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Myocardial ischemia reperfusion syndrome is a complex entity where many inflammatory mediators play different roles, both to
enhance myocardial infarction-derived damage and to heal injury. In such a setting, the establishment of an effective therapy to
treat this condition has been elusive, perhaps because the experimental treatments have been conceived to block just one of the
many pathogenic pathways of the disease, or because they thwart the tissue-repairing phase of the syndrome. Either way, we
think that a discussion about the pathophysiology of the disease and the mechanisms of action of some drugs may shed some
clarity on the topic.

1. Introduction

Myocardial infarction (MI) or acute myocardial infarction is
a term used to refer to an event of heart attack. MI occurs
when the cardiac muscle is injured by hypoxia, which hap-
pens when a coronary artery is blocked [1]. MI is classified
as being either an ST-segment elevation myocardial infarc-
tion (STEMI) or a non-ST-segment elevation myocardial
infarction (NSTEMI). Moreover, unstable angina (UA) is
closely related to NSTEMI, and together, these entities are
referred to as non-ST-segment elevation acute coronary
syndromes (NSTEACS). Both STEMI and NSTEACS share
an underlying pathophysiology: a superimposed thrombus
caused by a disruption of an atherosclerotic plaque, which
results in subtotal occlusion (NSTEACS) or total occlusion
(STEMI) of a coronary artery [2], thus causing damage at
the heart’s muscle through hypoxia induction.

The principal symptoms of MI are chest pain, which
travels to the left arm or left side of the neck, shortness of

breath, sweating, nausea, vomiting, abnormal heart beating,
anxiety, and fatigue [3]. Risk factors include an advanced
age, tobacco smoking, high blood pressure, diabetes, lack of
physical activity, obesity, and chronic kidney disease [4]. Risk
factors can be categorized into nonmodifiable and modifi-
able. Nonmodifiable risk factors include age of more than
45 years in men and more than 55 years in women, family
history of early heart disease, and African-American race
[5]. Modifiable risk factors include hypercholesterolemia,
specifically related to elevation of low-density lipoprotein
cholesterols (LDL-C), hypertension, tobacco abuse, diabetes
mellitus, obesity, lack of physical activity, metabolic syn-
drome, and/or mental distress and depression [5]. The differ-
ence between both types of risk factors evidently lies in what
can be prevented and what cannot.

There is an estimated five-million emergency department
visits each year in the US for acute chest pain. Annually, over
800,000 people experience an MI, of which 27% die, mostly
before reaching the hospital [6]. On the other hand, heart
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disease is Mexico’s leading cause of death [7], accounting
for 18.8% of total deaths, of which 59% are attributable to
myocardial infarction.

In several studies, reperfusion therapy (fibrinolysis
and coronary angioplasty) has demonstrated to produce a
decrease in the morbidity and mortality associated with myo-
cardial infarction [8]. However, the process of myocardial
reperfusion can, paradoxically, enhance myocardial injury
through inflammation, finally contributing to 50% of the
final MI size [9]. The precise role inflammation plays in the
setting of MI has been debated since the 1980s with the infil-
tration of leukocytes now being recognized as inflammatory
mediators, as opposed to the previous concept of them being
bystanders of the damage [10].

Nonetheless, in the therapeutic setting, the requirement
for best preserving myocardial structure and function upon
MI is to restore coronary blood flow as early as possible,
using thrombolytic therapy and/or angioplasty [11], but as
soon as blood flow is restored, an inflammatory response
arises in the damaged section of the heart. This immune
response further expands the damage made by the occlusion,
originating a phenomenon known as myocardial ischemia
reperfusion injury, or myocardial ischemia reperfusion syn-
drome (MIRS). Actually, MIRS is a major challenge to the
treatment of MI [12], because its characteristic local and
systemic inflammatory response is able to greatly enhance
MI-derived damage, worsening the patient’s prognosis [13].
Moreover, current pharmacopeia lacks a specific treatment
for such condition. The treatment has been elusive because
the immune-muscular-vascular interplay that characterizes
MIRS is very complex, and a midpoint between downreg-
ulating the inflammatory tissue-damaging response and
allowing the leucocyte-orchestrated reparative phase must
be achieved.

On the other hand, ischemia reperfusion injury (IRI) is
not exclusive to MI, as it also happens as a consequence to
brain, kidney, liver, testis, or lung ischemia [14]. In such
a tonic, we think that some lessons can be learned from
these separate entities that may be applicable in the setting
of MIRS. Also, information about MIRS-specific tissue-
damaging and tissue-remodeling mediators is currently
very vast, so that it may be useful to analyze the current
baggage of knowledge on the topic, with aims to pinpoint
some of the pathogenic pathways that may help to restrain
MIRS upon blockage, as well as some strategies that may be
of use for that purpose.

2. Pathophysiology of Myocardial Ischemia
Reperfusion Syndrome

In general terms, MIRS must be understood as a complex
phenomenon that arises upon blood flow restoration, where
reperfused leukocytes find many damage-associated molecu-
lar patterns (DAMPs), such as extracellular Ca+ and ATP
released by necrotic cells, which induce the activation of
many TLR pathways to promote an inflammatory response.
Thus, an acute Th1 response is rapidly induced to clean the
necrotic debris, but such an immune response, unfortunately,
expands MI-associated damage [9, 15]. Myocardial reperfu-

sion is unavoidable, as it occurs as a consequence to common
MI treatments such as thrombolysis, angioplasty [16], and
coronary bypass [17, 18]. At a later stage, the Th1-immune
response subsides to a Th2-driven immunity, where leuko-
cytes shift their phenotype in order to orchestrate tissue
remodeling to avoid cardiac rupture [19]. A highly potent
Th2 response, nonetheless, may induce pathological scarring,
rendering the whole phenomenon as highly dependent on
a very precise immune regulation. Thus, the mediators of
this immunopathology must be precisely understood to find
areas of opportunity for the development of a specific treat-
ment (Figures 1 and 2).

2.1. Immunopathological Mechanisms of MIRS. The main
trigger for MIRS is the vascular and cardiomyocyte cell
death [11], which by the release of fragments of mitochon-
drial DNA, ATP, high mobility group box 1 protein
(HMBGB1), and Ca+ into the extracellular space acts as
DAMPs [20], inducing the activation of the NLRP3-
inflammasome [21] and TLR9 [22], which converge on the
activation of the myeloid differentiation primary response
gene 88 (MyD88) and nuclear factor-κB (NF-κB) pathways,
thus inducing the release of a number of inflammatory
mediators, including monocyte-chemoattractant protein 1
(MCP1), interleukin-1β (IL-1β), IL-6, tumor-necrosis fac-
tor-α (TNF-α), and IL-18 [23]. Inflammasome activation
amplifies IL-1β and IL-18 secretion by cardiac fibroblasts
and induces the caspase-1-dependent death of nearby cardi-
omyocytes, termed pyroptosis—a highly inflammatory form
of cell death, characterized by features that are typical of
both apoptosis and necrosis [23].

Macrophage inflammatory protein-2α (MIP-2α), leuko-
triene B4 (LTB4), cytokine-induced neutrophil chemoattrac-
tant 1 (CINC-1), IL-8, CXCL8, and complement 5a massively
recruit neutrophils [24] to infiltrate the MI-damaged area in
the first few hours following onset of ischemia [25], peaking
at days 1–3, and starting to decline at day 5. Neutrophils then
generate high levels of reactive oxygen species (ROS), pro-
duce neutrophil-extracellular traps (NETs), and secrete gran-
ule components including myeloperoxidase and proteases,
which exacerbate local vascular and tissue injury [26] with
the purpose of removing necrotic cell debris from the affected
zone [27] (Figure 1).

Along with neutrophils, complement proteins infiltrate
the reperfused area. The complement is composed of 30 pro-
teins and protein fragments, many of which are circulating as
proenzymes and are activated by proteases in response to
DAMPs. In this setting, all these proteins converge on two
of the three common (terminal) complement pathways,
which result in (a) inflammation to attract additional phago-
cytes (complements C3a, C4a, and C5a) and (b) activation
of the cell-killing membrane attack complex (complement
C5b-9 or MAC). Thus, the complement cascade amplifies
MIRS-derived inflammation and damage [28] (Figure 1).

Both complement elements like C3a, C4a, and C5a and
chemokines like MCP1 rapidly recruit monocytes [29] into
the reperfused area. Such cells are produced in the bone mar-
row and are released into the blood in 2 waves, the first one
being dominated by inflammatory Ly6Chi monocytes (which
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peak at days 3–4 post MI) and the second one by anti-
inflammatory Ly6Clow monocytes (which peak at day 7
post-MI). The infiltrating Ly6Chi cells contribute to debris
clearing and vascular/muscular damage, mainly through
phagocytosis (for the earlier function) and ROS production

(for the latter function) [30]. Monocytes then differentiate
into M1-type macrophages, which have enhanced abilities to
the phagocyte, produce ROS, and amplify inflammation
through local antigen presentation and costimulation [31]
(Figure 1). Subsequently, Ly6Clowmonocytes start to infiltrate
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Figure 2: The Th2-mediated reparative phase of MIRS. N2 neutrophils and M2 macrophages both produce high levels of IL-10 to dampen
N1, Ly6Chi, and M1-mediated degradation of tissue integrity. Also, M2 macrophages induce Th2 and Treg differentiation, while both
suppress Th1 development, and Tregs thwart Th2 cells. M2 differentiation is possible by phagocytosis of the neutrophil apoptotic bodies.
M2 and Treg cells mediate tissue repair.
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Released DAMPs induce neutrophil and monocyte activation trough TLR and inflammasome activation, which in turn potentiate Th1
polarization. Inflammatory monocytes mature and become M1 macrophages. Tissue damage amplification comes in the form of NETs,
granule components, and ROS produced by innate cells and direct complement attack.
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the reperfused area, andM1macrophages start to differentiate
into M2-type cells (which suppress T-cell activation through
negative costimulation and IL-10 production and orchestrate
tissue remodeling and vascularization by the secretion of
TGF-β), to orchestrate tissue remodeling (as it will be dis-
cussed in the following section). Nonetheless, high levels of
Th1-inducing factors deter the shift from anM1-type of mac-
rophages to an M2 phenotype, thereby reducing the healing
potential of the chronic MIRS phase [32] (Figure 1).

The systemic release of diverse cytokines and chemokines
induces the activation of CD4+ T-cells, which in the acute
phase of MIRS differentiate into a Th1 phenotype, releasing
chemokines like CCL7 and cytokines like interferon-γ
(IFN-γ), IL-2, and TNF-α, which as a cluster reinforce Th1
differentiation; enhance N1, Ly6Chi, and M1 cells’ tissue-
damaging abilities [33]; recruit CD8+ T-cells [34]; and
enhance B cell activity [35]. Both CD8+ and B cells have been
described to amplify inflammation during this stage and to
produce damage on their own, by degranulation, in the case
of T-cytotoxic cells [34], and antibody-mediated comple-
ment activation, in the case of B-lymphocytes [35] (Figure 1).

In this way, the immunopathology of MIRS can be suc-
cinctly described as the interplay between the innate and
adaptive arms of the immune system, where a Th1-type
immunity is critical for damage induction. In such a system,
M1 macrophages and N1 neutrophils are key players on IRI
induction, while the adaptive immunity component mainly
amplifies the effector mechanisms of the aforementioned
innate cells and complement.

2.2. The Th2-Mediated Reparative Phase of MIRS. On days
4-7 after MI, the Th1 tissue-destructive phase of MIRS enters
a resolution stage, driven by a Th2 immune response induced
by many changes in the cardiac microenvironment. This is
regulated by the activation of endogenous inhibitory path-
ways that suppress the inflammatory phenotype in infiltrated
leukocytes located in the MI zone [36].

After producing a high level of tissue damage, when most
inflammatory debris have been cleared from the extracellular
environment, neutrophils shift from their N1 phenotype to
become N2-type cells. This change is accompanied by the
production of high levels of IL-10, which aids in the suppres-
sion of the acute tissue-damaging Th1 response, by blocking
the activation of CD4+, CD8+, B, N1, M1, and Ly6Chi cells
[37]. Moreover, they produce phosphatidylserine (PS), which
facilitates ingestion of apoptotic neutrophils by macrophages,
resulting in a phenotypic change for macrophages from the
M1 to theM2 type, which secrete anti-inflammatory and pro-
fibrotic cytokines such as IL-10 and TGF-β, thus promoting
tissue repair and vascularization, while aiding in the suppres-
sion of inflammation [38] (Figure 2).

Also, the polarization of monocytes and macrophages
(M/M) from the tissue-damaging and proinflammatory
Ly6Chi and M1 phenotypes to the anti-inflammatory and
tissue-repairing Ly6Clow and M2 phenotypes is critical to
the reparative phase following MI [39], as these cells are able
to produce an enzyme that is known as Arginase-1 (Arg-1).
Such an enzyme catalyzes the conversion of L-arginine into
L-ornithine, which is further metabolized into proline and

polyamines. Both metabolites drive collagen synthesis and
bioenergetic pathways that are critical for cell proliferation,
respectively, thus contributing to tissue repair. Also, Arg-1
competes for the same substrate, but with more affinity, with
the inducible-nitric oxide synthase (iNOS) enzyme, which is
responsible for NO production [40]. In this way, M2 macro-
phages block ROS production by M1, N1, and Ly6Chi cells,
thus limiting the extent of tissue damage by the remaining
N1 and M1 cells (Figure 2).

The shift in M/M and neutrophil phenotype is mirrored
by CD4+ T-cells, as Th1 cells subside to a vaster Th2 popula-
tion that apparently amplifies the strength of the reparative
actions of the M/M population [41]. This effect may be due
to Th2-derived high levels of IL-4 and IL-13, which are able
to induce M2 activation in macrophages [34]. Moreover,
recent studies suggest that invariant natural killer (iNK)
T-cells and γδT-cells have an important role in the settling
of the Th1 acute inflammatory response through the secre-
tion of anti-inflammatory cytokines such as TGF-β and
IL-10, overall working with T-cells to dampen inflamma-
tion [42, 43]. Nonetheless, it has been observed that an
enhanced Th2 response is able to induce pathological scar-
ring with increased fibrosis in several settings [44, 45], in
such a way that even the Th2 response must be controlled
(Figure 2).

In the last decade, CD4+ CD25+ FoxP3+ T-regulatory
(Tregs) cells have been recognized not only for their ability
to dampen Th1 and Th2 lymphocyte activation and prolifer-
ation but also for their ability to downregulate innate immune
cells’ effectormechanisms [46, 47], while altering the cytokine
milieu [48]. Tregs downregulate M1-macrophage activation
and develop in parallel with M2 cells, presumably to control
their level of activity [49]. In the setting of MIRS, Tregs have
been shown to prevent cardiomyocyte apoptosis to limit fur-
ther damage [48] and to downmodulate differentiation of
fibroblasts into myofibroblasts, in order to avoid pathological
scarring [50]. Their enhanced production of IL-10 has even
been linked with a decrease inNKT cell activation [51]. In this
way, they limit both the Th1- and Th2-mediated immunopa-
thology [43] (Figure 2).

In a normal heart, there are a number of fibroblasts,
which become activated during the reparative phase [52]
mainly by the secretion of TGF-β [53], while the EDA-
coated fibronectin produced by the newly transdifferentiated
myofibroblasts induces extracellular matrix-protein (EMP)
deposition [54]. Myofibroblast differentiation is also potenti-
ated by the initial production of high levels of IL-1β and
interferon-γ-inducible protein- (IP-) 10 [55], so that the
extent of scarring is also determined by the significance of
the Th1 response.

Moreover, activated myofibroblasts then modify the
extracellular matrix environment, by the expression of EMPs
like fibronectin and nonfibrillar collagens [55, 56], all of
which support myofibroblast migration and adherence in
order for them to close the wound.

On the other hand, from a wound-healing perspective,
three phases of the process are recognized: (1) the inflamma-
tory, (2) the proliferative, and (3) the remodeling stages, the
first one being dominated by a Th1 response, the second
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one by Th2 immunity, and the third one being characterized
by the reorganization, degradation, and resynthesis of the
EM, in order to obtain maximum tensile strength. It is
noteworthy that the latter process can last up to a year
and only starts when Th2 cytokines have been downregu-
lated, but also that in general, the strength and duration of
each stage depends upon the strength and duration of the
anterior phase [57]. In this way, Tregs have been linked to
the transition from the Th1-mediated inflammatory stage
to the Th2-mediated proliferative phase and finally to the
remodeling phase, in such a way that these cells appear
to promote the whole process of wound healing, while
downregulating pathological scarring [58].

3. The Clinical Management of an MI Event

According to the European Society of Cardiology [59, 60],
the best proceeding for the management of an MI is to obtain
a 12-lead ECG as soon as possible, with the optimum
proposed time lapse of 10 minutes in order to determine
the precise location, extension, and kind of myocardial
infarction for each patient, in order to personalize the surgi-
cal procedure. Pain relief should be practiced as soon as pos-
sible to avoid the increase of the heart’s workload. It is usually
done with the use of titrated opioids, although it is currently
under debate if such drugs may interfere with the action of
antiplatelet aggregation agents [61, 62]. Oxygen should also
be administered in patients whose O2 saturation is less than
90%, along with a mild tranquilizer in order to reduce stress.
When the diagnosis of STEMI is made in a prehospital set-
ting, immediate activation of the catheterization laboratory
is encouraged, in order to reduce treatment delays and
patient mortality [63]. Either way, after diagnosis, pain man-
agement, and oxygenation, the next step is an attempt to lyse
the blood clot by the use of thrombolytic drugs [59, 60].

Two scenarios may happen after thrombolysis: (1) the
heart may recover blood flow or (2) the heart’s blood flow
alterations may persist. In the first case, MIRS starts upon
thrombolysis, while in the second, primary percutaneous
coronary intervention (PCI) is the preferred strategy that
should be applied to patients with confirmed STEMI diagno-
sis within the first 12 h of symptom onset. In this second
scenario, MIRS will happen after surgical reperfusion.

3.1. Periprocedural Pharmacotherapy. Patients undergoing
primary PCI should receive aspirin and a P2Y12 inhibitor,
in order to dampen platelet aggregation. The oral dose of
aspirin should be administered without an enteric coat to
ensure rapid action [59, 60].

Routine postprocedural anticoagulant therapy is not
indicated after primary PCI, except when there is a separate
indication for either full-dose anticoagulation or prophylac-
tic doses for the prevention of venous thromboembolism in
patients requiring prolonged bed rest, but ECG monitoring
for arrhythmias and ST-segment deviations is recommended
for at least 24 h after symptom onset in all STEMI patients.
Afterwards, lifestyle changes are suggested to patients in
order to prevent further risks [59, 60].

It should be noted that current medical guidelines do not
mention any anti-inflammatory treatment to cope with
MIRS, in such a way that the phenomenon still allows for
an enhanced risk of post-MI injury progression [9].

4. Immunoregulation as a Modern
Alternative to Immunosuppression

While the pathophysiological mechanisms of MIRS have
been extensively studied, to the point where many inflamma-
tory mediators, such as leukocytes and cytokines, and their
role in the whole phenomenon are known, current pharma-
copeia lacks a specific treatment to avoid MIRS. Despite this,
much research has been done to attack the different pathways
involved in postischemic injury progression, and it may be
important to review these attempts in order to understand
what has failed and what could be done.

As stated in the above sections, neutrophils have been
identified as major targets in MIRS because of their ability
to massively infiltrate the infarct area upon reperfusion
[64], to locally produce high levels of tissue-damaging ROS,
NETs [65], and granule components such as myeloperoxi-
dase and proteases. As such, research using animal models
has shown that the inhibition of their tissue-damaging mech-
anisms [66] and recruitment into the reperfusion site [67]
may be a viable option to limit MIRS-associated damage.
Nonetheless, clinical trials using αCD11/CD18 integrin
blocking antibodies to avoid neutrophil recruitment during
myocardial reperfusion have shown limited success in the
reduction of MI size and the improvement of short-term
(30 days after infarct) clinical outcome [68, 69].

Despite the inflammatory, tissue-damaging role that
neutrophils have on the acute phase of MIRS, after ≈7 days,
the inflammatory Ly6G+ CD206- neutrophil population is
replaced by a Ly6G+ CD206+ population that has been
described to play an important role in the orchestration of
the reparative phase, as reviewed in [70]. Also, apoptotic neu-
trophils induce an M2 phenotype in infiltrated macrophages
upon their phagocytosis, which inhibits the macrophage pro-
inflammatory tissue-damaging response and leads them to
produce IL-10 and TGF-β [71, 72]. Importantly, IL-10 may
serve to dampen both Th1 and Th2 inflammation, thus
inhibiting MIRS-derived damage, as well as excessive tissue
scarring during the reparative phase, while TGF-β may also
play an important role in infarct revascularization (Figure 3).

Thus, blocking neutrophil recruitment may not be a good
alternative to reduce reperfusion-derived damage. Rather,
the inhibition of the pathogenic effects of such cells may have
a beneficial effect on MIRS. For instance, glucocorticoids
have been shown to inhibit NET formation [73] and ROS
production [74], while enhancing neutrophil mobilization
[75], which renders them as good candidates for the reduc-
tion of neutrophil-derived damage (Figure 3).

Moreover, upon activation and apoptosis, neutrophils
release proinflammatory alarmins that recruit inflammatory
Ly6Chi monocytes [76], which are also important players
in the acute production of ROS. In later stages (1-2 days
after MI), these cells undergo differentiation (peaking at 3-4
days post MI) into the proinflammatory tissue-damaging
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M1-type of macrophages [77]. Also, M1 macrophages
can be directly recruited and activated through MCP1 early
production by damaged endothelial cells and cardiomyocytes
[78, 79]. Either way, increased Ly6Chi cell counts after reper-
fusion have been associated with increased MIRS-derived
damage [80, 81] as well as M1 macrophages, which further
potentiate IRI [82]. At day 7 post MI, both the Ly6Chi

and the M1-macrophage populations subside to the
inflammation-resolving tissue-remodeling Ly6Clow mono-
cytes and M2 macrophages, which by Arg-1 expression
deplete NO production and produce IL-10, TGF-β, poly-
amines, and proline, thus undermining the inflammatory
tissue-damaging acute phase of the MIRS and promoting tis-
sue repair and vascularization. Nonetheless, an excess of both
M2 macrophages and Ly6Clow monocytes has also been asso-
ciated with pathologic myocardial scarring [19, 83]. In this
way, both the proinflammatory and the anti-inflammatory
M/M fractions can have a pathogenic role in MIRS, so that
they represent an important target to limit MIRS-associated
damage as a whole (Figure 3).

Despite these evidences, blocking the inflammatory M/M
recruitment into the MI zone might not be beneficial, as
the adoptive transfer of M2 macrophages and Ly6Clow

monocytes has shown to reduce MIRS-associated damage
[84–86], so that the avoidance of M/M recruitment in the
first place may limit the reparative phase of MIRS. On the
other hand, M/M phenotype modulation to dampen such a
cell’s ability to produce oxidative and inflammatory stress
may be a better strategy. Following this line of thought,
IL-1β-blocking antibodies have been proposed as therapeutic
alternatives to limit IRI, but results obtained from clinical
trials have been contradictory, ranging from promising to
discouraging [87–89]. Disregarding the results from clinical
trials, animal models of this disease have shown a good

limitation of MIRS-associated damage in relation to the use
of IL-1β-blocking antibodies administered to diabetic rats,
which has more translational value because most MI patients
are diabetic. Importantly, the MIRS blockage with this kind
of antibody was effective to improve systolic function even
when it was administered 80 days after reperfusion [90, 91]
(Table 1).

Current data on the phenomenon does not allow an exact
explanation of this phenomenon, but it can be speculated
that the lack of effect in some cases may be due to a vast array
of M1-inducing cytokines and Ly6Chi-recruiting chemo-
kines, other than IL-1β, being secreted at the MI zone upon
reperfusion. Several cytokines and chemokines produced
during MIRS, like TNF-α, IFN-γ, and MCP1, are known to
have concomitant effects on the activation of inflammatory
pathways like NF-κB [92, 93], PI3K/Akt [94], and JAK/STAT
[95] in such a way that the inhibition of just one of the
cytokines that signal through any of those pathways would
not be able to have a consistent effect on the reduction of
MIRS-associated damage (Figure 3).

In such line of thought, chemerin-15 [85] and netrin-1
[86] have been used in animal models to induce an M2 phe-
notype in macrophages during ischemia reperfusion, with
the effect of reducing lesion size. Concordantly, glucocorti-
coid administration has shown to induce an alternative acti-
vation in macrophages, in such a way that they protect
against inflammatory injury and are able to induce Treg
expansion [96]. Such an effect may be attributable to the inhi-
bition of the NF-κB pathway. Also, widely available drugs like
azithromycin have shown to induce M2-type activation in
macrophages to protect from ischemic stroke injury [97], in
an effect associated with the inhibition of the PI3K/Akt path-
way [98]. Moreover, the modulation of innate immunity
using the C-type lectin, galectin-1, has also been proven to
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effectively dampen inflammation, mainly through AAM
induction [99]. Interestingly, galectin-1 knockout mice
showed enhanced cardiac inflammation (characterized by
increased numbers of macrophages, natural killer cells, and
T-cells) and a reduced frequency of regulatory T-cells that
are associated with impaired cardiac function and ventricular
remodeling. In the same study, the authors treated infarcted
mice with recombinant galectin-1, which led to attenuated
cardiac damage [100] (Table 1).

Whether this strategy induces pathological scarring was
not evaluated, but the possibility should not be ruled out.
To our notice, no clinical trials have been made exploring
any immunoregulatory drug that has a direct effect on the
M/M phenotype, and it may be important to gather such data
due to a wide variation between the characteristics of MI in
animal models and the clinical reality in human patients
[19] (Figure 3).

On the other hand, CD4+ T lymphocytes and B cells are
recruited within the first 90 minutes after reperfusion and
appear to play a pathogenic role during the acute stage of
MIRS, presumably because of their ability to promote an
inflammatory tissue-damaging phenotype in M/M cells
[33, 101]. Furthermore, in the tissue-remodeling stage of
MIRS CD4+, T-cells may also play a pathological role, as they
have been described to induce excessive scarring [102].
Nonetheless, there is an increasingly clear role for Treg cells
in the dampening of both the pathogenic Th1 and Th2
inflammation phenomena [103] that is supported by several
data (Figure 3).

Firstly, the induction of IL-10 secreting Treg cells by
intranasal troponin administration shortly after reperfusion
has shown to reduce MIRS-associated damage by 50%, eval-
uated 1.5 months after reperfusion [104]. Moreover, pharma-
cologic activation/recruitment of CD4+ CD25+ FoxP3+ cells
using a super-antagonistic αCD28 antibody has been linked
to a change in the phenotype of macrophages from M1 to
M2, which promotes an enhanced, but not pathogenic,
healing through the local production of TGF-β [49]. The
observed suppression of pathogenic scarring may be due
to a direct effect for Treg cells in the modulation of a
fibroblast phenotype, in such a way that the latter cells
migrate less, thus limiting their ability to form bigger scars
[50] (Figure 3) (Table 1).

Another potentially important strategy to limit MIRS
may be the use of statins, as they have been rendered as
potent cardioprotectors that have an interesting effect on
T-cell activation [105]. For instance, rosuvastatin has been
shown to limit MIRS through Treg expansion in a murine
model [106], but the effect may not be exclusive to animal
models, as a meta-analysis performed by Sorathia et al. shows
a vast increase in Tregs in patients that use rosuvastatin [107]
(Figure 3) (Table 1).

Another important early player in the field of MIRS is the
complement cascade, where C1 and C5/C5a proteins have
been targeted. While C5 has been targeted with limited
success on limiting IRI size [108, 109], C1 inhibition with
monoclonal antibodies was able to reduce injury on several
clinical trials [110–112], so that complement-blocking anti-
bodies, like Cetor or Berinert, may be used concomitantly

to reduce IRI extension. Additionally, corticosteroids have
been used to regulate complement-gene expression and acti-
vation [113, 114] (Figure 3) (Table 1).

Finally, the potentiation of cardiomyocyte survival
should be considered as a valuable alternative to be coopted
in the treatment of MIRS. An interesting approach is the
modulation of the low-density lipoprotein receptor-related
protein 1 (LRP1), which is able to both downregulate the
NF-κB-related inflammation during MIRS and enhance car-
diomyocyte survival through the activation of the PI3K/Akt
and ERK1/2 pathways in such cells, as thoroughly reviewed
in [115]. As an example of this approach, a clinical trial using
plasma-derived alpha-1 antitrypsin, an agonist of the LRP1
receptor, showed shorter time-to-peak creatine kinase myo-
cardial band (CK-MB) values [116] in relation to a significant
reduction on CRP [117] (Table 1).

4.1. As Paracelsus Said: The Dose Makes the Potion. In the
70s, a word of caution was emitted against the use of cor-
ticosteroids to treat MIRS as it was observed that in some
studies, it caused myocardial thinning and delayed healing
[119–121]. Nonetheless, in all these studies, high doses of
such hormones were administered and for prolonged times.
In this way, even a decade later, this dosing was questioned
by studies comparing MI size and healing pace between high
and low corticosteroid dose groups [118], finding that as
Paracelsus said, “the dose makes the potion.”

It can be speculated that the high doses used in such
studies blocked the proliferative and remodeling stages of
MIRS, along with the inflammatory phase that was initially
the intended target. Nowadays, a protective role for cortico-
steroids in MIRS has been described in both experimental
[122, 123] and clinical settings. Concordantly, a meta-
analysis by Giugliano et al. [124] showed this cardioprotective
effect for corticosteroids in MIRS in patients. On the other
hand, corticosteroids have been successfully used to reduce
IRI in kidneys [125], liver [126], and brain [127], with the
added benefit of attenuating pathogenic fibrosis during the
reparative phase [128].

In this way, the current understanding on the pathophys-
iology of MIRS and a brief review about the use of such drugs
in MIRS-reduction allow us to think that a low dose of corti-
costeroids administered prior to reperfusion may help to
reduce the inflammatory damage of such a syndrome, while
allowing the healing phases of the syndrome.

5. Conclusions

MIRS is an unavoidable consequence of MI, with the poten-
tial to duplicate the damage made by the ischemic condition.
As such, it represents a serious complication to one of the
most prevalent diseases worldwide. Designing an effective
therapy for such a condition has been challenging because
the inflammatory phenomenon behind its pathophysiology
is very complex. First, it involves a Th1 response that greatly
contributes to tissue damage, which is relatively easy to
dampen, but a chronic Th2-type immune response that con-
tributes to the resolution of the inflammatory damage, and
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tissue remodeling comes later, and its suppression has been
associated with increased damage.

As such, a therapy that downregulates the acute Th1
tissue-damaging response, but promotes the later Th2
tissue-repairing phase of the disease, appears to be a good
choice. Some well-known, widely used drugs, like rosuvasta-
tin, azithromycin, corticosteroids, Cetor, or Berinert, have
been purported as candidates to treat MIRS in the experi-
mental setting, producing good results. Nonetheless, much
research is needed in order to confirm such findings as they
have not been used concomitantly, and a correct dose may
be challenging to find, as too much Th1 undermining may
result in a weak reparative stage, but too little may not prop-
erly limit the damage.

Innate immune cells, like M/M and neutrophils, appear
to be good targets, because they are effector mediators of
the damage and because they can regulate the adaptive
immune response, both in potency and in profile, so that
drugs like azithromycin, which can induce an M2 phenotype
in macrophages, or corticosteroids that can reduce ROS
production in both cell types could have a positive effect on
MIRS management. Also, rosuvastatin may be cardiopro-
tective beyond its effects on dyslipidemia, as it can recruit
Treg cells at the injured heart. Such lymphocyte popula-
tion has been associated to the resolution of both the
Th1- and Th2-type responses, thus allowing a healthy scar
maturation.

Another point to be considered is the rational use for cor-
ticosteroids, as they can limit the extent of MIRI and induce
protective leukocyte populations, but overdoses with such a
drug have producedmyocardial thinning anddelayed healing.

Finally, complement-blocking antibodies have been used
successfully in the clinical setting, so that they may be
coopted with the aforementioned drugs to design a more
complete treatment.
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