypnotic Z- drugs, for example, zopiclone, zolpidem, 
zaleplon–STOPP criteria K4

50 (2.3) 23 (3.8) 0.031

  Heart failure and prescribed any oral NSAID–Dreischulte B3 64 (2.9) 25 (4.2) 0.109

  START criteria‡–median (IQR) 1 (2) 1 (2) <0.001

  START criteria‡–frequency (%) 1325 (59.7) 396 (66.2) 0.004

  Documented history of coronary or cerebral vascular 
disease (aged 85 years and under) and no statin therapy–
START criteria A5

230 (10.4) 86 (14.4) 0.006

  Heart failure and/or documented coronary artery disease 
and no ACE inhibitor–START criteria A6

224 (10.1) 81 (13.6) 0.016

  Ischaemic heart disease and no beta- blocker–START 
criteria A7

180 (8.1) 73 (12.2) 0.002

  Heart failure and no appropriate beta- blocker (bisoprolol, 
nebivolol, metoprolol or carvedilol)–START criteria A8

149 (6.7) 64 (10.7) 0.001

  Patients taking long- term systemic corticosteroid therapy 
and no bisphosphonates and vitamin D and calcium–START 
criteria E2

97 (4.4) 39 (6.5) 0.03

Functional status and well- being related

Continued
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were obvious drivers of the poor external (calibration) 
performance and should be explored before a particular 
model is applied to a certain target population. As IPD- 
based modelling enables this information to be accessed 

directly, it may be exploited in the modelling process by 
adapting predictor effects, and ensuring intercepts reflect 
baseline risks. While pooled average effects may compen-
sate for such differences, separate analysis has revealed 
how important it is to ‘know’ as much as possible about 
the target population to which a model is applied. In the 
end, a deeper understanding of critical elements can help 
the developer to choose appropriate methods for model 
adjustment in the target population, among others inter-
cept re- calibration or (complete) model updating.

IPD modelling with several small data sets for model 
development and/or model evaluation is promising 
because larger amounts of data can be used. Regarding 
our model performance, the small samples from only 
four studies may not have been large enough, although 
our performance was similar to previously developed 
all- cause admission models19 in its ability to identify well- 
known prognostic variables (eg, potentially inappropriate 
prescribing),81 82 and make corresponding parameter esti-
mates of reasonable magnitude. For example, our model 
concurs with current research that found prior admissions 
to be the most relevant prognostic variable, followed by 
variables related to morbidity and functional disability.62 
In our particular case, morbidity- related measures may 
also be reflected in the variables used to describe drug util-
isation. While well- known diagnoses such as heart failure 
demonstrated the database’s validity by being signifi-
cantly associated with HAs in univariate analysis (table 1), 
they did not contribute enough predictive strength to be 
used in the prognostic model of all- cause HA. This may 
simply be due to our outcome definition, which did not 
distinguish between preventable and all- cause HAs. All- 
cause HAs also included planned visits (which usually 
exceed 50% of all admissions83), which, apart from not 
having to be predicted, are presumably less dependent 
on specific factors and thus render such prognostic 

Candidate prognostic variable

HAs (complete- case population) Descriptive 
univariable
P value

No
n=2221

Yes
n=598

  Functional status–mean (SD) −0.054 (0.96) 0.093 (0.98) 0.001

  Health- related quality of life Comorbidity Index, mental§–
median (IQR)

1 (2) 1 (3) <0.001

  Health- related quality of life Comorbidity Index, physical¶–
median (IQR)

5 (5) 6 (6) <0.001

  Pain–frequency (%) 1461 (65.8) 427 (71.4) 0.01

  Hospital admissions (baseline)**–median (IQR) 0 (0) 0 (1) <0.001

This table shows candidate prognostic variables stratified according to observed HAs status and univariable associations.
*Twelve conditions were considered over a total of 17 conditions included in the Diederichs list.
†Thirty- two STOPP criteria were considered.
‡Fifteen START criteria were considered.
§Score calculated considering a maximum count of 6 conditions.
¶Score calculated considering a maximum count of 12 conditions.
**ISCOPE, Opti- Med, PRIMUM, RIME.
HAs, hospital admissions; NSAID, non- steroidal anti- inflammatory drugs.

Table 1 Continued

Table 2 Final multivariable analysis for HAs after 6 months 
of follow- up

Prognostic variable Estimate SE P value

Global intercept* −1.641 0.616 0.008

Age (per year) −0.010 0.008 0.220

Sex (male) 0.226 0.096 0.016

Medication count† 0.034 0.016 0.032

START criteria count‡ 0.080 0.036 0.028

STOPP criteria count§ 0.073 0.038 0.056

Physical Component 
Summary score (PCS) 
from health- related quality 
of life Comorbidity Index¶

0.013 0.015 0.373

HAs at baseline** 0.376 0.053 <0.001

*In addition to the study- specific intercept (baseline risks): ISCOPE 
(0.510), Opti- Med (−0.242), PRIMUM (−0.248), RIME (−0.020).
†Medication count is operationalised as (anatomical therapeutic 
chemical classification system) 7- digit codes are used for chronic 
medication as defined per trial including medication for external 
use.
‡START criteria included START A3, A5- A8, B1, B2, C1, C2, E1- E4, 
E7 and F1.
§STOPP criteria included STOPP B1- B3, B10, B12, B13, C6, C7, 
C10, C11, D2, D5- D7, D14, F1, G1, G2, H2- H5, H7, H8, J1- J3, 
K1- K4 and M1.
¶PCS was calculated according to the modified instrument: 
maximum count 12 conditions, 47 points.
**Hospital admissions at baseline were absolute number of 
previous hospital admissions (in the 12 months preceding 
baseline).
HA, hospital admissions.
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models less sensitive.81 Above, missing but potentially 
useful predictor variables that were unavailable for us or 
predictor misclassifications could also have had a nega-
tive impact on our observed performance. Nevertheless, 
it can be considered as highly favourable that medication- 
related risk factors are included in our model, as they will 
facilitate the identification of important issues in inter-
ventions targeting medication appropriateness.8 10 For 
example, while the number of medications (together 
with the number of previous HAs) may help in risk strat-
ification, the START and STOPP criteria are conditions 
that can be directly acted on by changing medication. It 
thus appears feasible that individual risks can be reduced 

and the ‘Triple Aim’ of improving patients’ experience 
of healthcare, advancing public health and lowering per 
capita costs achieved.4 As an immediate next step beyond 
our model, however, we strongly advocate first refining 
the model’s outcome definition to predict preventable 
HAs.

Using established methods of accounting for between- 
study heterogeneity,24 IECV performance was only modest 
and also expected from the large uniform shrinkage 
factor of 30% (one minus the optimism- corrected calibra-
tion slope). Between- study heterogeneity was moderate to 
high, and high variation in the results of distinct IECV vali-
dation studies clearly emphasised this point. The fact that 

Figure 2 Model development and internal validation. Casemix variability in distributions of prognostic variables is visualised 
in mosaic plots stratified for the included original studies (area height according to study size; PROPERmed study numbering 
according to 1: ISCOPE; 2: Opti- med; 4: primum; 5: RIME). The size of the segments represent the number of patients and 
black areas indicate missing values (A). In calibration plots, predicted probabilities are presented against cumulated observed 
event proportions for the complete IPD on in- sample application of the HA prediction model (B) and for the combined original 
study data when used for validation in the IECV (hold- out) (C). HA, hospital admission; IECV, internal- external cross- validation; 
IPD, individual participant data.
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the global intercept also indicated pronounced hetero-
geneity in the original studies suggests that the current 
set of predictors did not explain variability to the extent 
necessary for the design of a better performing predic-
tion model (online supplemental figure 3). The study 

indicators alone clearly did not adequately reflect the 
baseline risks of populations from different healthcare 
systems, which may also mean that the ‘right’ prognostic 
variables for predicting all- cause HAs were not available, 
or not to the necessary degree informative.

Figure 3 Assessment of between- study heterogeneity. Calibration plots are obtained from each data subset when a particular 
original study served as the validation sample in the IECV. IECV, internal- external cross- validation.

Table 3 Between- study heterogeneity

Study no Study name

Baseline risk
Linear predictor
(=predicted absolute risks)

Membership CAdmission proportion Mean SD

1 ISCOPE   0.23   −1.27   −0.46   0.84

2 Opti- Med   0.16   −1.71   −0.28   0.69

4 PRIMUM   0.16   −1.72   −0.52   0.80

5 RIME   0.22   −1.35   −0.33   0.80

Heterogeneity between original studies is described in terms of baseline risk (proportion of participants with hospital admissions), casemix 
distribution with respect to predicted risks, and the discriminative ability of the membership model to identify membership of a specific study.

https://dx.doi.org/10.1136/bmjopen-2020-045572
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Further limitations first relate to the sample sizes 
needed in model development68 and validation,84 as a 
larger sample size would certainly have been desirable. 
For instance, in the IECV loop, for which validation data 
came from original individual studies, we could not meet 
the requirement of the suggested 100 events for a reliable 
assessment of predictive performance,85 86 or the required 
minimum of 200 patients with and 200 patients without 
a condition, which would be needed to generate precise 
calibration curves.77 The ability to predict unplanned and 
preventable HAs would have strengthened the potential 
clinical usefulness of the model. Nevertheless, currently 
available IPD from PROPERmed do not prevent us from 
drawing conclusions for future research, which was our 
primary goal and also the reason for several simplifica-
tions to enhance interpretability.

CONCLUSION
Based on PROPERmed IPD- MA, we have illustrated how 
predictor effect heterogeneity and varying baseline risks 
can limit the external performance of HA prediction 
models. Likewise, this approach proved that IPD- based 
modelling can project external performance and thus 
help developers addressing the potentially challenging 
performance after exploring its key drivers. If indicated 
by IPD, a model might be more purposefully improved 
when transferred to a new setting by adjusting base-
line risks (ie, intercept recalibration) or additionally its 
predictor effects (ie, model updating).
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