
RESEARCH ARTICLE

Adaptive search space pruning in complex

strategic problems

Ofra AmirID
1, Liron TyomkinID

1, Yuval HartID
2*

1 Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Haifa, Israel,

2 Department of Psychology, Hebrew University of Jerusalem, Jerusalem, Israel

* yuval.hart@mail.huji.ac.il

Abstract

People have limited computational resources, yet they make complex strategic decisions

over enormous spaces of possibilities. How do people efficiently search spaces with combi-

natorially branching paths? Here, we study players’ search strategies for a winning move in

a “k-in-a-row” game. We find that players use scoring strategies to prune the search space

and augment this pruning by a “shutter” heuristic that focuses the search on the paths ema-

nating from their previous move. This strong pruning has its costs—both computational

simulations and behavioral data indicate that the shutter size is correlated with players’

blindness to their opponent’s winning moves. However, simulations of the search while vary-

ing the shutter size, complexity levels, noise levels, branching factor, and computational lim-

itations indicate that despite its costs, a narrow shutter strategy is the dominant strategy for

most of the parameter space. Finally, we show that in the presence of computational limita-

tions, the shutter heuristic enhances the performance of deep learning networks in these

end-game scenarios. Together, our findings suggest a novel adaptive heuristic that benefits

search in a vast space of possibilities of a strategic game.

Author summary

Search problems usually have a common trade-off between accuracy and computational

resources; Finding the best solution usually requires an exhaustive search, while limiting

computations usually decreases the quality of solutions. Yet, humans provide high-quality

solutions for complex problems despite having limited computational resources. How do

they do that? Here, we analyze people’s behavior in a strategic game of “k-in-a-row” that

has an enormous space of possibilities. We find that people strongly prune the search

space by using scoring strategies to evaluate each possibility and augment this pruning

with a shutter heuristic that limits their search to the possible winning paths from their

last move. Similar to other adaptive heuristics, the shutter heuristic provides a strong

reduction in the computations the searcher needs to carry out while maintaining on par

accuracy rates. Finally, this adaptive heuristic generalizes to the performance of deep

learning networks when playing with limited computational resources.
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Introduction

Making decisions is hard. Making good decisions is even harder. Yet people make strategic

decisions almost every day. From marital and career choices to the decision of where to get

lunch, many of our decisions are made over a vast space of interdependent possibilities which

form a tree of branching decision sequences. What are the cognitive mechanisms that support

the search for solutions on such enormous tree-like spaces?

Due to its importance, mapping the cognitive mechanisms that support strategic planning

and decision making is an ongoing quest [1–11]. A fundamental approach to the study of stra-

tegic planning and decision making is to treat the underlying cognitive mechanism as an infor-

mation processing system that performs a search in the space of all possible solutions [12].

When searching a branching tree of possibilities there are two layers to the search—First, eval-

uating the value of the current possibilities which we term the scoring strategy. Second, decid-

ing which possibilities to further explore in order to gain more information. This exploration

process can be either random or directed. In the latter case, it usually involves ignoring parts

of the space which we term pruning. Thus, any mapping of cognitive search mechanisms

should address these two layers of the search.

One line of studies of cognitive search processes suggested that people’s cognitive search is

akin to random sampling of the search space [13–16], similar to Markov Chain Monte-Carlo

(MCMC) sampling processes [17]. This framework proved highly useful in the description of

many cognitive processes—learning of rules [13], theories [14], language [15], and intuitive

physics [16], to name a few. However, this type of search demands high computational

resources and long computation times. It thus begs the question of how these processes may

be relevant when the search is done over enormous spaces of thought under time and compu-

tational constraints [18–21].

Recent works on planning and decision making have begun to tackle the question of how

people handle extremely large search spaces. These works propose pruning mechanisms that

limit the computations involved in the search for the correct action. For example, Huys and

colleagues show that people prune the branches of the tree of possibilities that lie after a large

loss, even if that behavior results in sub-optimal rewards [5] and that there’s an interplay

between mechanisms of fragmentation, stochastic memoization, and losses pruning that trade

accuracy and computational costs during the search process [6]. Another line of studies [8, 22,

23] suggests arbitrating mechanisms which toggle between goal-directed and habitual evalua-

tions based on current information. A goal-directed, model-based planning produces a

more accurate decision but is time consuming since it searches deep into the tree of future

possibilities. Habitual evaluations, on the other hand, are considered model-free and take

into consideration only the estimated value of the next action, without searching the tree of

future possibilities (and thus saving computations). These works suggest that people arbitrate

between goal-directed and habitual estimations as well as decide which directions of the search

tree to further expand (plan-until-habit) by comparing the benefit of an accurate response and

the reduction of uncertainty in estimations with the cost of the loss of reward caused by the

longer search time.

A fruitful avenue to study these questions is the analysis of people’s behavior in complex

strategic games. Games like chess [24, 25], Go [26], and Tic-Tac-Toe [27, 28] provide a rich

tree-like search space. Each game state maps to a node in the search tree, with the different

possible actions leading to alternative future states, which in turn also branch out to different

sequences depending on the chosen actions. Importantly, these search trees have an exponen-

tial number of branching possibilities of different values, and thus typically cannot be fully

explored. Previous studies explored chess players’ quality of moves, recall of game states, and
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behavior under time pressure to identify key differences between experts and novices [24, 29,

30]. Of special note are recent works [27, 28] that used a “4-in-a-row” game as a platform to

study players’ sequential decision making throughout the game, and modeled players’ search

as a tree-search process. The search is based on an iterative “best-first” search algorithm that

scans possible moves from a given state, and prunes all states that are below the best move

value minus a threshold. The scoring strategy for each board state is estimated by a weighted

linear combination of benefits from creating sequences of connected squares (and also not-

connected 2 squares that might create a winning path) and the value of each square occupied

by the player’s pieces. This gain is then subtracted by the possible loss due to similar sequences

created by the opponent. Importantly, in all these experimental paradigms, the features of the

search are inferred from the actual moves participants decided to play. Their search trajecto-

ries, however, are not directly observed and thus key parameters of the search remain mostly

unknown.

Our study focuses on the computations of end-game scenarios in the strategic game, “k-in-

a-row”. To infer the features of people’s search in this large search space, we map the specific

trajectories of people’s search in finer details, going beyond the observation of only the end

decisions of their search (i.e. the decision on the next move). We do that by asking participants

to find a winning move in different configurations of “k-in-a-row” boards using a ‘sandbox’

board where they can try different moves before committing to the chosen move. We find that

the number of nodes participants explore in their search (i.e. their search size, which is mea-

sured by the number of moves they tried on the sandbox board) is limited and their accuracy

rates fall much slower than the massive increase in the algorithmic complexity of the boards.

In their search, participants combine two layers of pruning—First, participants use scoring

strategies to evaluate the different moves. Second, participants augment their pruning by

focusing the search on potential sequences for winning enabled by their last move. This “shut-

ter” heuristic leads to an inherent blindness to the opponent’s winning moves, and thus bears

costs. However, we show that the shutter heuristic outperforms other strategies in the context

of “k-in-a-row” end-game scenarios. We scan different shutter size values with a broad range

of computational conditions (e.g., complexity levels, noise levels, branching factor, and

computational limitations) which demonstrate the dominance of the shutter pruning heuristic

for the majority of these conditions. Lastly, we find that the shutter heuristic greatly enhances

the winning rate of deep learning neural networks in the game when their computational

resources are limited.

Results

The experimental task

Each participant (Amazon mechanical Turk, N = 915, see Methods) saw one of ten different

board configurations. The ten boards are composed of five boards with varying difficulty (two

6x6 boards and three 10x10 boards, denoted boards I–V, see Fig 1, Methods and S1 Fig) and

five additional versions of the same boards where we added the next best move for both the ‘X’

and the ‘O’ players. This resulted in truncated versions of the boards with one move toward

the solution already revealed. Participants had to find the move that will force a win for the ‘X’

player within 3 (6x6 truncated boards), 4 (6x6 full boards or 10x10 truncated boards), or 5

(10x10 full boards) moves. Participants interacted with a ‘sandbox’ board where they saw the

initial board configuration and searched for the winning move by simulating ‘X’ and ‘O’

moves. We recorded all participants’ moves, timings, and whether their answers were correct

and validated (see S1 Text and S2 Fig for the analysis of the time intervals between moves). We

defined the number of nodes explored by participants as the size of their search (that is, the
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number of clicks they made on the sandbox board during their session) and for each board

configuration, we defined board complexity as the number of nodes an optimal tree search

algorithm (alpha-beta pruning search [31], see Methods) needs to explore to find the correct

solution.

Participants’ success rate declines much slower than the increase in board’s

algorithmic complexity

We found that while board complexity varied across�2000 folds (49 to 97098 moves), partici-

pants’ search size varied across�2 folds (21–40 moves) and did not show a clear relation with

board complexity (Spearman correlation, r = 0.08, 95% CI = [0.01,0.14], p = 0.018, see Fig 2A,

Fig 1. Examples of board configurations. Left, board I (6x6 squares) full condition, ‘X’ wins within 4 moves (correct

solutions are ‘f3’ or ‘f5’). Right, board IV (10x10 squares) full condition, ‘X’ wins within 5 moves (correct solution is

‘e8’).

https://doi.org/10.1371/journal.pcbi.1010358.g001

Fig 2. Participants search size does not depend on the board’s complexity. A) Participants’ search size (blue) is small and fixed compared with the

search size of alpha-beta pruning (gray). B) The percent of participants who solved correctly each of the board configurations, by board complexity. As

board complexity increases, participants’ success rate decreases, yet at a slower rate compared to the board’s complexity increase. Error bars depict 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010358.g002
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blue dots vs. gray dots). Similarly, there was no correlation between board complexity and

search time (Spearman correlation, r = 0.02, 95% CI = [-0.05,0.08], p = 0.56, see S3 Fig which

also shows that the limited search is not due to time limitations). Consequently, the rate of suc-

cessful solutions decreased with the complexity of the board (Spearman correlation, r = -0.31,

95% CI = [-0.37, -0.25], p< 0.001), yet success rate decreased by 2–3 folds over an increase in

complexity of 3 orders of magnitude (Fig 2B).

We note that since participants were recruited from Amazon mTurk, there might be an

incentive to finish tasks quickly and reduce the number of moves in the task. However, the

slower decline of the success rate compared to the large increase in algorithmic board com-

plexity may suggest that participants prune the search space to overcome the increased com-

plexity of the problem. What then are the computational pruning mechanisms that facilitate

finding the correct solution despite the limited search size?

Participants use scoring strategies in their search

We hypothesized that participants’ limited tree search can be partially explained by the use of

scoring strategies that reflect the deep structure of the game. Each scoring strategy serves to

evaluate the quality of moves, thus enabling participants to explore more promising nodes in

the tree and to avoid the exploration of low scoring nodes. We evaluated five different scoring

strategies (see Methods and S1 Text, S4 Fig, and Table A in S1 Text for the evaluation of these

scoring strategies):

1. Density: A square’s score is the number of its neighboring squares marked by ‘X’.

2. Linear: A square’s score is the sum of scores of its potential winning paths, where each path

score is the number of squares with ‘X’ in it. Thus, a square on a path of 2 ‘X’s and another

path of 3 ‘X’s will have a score of 5.

3. Non-linear: Same as Linear but scores increase non-linearly with the number of ‘X’s in the

path:¼ 1

n� ni
(where n is the number of ‘X’s needed to win, and ni is the number of ‘X’ in

path i). In a ‘5 in a row’ board, the same square as in the Linear example will have a score of
1

5� 2
þ 1

5� 3
¼ 5=6.

4. Interaction: Same as the Non-linear scoring, augmented by an interaction term between the

shared paths. The added score is
ni �nj

ðn� 1Þ2 � ni �nj
. For example, the same square as in the Non-

linear example, will receive an additional score of 2�3

ð5� 1Þ2 � ð2�3Þ
¼ 0:6.

5. Forcing: This scoring is similar to interaction, but includes an additional component: if plac-

ing an ‘X’ in the square results in an immediate threat (a path that now contains n − 1 ‘X’

markers with a potential to win in the next move), the score of the square is augmented by a

large constant (10 points) since by forcing ‘O’ to a particular move, ‘X’ essentially blocked

all other paths for ‘O’ and controls the game flow.

To assess the total score of each square for e.g. the ‘X’ player, we consider the possible bene-

fits for ‘X’ from gaining that square and add to it the incurred costs for the ‘O’ player from

missing that square (see Methods, Eq 2). Thus, each square receives scores from all the gained

paths with ‘X’ marks going through this square and all the scores from the prevented paths

with ‘O’ marks going through this square. We further note that because the algorithm com-

pares squares’ scores within a scoring strategy, it is the relative scores of different squares that

are important rather than their absolute values in each scoring strategy (see also Table A S1

Text).
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The experimental paradigm allows us to further examine the search pattern itself, meaning

the trajectories of moves on the board that the participants chose to explore. We next calcu-

lated the probability distribution of participants’ moves and compared it with the distribution

induced from the different scoring strategies (see Fig 3A for an example of the distribution of

participants’ first moves compared to the prediction of the “Interaction” scoring strategy, and

S6 Fig for the distributions in all board configurations).

The distribution of participants’ moves reflects participants’ internal values of the squares

on the board. To calculate the similarity between the behavioral data and each scoring strat-

egy’s predictions we computed the log-likelihood of the move probabilities based on the differ-

ent scoring strategies, with a lapse rate parameter fitted to each participant (see Methods), and

then computed the Akaike information criterion (AIC) to choose the best fitted model to par-

ticipants’ search trajectories (see Methods for more details).

We find that the predictions of the more sophisticated scoring strategies: “Forcing”, “Inter-

action” and “Non-linear” are closer to participants’ choices than the simpler scoring strategies

(Mean log-likelihood and 95% CI (closer to zero is better), “Density”: mean = -3.27

(AIC = 5978), 95% CI = [-3.31, -3.22], “Linear”: mean = -3.19 (AIC = 5837), 95% CI = [-3.23,

-3.15], “Non-linear”: mean = -2.91 (AIC = 5324), 95% CI = [-2.95, -2.87], “Interaction”: mean

= -2.95 (AIC = 5395), 95% CI = [-2.99, -2.91], “Forcing”: mean = -2.86 (AIC = 5236), 95% CI =

[-2.9, -2.81]; see Fig 3B, see S5 Fig for a comparison of log-likelihood scores using Monte-

Fig 3. Participants’ moves indicate the use of scoring strategies. A) The distributions of first moves predicted by the

“Interaction” scoring strategy and the distributions of participants’ actual first moves on this board. B) Log-likelihoods

of scoring strategies’ predictions of participants’ moves. C) Percent of participants fitted to each scoring strategy. D)

Log-likelihoods of scoring strategies’ predictions of participants’ moves. There are two configurations for each scoring

strategy: using the scoring strategy as is (“base”) and adding the best fitted shutter value per each participant (see

Methods). For all scoring strategies, adding the shutter significantly improved the log-likelihood and AIC scores (in all

cases p< 10−5 using a likelihood ratio test). All error bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010358.g003
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Carlo Tree Search, and see S9 Fig for a sensitivity analysis of the “Forcing” strategy free

parameter).

To examine the distribution of scoring strategies among participants, we also calculated the

percent of participants that employ each strategy. For each participant we simulate all models

based on the different scoring strategies with a fitted lapse rate parameter to account for noisy

choices (see Methods). We match for each participant the scoring strategy with the best AIC

score (see Methods). We find that for more than half of the participants, the “Interaction” and

“Forcing” scoring strategies provided a better fit (58% of the population). A minority of partic-

ipants were using the simpler scoring strategies, termed “Density” and “Linear” (Percent of

participants, Density: mean = 8%, 95% CI = [6%, 9%], Linear: mean = 6%, 95% CI = [5%, 8%],

Non-Linear: mean = 28%, 95% CI = [25%, 31%], Interaction: mean = 35%, 95% CI = [32%,

38%], Forcing: mean = 23%, 95% CI = [20%, 25%], see Fig 3C and additional analyses in S1

Text and S7 Fig). Since the “Interaction” scoring strategy provides better fits for most partici-

pants (Fig 3C) and has one less parameter in its model compared to the “Forcing” scoring

strategy, next sections use the “Interaction” strategy as the base scoring strategy model (unless

stated otherwise).

Both participants’ search size and their entire search trajectories indicate that participants

search using scoring strategies. These scoring strategies combine non-linear scores of each

path and interactions between different paths to allow participants to vigorously prune the

search space. Next, we tested whether players augmented their search with additional pruning

mechanisms.

Participants’ previous moves influence their current search choices

Another possible mechanism for pruning the search space is using the memory of previous

moves (and previous calculations), instead of deciding anew for each game state as the game

evolves. To test whether participants’ search patterns exhibit memory (i.e., an influence of pre-

vious moves on future moves), we compared participants’ distribution of moves from a given

board configuration in two different conditions—one distribution is the distribution of moves

in the truncated board (where participants see the board after one optimal move for both the

‘X’ and ‘O’ players) and the second distribution is participants’ distribution of moves on the

full board after participants chose the same optimal first moves for ‘X’ and ‘O’ (as in the trun-

cated version). If players are not influenced by their previous choices, the distribution of

moves in the full and truncated boards should be similar.

We find that the distribution of moves in the two conditions was highly different (Fig 4A

and 4B). When comparing the entropy of participants’ moves in the full and truncated condi-

tions of the same board configuration (see Methods), we find higher entropy for participants’

moves in the truncated board than in the full board (full: mean entropy = 1.41, 95% CI = [1.30,

1.50], truncated: mean entropy = 2.42, 95% CI = [2.37, 2.46], around 40% entropy reduction,

Mann-Whitney test U = 0, p = 0.006, Rank biserial correlation = 1, Fig 4C). This finding sug-

gests that participants’ choice of the next move depends on the moves made before it. In par-

ticular, the lower entropy for moves in the full board suggests that as participants explore a

specific search trajectory further, they narrow down the moves they consider (see S10, S11, S12

and S13 Figs for additional analyses and comparisons with the dynamics of a Monte Carlo tree

search algorithm).

We note that comparing the entropy of participants from the full board to the entropy of

participants from the truncated board might introduce a selection bias: Participants from the

full board are required to play two optimal moves before reaching the same board configura-

tion as that of the truncated board. Thus, while in the truncated board all types of participants
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are represented, in the full board, only less noisy participants (i.e. those that reached the opti-

mal position) are represented. One might then suspect that the entropy difference is caused by

a selection bias. To test this, we chose for each participant her best fitted model and simulated

either three moves on the full board or one move on the truncated board. In the full board, we

keep only the simulated moves that reached the truncated board’s configuration (i.e. did two

optimal moves before the third move). We then calculated the entropy over the moves’ distri-

bution for each board and averaged all entropy values across all boards. We find that the selec-

tion bias shows a small entropy reduction (around 7%) that cannot explain the entropy

difference in the behavioral data (full board entropy: mean = 3.23, 95% CI = [3.23, 3.23], trun-

cated board entropy: mean = 3.47, 95% CI = [3.47, 3.47], see also section 10, S1 Text and S11

Fig). As another test, we compared the entropies of only the participants which solved cor-

rectly the board configurations in both full and truncated boards. This comparison focuses on

participants on the two boards that found the optimal path and so are probably less noisy. This

analysis produced similar results as the entire behavioral data (see S11 Fig). These two analyses

suggest that the entropy difference in the behavioral data does not stem from a selection bias.

Another option is that participants use different scoring strategies due to the different com-

plexities of the two board configurations, however, we did not find a difference in the distribu-

tion of the fitted scoring strategies between the two conditions (see S8 Fig).

Fig 4. Participants’ search is influenced by their previous choices and is not explained by an internal search model

or by reduced attention to the opponent. A) Distribution of participants’ moves on the full version of board

configuration II. B) Distribution of participants’ moves on the truncated version of board configuration II. C) Mean

entropy of the distribution of participants’ first moves in the truncated boards and the distribution of moves in the

equivalent board state in the full boards. D) Mean entropy of the distribution of participants’ first moves in the

truncated boards and the distribution of moves in the equivalent board state in the full boards as predicted by the

“Interaction” scoring strategies with an added shutter heuristic (shutter = 0). ��, p< 0.01. E) Mean entropy of the

distribution of participants’ first moves in the truncated boards and the distribution of moves in the equivalent board

state in the full boards as predicted by the “Interaction” scoring strategy when ignoring opponent’s winning paths, thus

focusing only on one’s own pieces. F) Mean entropy of the distribution of participants’ first moves in the truncated

boards and the distribution of moves in the equivalent board state in the full boards as predicted by an internal search

model, using alpha-beta pruning search with branching factor k = 7 and limited depth d = 1. All error bars are 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010358.g004
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A path shutter prunes the search space and predicts players’ blindness to

winning ‘O’ moves

The influence of previous moves on current choices suggests that participants use additional

pruning mechanisms beyond the use of scoring strategies. We hypothesized that this pruning

is done via a mechanism of a path shutter heuristic which focuses the search to potential win-

ning sequences stemming from the last move in the search tree.

We measured shutter size by calculating the distance of a move from the potential winning

sequences induced by the previous ‘X’ move, such that moves that are part of a currently possi-

ble winning sequence are considered at zero distance, the moves next to them (Manhattan dis-

tance = 1) are at distance 1 and so on (see Methods and Fig 5A).

The shutter heuristic can explain the differences in entropy between equivalent full and

truncated board states observed in the behavioral data. To that aim, we used the “Interaction”

scoring strategy with a shutter heuristic (shutter = 0) to simulate moves on the board and com-

pute their expected entropy. We observed a reduction in entropy in the full boards compared

to the truncated boards which is similar to that observed in the behavioral data (full: mean

entropy = 1.3, 95% CI = [1.23, 1.39], truncated: mean entropy = 2.76, 95% CI = [2.66, 2.88],

around 50% entropy reduction, Fig 4D).

We further find that participants exhibiting a smaller shutter size in their search (hence,

more focused) were more successful at solving the given board configuration (Success rates,

the number of trials solved correctly out of the total trials, narrow shutter: mean = 0.49, 95%

CI = [0.44, 0.55]; medium shutter: mean = 0.31, 95% CI = [0.25, 0.36]; wide shutter:

mean = 0.21, 95% CI = [0.17, 0.26]; Statistical significance, narrow vs. wide: Mann-Whitney

test U = 31114, p< 0.001, Rank biserial correlation = 0.28; narrow vs. medium: Mann-Whit-

ney test U = 37356, p< 0.001, Rank biserial correlation = 0.19; medium vs. wide: Mann-Whit-

ney test U = 39967, p = 0.004, Rank biserial correlation = 0.1; see Fig 5B). We note that the

success rates are fairly low despite the solution being within a few moves. Yet, since the

searched space is combinatorial in nature and the branching factor is large, the search space is

large as well, making the problem difficult (as is also indicated by the boards’ algorithmic

complexity).

Fig 5. Participants who exhibited a narrower shutter were more likely to find the winning move, but were also more likely to miss winning

moves for the ‘O’ player. A) Illustration of the shutter heuristic: assuming the player’s last move was f5 (shown in a black circle), there are three

potential paths to win induced by this move, f6–f3, f5–f2 and c5–f5 (their squares marked in blue). Squares on these paths are considered at

distance 0 from the last move. Squares adjacent to these squares (Manhattan distance = 1) are considered at distance 1 from the last move (marked

in orange). B) The probability to find the winning move of participants with different shutter sizes. All differences were statistically significant: ��,

p< 0.005 ���, p< 0.001. C) The proportion between the probability for missed ‘X’ winning moves and the probability of missed ‘O’ winning

moves in the computational simulations (left) and by participants (right). Narrow shutter shown in blue, medium in orange and wide in green.

Differences between narrow and wide shutter size and medium and wide shutter size were statistically significant, ���, p< 0.001. All error bars are

95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010358.g005
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However, the shutter heuristic also bears costs—If participants are using a shutter that

focuses on moves on potential ‘X’ paths to win, they should miss more ‘O’ winning moves

than ‘X’ winning moves (where misses of winning moves are events where a participant could

make a winning move, but made another move instead). To infer the effects of a shutter on the

probability to miss either ‘O’ or ‘X’ winning moves, we simulated the search while varying the

shutter size—As the shutter narrows, fewer squares outside the possible winning paths of ‘X’

are considered (see Methods). Indeed, the computational simulations indicate that as the shut-

ter narrows, the likelihood of missing ‘O’ winning moves increases and the likelihood of miss-

ing ‘X’ winning moves decreases, resulting in a decreasing ratio of their likelihoods

(Simulations, Median ratio of missed ‘X’ wins to missed ‘O’ wins: narrow shutter:

median = 0.05, 95% CI = [0, 0.16], medium shutter: median = 0.45, 95% CI = [0.38, 0.53], wide

shutter: median = 0.67, 95% CI = [0.62, 0.73], all differences are significant with p< 0.001, Fig

5C, see S1 Text for the statistical tests). Thus, the computational simulations predict that the

ratio of missed ‘X’ wins to missed ‘O’ wins grows with shutter size. These predictions agree

with the behavioral data—As participants’ shutter size increases, the ratio between missed ‘X’

wins to missed ‘O’ wins grows as well (Participants, Median ratio of missed ‘X’ wins to missed

‘O’ wins: narrow shutter: median = 0, 95% CI = [0, 0], medium shutter: median = 0.33, 95% CI

= [0.27, 0.42], wide shutter: median = 0.5, 95% CI = [0.44, 0.67], all differences are significant

with p< 0.001, Fig 5B, see S1 Text for the statistical tests). This increase in the ratio of missed

wins of participants as shutter size increases is driven by both a significant increase in missed

‘X’ wins and a significant decrease in missed ‘O’ wins (see S15 Fig).

We note that the problem of finding a winning move is different from a general search

problem since participants know that there is a sequence of moves that necessarily wins. This

knowledge may guide participants to adhere to the optimal path to win, and this might show

as a shutter heuristic. Another possibility is that shutter moves have intrinsically higher values

and thus are chosen. However, participants more frequently chose moves that adhere to the

shutter heuristic even when their previous move was not the optimal one (i.e., not on the win-

ning path, % of moves with shutter 0 when previous move was not optimal = 65%). In addi-

tion, as exemplified by their blindness to their opponent’s winning moves, participants chose

more frequently to adhere to the shutter heuristic even when their current choice was not the

optimal one given their current board configuration (50% of moves with shutter 0 were

not optimal, see also section S15 in S1 Text and S16 Fig). Similarly, on board V, using the

“Forcing” strategy diverts participants from the correct solution, yet they still use it regardless

(68% of participants show maximal likelihood for the “Forcing” strategy).

Finally, we examined the fit of participants’ moves to a model that combines the scoring

strategies and the shutter heuristic. We find that adding the shutter heuristic significantly

improved the log-likelihood of the predictions made by all scoring strategies (When compar-

ing each base model to a model augmented by a shutter parameter, all models significantly

improved (AICbase − AICbase+shutter> 826, and p< 10−5 using a likelihood ratio test, see Fig

3D).

An internal search model and adjusted weighting of opponent moves do

not explain the observed effect of previous moves

Another possible explanation for the entropy difference between the full and truncated boards

is that people use a limited look ahead strategy such as a short mental internal search on the

tree before they mark their chosen move on the ‘sandbox’ board. In such a case, participants

can re-use previous calculations in their next internal searches. These previous calculations

might prune the search space and thus reduce the entropy of moves’ distribution on the third
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move. To test this, we implemented two internal search models, one that prunes the space via

the alpha-beta pruning algorithm and the other that implements a Monte Carlo Tree Search

(MCTS) algorithm. The alpha-beta pruning internal search model implements a depth-first

search up to depth d and uses the scoring strategy to evaluate the nodes it reaches. The algo-

rithm prunes tree branches that show worse performance compared to the already found alter-

natives. Based on this search, the next move on the board is chosen. For the next move, only

branches emanating from this specific tree branch are considered, thus reducing the possibili-

ties of next moves. For the entropy calculation we considered only the results of the chosen

moves in the simulation and not the moves in the entire internal search that the simulated

agent did to reach the chosen move. We simulated different realizations of the model’s two

parameters: the depth of the internal search (with values between 1–3) and the number of

nodes considered at each level of the tree (with values between 5–10).

In Fig 4F we show that this model still does not achieve the entropy reduction shown in

the behavioral data. The alpha-beta pruning internal search model predicts a lower entropy

in the truncated boards (entropy of the best fitting model, full: mean = 1.51, 95% CI = [1.4,

1.61], truncated: mean = 1.83, 95% CI = [1.73, 1.92], around 17% entropy reduction, Fig 4F).

However, the reduction in entropy is smaller than that observed in the behavioral data. In

particular, while the entropy value in the full boards is similar to that observed in the behav-

ioral data, the entropy in the truncated boards is lower (1.83 for internal search vs. 2.42 in

the behavioral data), possibly because of the added internal search. Furthermore, the log-

likelihood of the best fitted alpha-beta pruning model are worse than the log-likelihood of

the shutter heuristic (log-likelihood of best fitting alpha-beta internal search model: -3.17,

95% CI = [-3.24, -3.09] compared with a log-likelihood of -2.21, 95% CI = [-2.17, -2.25] for

the “Forcing” strategy augmented with a shutter model). We also implemented a different

internal search model using Monte Carlo Tree Search (MCTS) with a limited search and

with a memory of past computations (see Methods). However, this model also does not pre-

dict the reduction in entropy between the full and truncated board configurations, and does

not fit the behavioral data well in terms of the log-likelihood (see section S11 in S1 Text and

S12 and S13 Figs).

The observed effect of “blindness” to the opponent’s winning moves could alternatively be

explained by a mechanism that gives more attention to players’ own pieces (‘X’) than to their

opponent’s pieces (‘O’). To test whether this model can better explain the behavioral data, we

simulated agents with a differential attention on their own pieces than their opponent’s pieces

(ranging from equal attention to both players, i.e., 50% attention to the opponent’s pieces, to

no attention to opponent’s pieces, with jumps of 10%, see Methods and Eq 2). First, for each

participant we took their best fitted strategy and compared the log-likelihood scores of this

scoring strategy with the shutter heuristic or with the differential weighting model. The two

models achieve similar log-likelihood results (shutter heuristic log-likelihood:-2.12, differential

weighting log-likelihood: -2.15, see section S11 in S1 Text and S17 Fig). We then calculated the

entropy of moves in the full and truncated boards according to the differential weighting of

attention simulations. We find that there is no entropy reduction, i.e., that the entropy of the

full board and the truncated board are not significantly different when not paying attention to

the opponent’s pieces (mean entropy full: 2.53, 95% CI = [2.43, 2.6], mean entropy truncated:

2.53, 95% CI = [2.46, 2.64]; Mann-Whitney test U = 124695, p = 0.47, Rank biserial correla-

tion = 0.002, Fig 4E). Lastly, we note that augmenting the shutter model with a decreased

attention to opponent’s pieces improved the log-likelihood fit to the behavioral data, thus indi-

cating that while differential attention cannot fully account for the behavior of participants in

the task, it might play a role in the players’ search mechanism (see S17 Fig).
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Path shutter pruning is dominant for most search parameters and board

configurations

The use of a path shutter shows both benefits (higher likelihood of solving the problem and

smaller search size) and costs (missing potential winning moves of the opponent, leading to a

wrong solution). We next examined whether using a shutter heuristic incurs a trade-off

between using computational resources and the probability to reach the correct solution. To

that aim, we simulated the search strategy using the alpha-beta pruning algorithm with the

“Interaction” scoring strategy and varied the size of the shutter (Methods). We ran the algo-

rithm on all ten board configurations (I–V, full and truncated) and varied the search algo-

rithm’s main parameters—The noise levels in the score of each square (noise values ranging

from 0–2.5), the branching factor which is the maximal number of expanded squares in each

level of the search tree (values ranging from 3–10), and the limit on the maximally allowed

search size (values ranging from 30–200). In total, we scanned 1760 different boards and

search configurations, each simulation repeated 100 times for a total of 176,000 runs (see

Methods).

To assess the optimality of the search, we considered two performance measures: 1) The

probability of finding the winning move (accuracy), and 2) The number of score evaluations

performed throughout the search (computational resources). For each configuration, we

examined whether there is a trade-off between the reduction in computation achieved by the

shutter heuristic and the probability of finding the winning move. We consider a configuration

to present a trade-off if there was a statistically significant difference (p< 0.05, using boot-

strap) between the mean values of the two parameters when comparing different shutter val-

ues. We find that in most settings, the algorithm with the narrow shutter dominates all other

shutter sizes, as it requires substantially lower amounts of computation while not sacrificing

the probability to find a winning move compared to larger shutter size values (Fig 6A). Only in

a few scenarios, we observe a trade-off between computation size and successful search, where

multiple shutter size values lie on the Pareto front (Fig 6B).

A comparison between the states where a narrow shutter is dominant and states where

there is a trade-off between shutter sizes indicates that trade-offs are more likely to occur when

the complexity of the board is low and noise levels are high (Fig 6C). When squares’ scores are

accurately computed based on the scoring strategy (low noise), the path shutter is less likely to

hamper performance as the best moves are likely to be selected. For such cases, focusing on the

current path reduces computation while maintaining accuracy rate. However, when solving

low complexity boards in the presence of higher noise in score evaluations, exploring alterna-

tive paths becomes more important and viable, and thus a wider shutter can improve perfor-

mance. Importantly, for high complexity boards, the probability of finding the winning move

is a-priori very low while the probability of following non-beneficial paths is high, thus widen-

ing the shutter size substantially increases the computations made and can also lead to deleteri-

ous effects by exploring less promising parts of the search space.

A path shutter heuristic improves the performance of deep learning models

with limited computational resources

Lastly, we asked how general are the computational benefits of the shutter heuristic? Would

the computational benefits to the cognitive search mechanism of participants generalize also

to other computational machines, such as deep neural networks when computational

resources limit the amount of possible search? To answer this question, we trained current

state-of-the-art models (AlphaZero models, see Methods) that utilize deep learning methods,

and examined the effect of using pruning by a path shutter on top of these models while their
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computational capacity is limited. We used the trained models to play against a Monte-Carlo

Tree Search (MCTS) algorithm on the full boards of our experiments, as well as on empty

boards (from the beginning of a standard game). We compared the performance of the models

when playing as is, to their performance when playing with a path shutter heuristic, averaged

across 1000 games. In these games, moves were chosen based on the probabilities predicted by

the network, with an additional limited MCTS search, to simulate a scenario with limited com-

putation (0, 25, 50, and 100 simulations, see Methods and S18 Fig).

Pruning the search space with the shutter heuristic significantly and substantially improved

performance on all experimental board configurations (AlphaZero with no added MCTS: No

shutter: 0.05, 95% CI = [0.05, 0.06], With shutter: 0.16, 95% CI = [0.15, 0.16], AlphaZero with

25 MCTS simulations: No shutter: 0.26, 95% CI = [0.25, 0.27], With shutter: 0.4, 95% CI =

[0.39, 0.41], AlphaZero with 50 MCTS simulations: No shutter: 0.27, 95% CI = [0.26, 0.28],

With shutter: 0.55, 95% CI = [0.54, 0.56], all p< 10−5, Fig 7A). These findings suggest that the

shutter heuristic is adaptive in end-game scenarios of “k-in-a-row” also for deep learning neu-

ral networks, otherwise handicapped with limited computations. This benefit of the shutter

heuristic was not apparent when playing from the beginning of the game (rather than end

games), except for the setting where no additional MCTS search was done on top of the trained

network predictions (AlphaZero with no added MCTS: No shutter: 0.6, 95% CI = [0.58, 0.62],

With shutter: 0.81, 95% CI = [0.79, 0.82], p< 10−5, Fig 7B). We note that this may be partially

explained by a ceiling effect as all models performed very well (> 90% win percentage) on the

empty boards as this is the setting they were trained on. These results demonstrate the ability

of the shutter heuristic to enhance the performance of a computational agent with limited

Fig 6. For most of possible search parameters, search with a narrow path shutter is the dominant search strategy.

Computation reduction is computed as 1 �
computation

maxðcomputationÞ A) Example of a board configuration where a narrow shutter

is the dominant search strategy since it shows similar probabilities for finding the winning move at substantially lower

number of computations. Simulation parameters were: complexity [830], noise level [0.5], branching [5], limit number

of moves [30]. B) Example of a board configuration with a trade-off between computation amount and the probability

to find a winning move. For the given simulation parameters, an increase from shutter size 0 to shutter size 1 incurs a

significantly higher probability to find a winning move but the number of computations increases as well. Simulation

parameters were: complexity [49], noise level [0.5], branching [5], limit number of moves [30]. C) The phase space of

board complexity vs. noise levels (aggregated over branching factor and search size limitations, see Methods). Each

square shows the proportion of configurations in which there was a trade-off between using narrow vs. wider shutter

size values: dark blue indicates configurations where the narrow shutter dominates the Pareto front (no trade-off),

dark red indicates a trade-off between narrow and wider shutter values (trade-off between computation resources and

accuracy). All error bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010358.g006
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Fig 7. Aggregated results for AlphaZero with different sizes of additional search using MCTS against pure MCTS with 1000 simulations. A)

Limiting the trained deep learning models with a shutter of size zero (blue bars) significantly improved their performance against an MCTS algorithm

on all experimental board configurations (all p< 10−5). B) Adding a shutter heuristic did not improve performance on empty boards (i.e., from the

initial state of a game), except when no additional MCTS search was done. All error bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010358.g007

PLOS COMPUTATIONAL BIOLOGY Adaptive search space pruning in complex strategic problems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010358 August 10, 2022 14 / 27

https://doi.org/10.1371/journal.pcbi.1010358.g007
https://doi.org/10.1371/journal.pcbi.1010358


computational resources. We note that modern machine learning with no limited computa-

tional resources shows performance at a ceiling effect and thus does not gain from the addition

of a shutter heuristic.

Discussion

This study focused on the search strategies people employ in complex scenarios, where the pre-

ferred action is embedded in an enormous space of possibilities. We find that participants’

search size did not depend on the complexity of the board. To explain this discrepancy, we

suggest two layers of pruning of the search space—One, the use of scoring strategies that cap-

tured participants’ search size and their entire search trajectories. Second, a shutter adaptive

heuristic that focuses participants’ search on paths emanating from their last move and

explains participants’ blindness to winning ‘O’ moves. By scanning a large set of the search

algorithm’s parameters and analyzing the Pareto front for each set of parameters, we found

that the combination of a scoring strategy with a shutter heuristic is dominant for most of the

parameters’ space. Lastly, our findings suggest that the computational benefits of the shutter

heuristic generalize from cognitive search of people to deep neural networks with computa-

tional limitations.

To infer the features of participants’ search we recorded their search trajectories. Partici-

pants marked their moves on a ‘sandbox’ board as they searched for the winning move. The

‘sandbox’ space provides many snapshots of participants’ thinking process and therefore

extends the classical “think-aloud” protocols in problem-solving experiments [1, 32, 33], as

participants can easily simulate different possibilities directly on the ‘sandbox’ board and do

not need to vocalize their thinking process while performing simulations. Thus, our paradigm

provides a fine-grained quantitative information on participants’ search trajectories.

The fine-grained mapping of participants’ search suggests that at end-game scenarios par-

ticipants use scoring strategies as a strong pruning mechanism of the search. This limited

search is different from previous suggestions that people use large search sizes on the order of

800–1000 nodes searched per a move when modeling people’s entire game behavior [27, 28].

The use of scoring strategies that embed the structure of the game raises the question of how

this structure is learned [34–38]. An interesting avenue for further research is mapping the

dynamics that lead to the formation of the non-linear, paths interaction scoring strategies, and

to the preference for a narrow shutter. Such shutter heuristics can arise from creating bounded

spaces for search [39], from amortization of previous search results [6, 40], or other mecha-

nisms. Our paradigm allows to characterize the scoring strategies and shutter size of each

player from their search trajectories, and can thus further promote understanding of how

brain activity correlates with individual search strategies.

Our findings reveal a trade-off between the ability to search successfully for a solution and

noticing the strategy of an opponent, as expressed by the blindness to winning ‘O’ moves. This

effect is mitigated by the shutter size, where a narrow shutter allows for greater success in find-

ing the winning moves for ‘X’ but also more misses of ‘O’ winning moves. Interestingly, for

most of the search configurations, this trade-off is not manifested and a small shutter size is

the dominant search strategy, strengthening previous claims for the need to assess cognitive

function in real-world, uncertain, and noisy environments [18, 41, 42].

The shutter heuristic complements other pruning strategies previously found in human

planning and decision making [5, 6, 8, 22, 23, 43, 44], such as fully scanning the tree of possi-

bilities up to a certain depth [43], pruning tree branches after large losses [5], arresting search

if the estimated benefit of an accurate response does not outweigh the cost of delaying the deci-

sion [8, 22, 23], or choosing which experienced states to replay by their contribution to
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inferring the policy for maximal expected return [44]. The Pareto analysis suggests that in the

specific case of end-game scenarios, the adaptive shutter heuristic is not influenced by the

speed-accuracy trade-off (and see also [45–54]).

The Pareto front of the shutter heuristic suggests that the shutter acts as an adaptive heuris-

tic—providing on par accuracy rates with much reduced computations compared with a global

scan of the search space. As such, it is part of a growing literature that points to the benefits of

stepwise adaptive heuristics (e.g., split-half [11], focus on highest probability [9], undergenera-

lization [55], likelihood difference [56], positive testing [10], and submodularity [57]) which

provide similar performance to global optimal policies at reduced computational costs. Such

reduction in computational costs makes these heuristics favorable, as people tend to avoid

extra cognitive costs [58–60]. We note that similar to other adaptive heuristics, participants in

the task choose to use the shutter heuristic even when it is suboptimal in its performance and

there are better choices at hand.

While the experimental design records the search trajectories participants try on the board,

it does not record their entire search trajectory on the tree which could cover more of the

search space. Still, key features of their search—the independence of search size on the board’s

complexity, the influence of previous moves on the search, and the blindness to ‘O’ moves—

remain the same and indicate a strong and biased pruning process of the search space. This

study focused on end-game scenarios which have the advantage of setting a complex yet tracta-

ble search challenge. However, the task instructions may direct participants to use the “Forc-

ing” strategy since they know they can win within a limited number of moves. Future studies

should test whether the tendency toward the “Forcing” strategy remains when the instructions

are less suggestive in nature. Moreover, the end-game configurations provide rich structures

that benefit from the use of scoring strategies and participants are aware that a viable solution

exists. However, in the beginning of the game, such scoring strategies and assumptions might

be redundant and costly, which might explain the difference in the estimated search sizes

between our findings and previous work that estimated entire game behavior [27, 28]. We

note that while the scoring strategies players use at the end-game boards are relevant through-

out the entire game, the shutter heuristic is relevant only when winning paths become plausi-

ble. As such, in the beginning of the game the shutter heuristic is less useful. Since our findings

suggest that players do rely on this heuristic at end-game scenarios, an open question is what

are the conditions upon which players decide to adhere to the shutter heuristic. It is therefore

intriguing to characterize the changes in the use of the scoring strategies and the size of the

shutter from the game’s beginning to its end.

Our study utilizes the “k-in-a-row” game which has a strong correlation between the “plan-

ning” space (the tree of possible future moves) and the spatial space (the pieces’ location on the

board). In principle, the shutter heuristic could be applied directly at the planning space, focus-

ing on the current move and its induced paths to the goal while ignoring all others. As such, it

may extend to many other complex strategic planning scenarios. Other strategic games, such

as checkers, chess and Go, provide an elaborate tree-like search space with a decreased connec-

tion between the tree of possibilities and the spatial location of the pieces on the board. An

interesting direction to test the generality of the shutter heuristic is to study end-game scenar-

ios in these strategic games.

The human ability to perform successful search in enormous spaces of possibilities is one of

the marvels of human cognition [18–20, 39, 61–64]. Studying in great detail the ways by which

humans search vast spaces of decisions, hypotheses, and ideas, can point to specific cognitive

computational mechanisms with their benefits and costs. Our findings suggest a novel adaptive

heuristic that humans and machines alike seem to benefit from in their search of an immense

space of possibilities in a strategic game.
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Methods

Ethics statement

The study protocol was approved by the Institutional Review Board at the Technion. Written

consent to participate in the study was obtained for all participants.

Participants

We recruited participants through Amazon mechanical Turk. We restricted participation to

workers from the US with a high reputation. We used a between-subject design where each

participant was only allowed to complete one task to avoid learning effects. Participants

received a base payment of $1.5 and earned an additional bonus of $1 if they correctly solved

the problem. We removed 107 participants from the study who performed fewer than 4 moves

in their search for a solution, yielding 915 valid participants (N = 915, age: mean = 35.5,

SD = 10, 405 females). 18% of the excluded participants solved the task correctly.

Task

We asked participants to find the winning move that will force a win within a given number of

moves on a “k-in-a-row” board configuration. The “k-in-a-row” game provides an opportunity

to map decision making processes in a rather heterogeneous and broad population of partici-

pants. We constructed five board configurations which differed in their difficulty, as reflected by

the number of moves a naive search algorithm takes to find the solution (Fig 2). Two of the con-

figurations were ‘4 in a row’, 6x6 boards, and three configurations were ‘5 in a row’, 10x10

boards (see Fig 1). These board configurations have a ground-truth solution, but finding this

solution is challenging due to the size of the search space. The boards were generated semi-auto-

matically—we had a search algorithm play against itself, and added noise to the algorithm to

allow for different outcomes. We then searched for board configurations from which one player

can force a win within 4 or 5 moves. Next, we manually chose two 6X6 configurations, based on

which we also created two 10X10 configurations (by extending the boards in a way that main-

tains the same basic configuration but extends it to a 5-in-a-row game). We additionally selected

another 10X10 configuration (board V) from the algorithm’s games. This board was chosen to

test participants’ search dynamics when the most obvious “Forcing” first move does not actually

produce a win within the required number of moves. For each of the five board configurations,

we generated an additional task in which we showed participants a version of that board with an

additional optimal move for ‘X’ and ‘O’. In these truncated configurations, participants had to

indicate the winning move within 3 or 4 moves (compared with 4 or 5 moves in the full version

respectively). The truncated boards allow us to compare participants’ choices in identical board

states, with or without a previous move being made and thus to infer whether the search

depends on previous choices or not. All board configurations are shown in S1 Fig.

Participants were instructed to find the winning move for ‘X’, e.g., “In this position X can

force a win in 4 turns. This means that X can win the game by placing 4 more marks, even

when O plays to win as well.” (see S1 Text for the complete experimental procedure). They

were provided with a ‘sandbox’ GUI for searching for the winning move. Using the GUI, they

could simulate moves for both themselves (‘X’) and their ‘opponent’ (‘O’) by clicking on

squares on the board. They could also reset the board to its starting position or undo their last

move using the ‘reset’ and ‘undo’ buttons. All participants’ actions (clicks, undo and reset)

were recorded. During their entire game, participants do not receive any feedback on their

search or submitted solution. To verify that participants did not guess the correct solution,

after submitting their answers, we asked them to play their solution against the computer.
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The task can be accessed at the following link: http://ec2-54-149-86-189.us-west-2.compute

.amazonaws.com/webTTT/public_html/tictactoe/tictactoe.html?board=1f. The code for the

web experiment can be found here: https://github.com/OptimalSearchSpacePruning/k-in-a-

row-web-experiment.

Measuring board complexity with the alpha-beta pruning algorithm

The “k-in-a-row” strategic problems used in our experiments belong to the P-SPACE complete

computational complexity class [65]. To quantify the complexity of solving each board, we

implemented an optimal tree-search algorithm for two-players games called alpha-beta pruning

[31]. In general, tree search algorithms utilize two main mechanisms: (1) evaluating the value of

a node, and (2) deciding which nodes to explore further. The first mechanism typically utilizes a

“scoring strategy” that quantifies the value or “goodness” of that state. For example, in k-in-a-

row, the scoring strategy can consider the number of potential winning paths currently occupied

by a player. The decision of which nodes to explore further is typically dictated by the scoring

strategy, but can also consider other pruning mechanisms such as exploring the tree only up to a

certain depth, and how many different paths to explore. Alpha-beta pruning traverses the search

tree in a depth-first manner assuming optimal play from both players, and prunes branches of

the tree that could not outperform the best solution obtained so far. We limited the algorithm’s

depth of search to the predefined solution depth (3, 4 or 5 ‘X’ moves to win, according to the

board configuration). We used a scoring strategy for quantifying the value of terminal board

configurations, as well as to rank the possible nodes such that more promising nodes will be

expanded first (similar to best-first search methods). As such, alpha-beta pruning adds to the

random tree search methods knowledge about the structure of the board, reflected by the scoring

strategy. We used the “Interaction” scoring strategy to evaluate the search size for each board.

Computing log-likelihood of scoring strategies’ predictions

To assess the fit of the scoring strategies to participants’ behavior, we computed the log-likeli-

hood of participants’ moves based on the predictions of the scoring strategies. For each scoring

strategy, we computed a probability distribution over moves for each game state. Since many

moves might receive a score of zero, we fitted a lapse rate parameter (�, values between 0–0.05

in jumps of 0.01) for each participant. That is:

Lðposjjboard; hÞ ¼ log ð1 � �Þ � probhðposj; boardÞ þ
�

#legal moves

� �

ð1Þ

Where probh(posj , board) denotes the probability of placing an ‘X’ or an ‘O’ on a particular

square position posj using a scoring strategy h in a particular board state. This probability is com-

puted by dividing each score with the total scores over all squares on the board (moves with neg-

ative scores are assumed to have zero probability). We then computed the mean likelihood of the

moves performed by each participant. We note that “undo” or “reset” actions are not explicitly

modeled, they simply change the state of the board which is then reflected in consequent moves.

Fitting scoring strategies to participants

We calculated the percent of participants in the population that employed each scoring strat-

egy. For each participant we fit for each scoring strategy the best shutter value (ranging

between values of 0–3, in jumps of 0.1) and the lapse rate parameter (ranging between the val-

ues of 0–0.05, in jumps of 0.01, see Eq 1). In total, these calculations result in 170,190 model

simulations to cover all possible combinations for all participants. We then computed the
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log-likelihood for each model simulation. To account for the model’s additional parameters

we calculated the corresponding AIC score and also used the log-likelihood ratio test (with

and without a shutter). We assigned to each participant the scoring strategy with the best AIC

score. For the section in the main text describing the differential weighting model, we added to

the model for each participant the opponent’s weight parameter (ranging between the values

of 0–0.5, in jumps of 0.1, see also Methods, Simulating a model with differential weighting of

opponent’s moves). We note that we focused on the bias of missing ‘O’ paths to stay close to

the behavioral findings indicating ‘O’ blindness.

Measuring entropy of participants’ moves in the full and truncated boards

For a given board state in either the full or truncated board, we measured the entropy of partic-

ipants’ moves by aggregating all participants’ moves (of that specific condition) to a distribu-

tion of probabilities over all open squares on the board. Next, we calculated the entropy of this

distribution of moves per board configuration and condition (full vs. truncated). In the trun-

cated board, we looked at the distribution of participants’ first moves. In the full board, we

looked at the distribution of the third moves of only the fraction of participants that chose

their first ‘X’ and ‘O’ moves such that they lead to the board state which the truncated configu-

ration starts from. Thus, we compared entropy of the same board states reached from either

the full or truncated boards.

Simulating a model with internal search

It is possible that participants do some of the search internally, without reflecting their moves

on the sandbox board. Then, they may re-use the results of these internal computations without

these being reflected in the collected data. To examine the possible effects of internal search, we

implemented two alternative models that utilize past computations. The first model uses the

alpha-beta pruning algorithm, but assumes that at each turn, a search is performed up to a limited

depth with the moves simulated in this first search are assumed not to be observed in the inter-

face. The Alpha-beta pruning algorithm runs a depth-first search up to a certain depth, d, storing

the best value the opponent can receive by using the scoring strategy to evaluate each node. This

allows the algorithm to prune tree branches that would not be chosen by the opponent and thus

to prune the search space. The scoring strategy also acts to order the moves to develop and to

determine the value of the nodes at the maximal depth. Unlike MCTS, it does not store visitation

counts but its memory is carried by the pruning of irrelevant paths. In the simulation, the selec-

tion of the next move was based on alpha-beta search with a limited depth (between depth of

1–3), such that the selection is based on a shallow search. This process is carried out iteratively for

each chosen move, for either three moves on the full boards or one move for the truncated boards.

The second internal search model used Monte-Carlo Tree Search (MCTS) with a limited

number of simulations (50, 200 or 500), assuming that participants only place an ‘X’ or an ‘O’

after doing these simulations internally, and re-use the results of their prior computations

when examining the next move. That is, they retain the visit counts and the outcomes from

previous MCTS simulations rather than starting anew at each move. We ran each model 100

times and examined the entropy of moves in the full and truncated boards. We note that this

analysis is done only on the 6X6 boards since MCTS does not converge after 5,000 simulations

on the 10X10 boards.

Measuring path shutter in behavioral data

The path “shutter” size of each participant is the mean distance between participant’s moves

and the potential paths induced by her last move. Specifically, we used the following
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procedure: If the chosen square belongs to one of the potential winning paths stemming from

the last ‘X’ move, the distance is zero. Otherwise, the distance is the minimal Manhattan dis-

tance between the chosen square and the potential paths stemming from the previous ‘X’

move. A potential path is a valid path (horizontal, vertical or diagonal) of valid length (4 for

6x6 boards, 5 for 10x10 boards), which is not already blocked by the ‘O’ player. See S1 Text

and S14 Fig for more details.

Simulating the shutter heuristic’s effect on the probability to miss winning

moves

To compute the expected effect of using a shutter heuristic on the probabilities of missing win-

ning ‘O’ moves and winning ‘X’ moves, we performed the following procedure: we ran the

alpha-beta algorithm with the “interaction” heuristic, but restricted the algorithm to consider

only moves within a specified shutter size. For example, when setting a shutter size of 1, only

squares that are on the potential paths of the previous ‘X’ move or at a Manhattan distance 1

from these paths are considered. We varied the shutter sizes, and made the search process

non-deterministic by ranking the potential moves stochastically based on their scores (higher

score is more likely to be chosen, proportional to the differences in scores). We then computed

the effective shutter size in each simulation, and divided the simulations into narrow, medium,

and wide shutter sizes using the values of the behavioral data. Finally, for each shutter category

(narrow, medium, wide), we computed the likelihood of missing winning ‘X’ moves and the

likelihood of missing winning ‘O’ moves.

Simulating a model with differential weighting of opponent’s moves

An alternative model that could explain the observed “blindness” to the opponent’s winning

moves is that participants pay less attention to their opponent positions than to their own. Dif-

ferent opponent’s weighting changes the weighting of the scores originating from preventing

‘O’ paths. These values range from 0.5 (i.e. equal contribution for gaining ‘X’ paths and pre-

venting ‘O’ paths) to 0 (i.e. no contribution from preventing ‘O’ paths). To examine this, we

considered variations to the scoring strategies computation by weighting the opponent’s

threats (‘O’ potential winning sequences) differently. That is, the scoring strategy is:

scorepos ¼ ð1 � wopponentÞ � scoreposðXÞ þ wopponent � scoreposðOÞ ð2Þ

where scorepos is computed based on the scoring strategy (creating threats for ‘X’ and prevent-

ing ‘O’ threats) with values of wopponent varying between completely ignoring the opponent

(wopponent = 0) and giving the opponent the same weight as for the paths of the ‘X’ player

(default model, wopponent = 0.5), in a resolution of 0.1 jumps (i.e., 0, 0.1, 0.2, 0.3, 0.4, 0.5).

Computing the Pareto front for shutter values

To test the effects of a path shutter, we ran the alpha-beta pruning algorithm with an additional

shutter parameter [values of 0, 0.5, 1 or 2]. This parameter determines which squares will be

considered by the algorithm, and scores will only be computed for those squares. For shutter

size zero, only squares on the potential paths of the last move are considered. For shutter size

1, only squares that are on the potential paths of the last ‘X’ move or at a Manhattan distance 1

from these paths are considered. When the shutter size is set to 0.5, squares at distance 1 will

be considered with probability 0.5. In addition, we varied the following parameters—Moves
limit: the maximal search size (30, 50, 100, and 200 moves). Branching factor: The number of

nodes expanded in each level of the tree (3, 5, 7, and 10 nodes). Score noise: The standard
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deviation of the Gaussian noise added to the scores, N(0, σ) (σ 2 [0, 2.5], increments of 0.25).

This resulted in 1760 different configurations based on the possible value combinations of the

parameters. We note that in this implementation the alpha-beta algorithm chooses which

square to explore with probability which is in proportion to the square’s score and thus is not

deterministic as the original alpha-beta algorithm. In total we ran 1760 configurations, each

configuration 100 times. For each configuration, we measured the proportion of times that the

algorithm was able to find the correct solution, and the required computational costs as mea-

sured by the number of squares for which a score had been computed. We then examined

which shutter size values lie on the Pareto front in terms of accuracy and computation costs.

Examining the effect of a path shutter on deep learning models

To further examine the effects of a shutter on computational systems, we trained deep rein-

forcement learning models to play the game. To this end, we used AlphaZero [66] (https://

github.com/junxiaosong/AlphaZero_Gomoku), which learns through iterations of self-play,

continuously improving its performance. The model consists of a policy-value network. The

input to the network is the board state, and the network learns to predict the policy, i.e., proba-

bilities for each possible action in a given state, and a value which represents the quality of the

state. To represent the input board we use three 6X6 or 10X10 binary feature planes. The first

two describe the positions of the ‘X’ and ‘O’ players on the board, and the third one is all ones

or zeros indicating whose turn is it to play. The neural network consists of a “body” followed

by both policy and value “heads”, similarly to AlphaGoZero architecture. The body consists of

three 3X3 convolutional layers with padding of 1 and stride of 1, where the first layer uses 32

filters, the second uses 64 filters, and the last one uses 128 filters. We apply ReLU activation

function after each convolutional layer. The policy head applies an additional 4-filter 1X1 con-

volutional layer with padding of 1 and stride of 1, followed by ReLU activation function.

Finally, a softmax—linear layer of size 36 or 100 is applied. The value head also applies addi-

tional 2-filter 1X1 convolutional layer with padding of 1 and stride of 1, followed by ReLU acti-

vation function. The output is then passed through a softmax—linear layer of size 64 function,

and finally a tanh—linear layer of size 1 is applied.

In each training epoch, the model is trained via self-play. The policy network guides the

choice of moves which provides the prior probabilities for a Monte-Carlo Tree Search (MCTS).

The loss function aims to match the values obtained in the games (for the value prediction) and

the probabilities assigned by MCTS at the end of the epoch (for the policy prediction). We

trained the models for 1500 training epochs. We trained a separate model for 6X6 boards and

10X10 boards, as their inputs are different. During training, each MCTS used 400 simulations.

The learning rate was set to 0.002 and was adjusted to adapt at each step according to the KL

divergence measure between the last step policy and the current policy. Moves were selected in

proportion to the root visit count. Dirichlet noise (0.3) was added to the prior probabilities in

the root node. Positions were batched across parallel training games for evaluation by the neu-

ral network. Adam optimizer was used. The L2 regularization parameter was set to 1e-4.

We then used the trained models to play against a strong vanilla MCTS algorithm which

performed 1000 simulations at each turn on the boards used in our human experiments (S1

Text also includes games against an MCTS with 500 simulations). Specifically, we compared

the performance of the trained model with that of the same model augmented with a shutter = 0

pruning heuristic—that is, a model which only considers moves that are within the shutter

induced by the previous ‘X’ move. We tested several variations of the trained models (with/

without the shutter), varying the number of MCTS simulations [0, 25, 50 or 100 simulations,

see S1 Text for more details] that are done on top of the basic predictions of the network
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which serve as a prior. When adding the shutter heuristic, it is applied to the choice of moves

in the game, as well as to the choice of moves in the MCTS simulations preceding the choice of

a move. We note that we examine a relatively small number of simulations, since our hypothe-

sis is that the shutter heuristic is useful when computation is limited. If a much larger number

of simulations is used, we do not expect the shutter heuristic to help, as the MCTS algorithm

can converge to the correct solution regardless.

Supporting information

S1 Text. Supporting information. Table A: Percent of boards solved with the alpha-beta algo-

rithm in 35 nodes search by different scoring strategies.

(PDF)

S1 Fig. Board configurations used in the experiments. Board I full: win within 4 moves, win-

ning move: f3 or f5; Board I truncated: win within 3 moves, winning move: f5; Board II full:

win within 4 moves, winning move: d6; Board II truncated: win within 3 moves, winning

move: c6; Board III full: win within 5 moves, winning move: j6 or j9; Board III truncated: win

within 4 moves, winning move: j9; Board IV full: win within 5 moves, winning move: e8;

Board IV truncated: win within 4 moves, winning move: d8; Board V full: win within 5 moves,

winning move: c6 or c7; Board V truncated: win within 4 moves, winning move: c5;.

(TIFF)

S2 Fig. Participants’ actions do not exhibit correlation between thinking time prior to a

“slow” action, and the number of subsequent “fast” actions that followed that move. A)

Example histograms of the distribution of time between moves (in seconds) of 3 of the

study participants, the plots only show moves taking up to 10 seconds of thinking. B) Scatter

plot showing the time it took to execute a “slow” actions (x-axis) and the number of “fast”

moves that followed the action. C) The distribution Spearman correlation values between

thinking time prior to a “slow” action and the number of following “fast” moves among par-

ticipants.

(TIFF)

S3 Fig. Participants’ time on task and search size were not limited by time restriction. A)

Participants’ solution times in each of the board configurations; B) Participants’ search size

(number of actions) in each of the board configurations. C) Search size and solution time were

highly correlated (Spearman correlation, r = 0.76, 95% CI = [0.73,0.78], p< 0.001). D) Search

time and board complexity were not correlated (Spearman correlation, r = 0.02, 95% CI =

[-0.05,0.08], p = 0.56).

(TIFF)

S4 Fig. The number of moves explored by the alpha-beta algorithm using the different

scoring strategies, and the number of moves tried by participants.

(TIFF)

S5 Fig. Log-likelihoods of participants first moves based on the predictions of the MCTS

models. The log-likelihood is similar to that of a uniform prior. When adding the ‘Interaction’

scoring strategy to MCTS to prune possible moves (‘MCTS k = 5 n = 100’ and ‘MCTS k = 5

n = 5000’), the log-likelihood increases and is better than the uniform prior, but still signifi-

cantly lower than that predicted by the scoring strategies alone.

(TIFF)
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S6 Fig. Heatmaps showing for each board configuration the distribution of participants’

first moves (behavioral data) and the predicted distribution according to the “Interaction”

scoring strategy.

(TIFF)

S7 Fig. Percent of participants fitted to each scoring strategy. Left panel shows the distribu-

tion for the entire participant population; middle panel shows only participants who solved

correctly; Right panel shows only participants who did not solve correctly.

(TIFF)

S8 Fig. Percent of participants fitted to each scoring strategy in the “full” and “truncated”

board conditions.

(TIFF)

S9 Fig. Sensitivity analysis for parameters used in the scoring strategy. A) Changes in log-

likelihood fit for each scoring strategy when varying the winning score parameter; B) Changes

in log-likelihood fit for the “Forcing” scoring strategy when varying the immediate threat

score parameter. Note that this analysis considers the percent change in log-likelihoods of the

scoring strategies, thus changes in the log-likelihoods do not have to be in opposite directions.

(TIFF)

S10 Fig. Participants exhibit dependency of search moves on previous moves throughout

the game. The entropy for equivalent board states encountered in the “full” condition is signif-

icantly lower than in the “truncated” condition. ���, p< 0.001.

(TIFF)

S11 Fig. The differences in entropy between equivalent states in the “full” and “trun-

cated” boards are not explained by differences in the population of participants (selec-

tion bias). A) Entropy in solvers’ moves when reaching equivalent game states in the “full”

and “truncated” boards. B) Entropy in non-solvers’ moves when reaching equivalent game

states in the “full” and “truncated” boards. C) When simulating moves of participants using

their best fitting scoring strategy (without shutter) and filtering out simulations where the

third move on the “full” board does not reach the first state of the “truncated” board, there is

a small reduction in entropy (7%) but it does not explain the substantial reduction in entropy

in the observational data. D) Simulations similar to (C), but with the scoring strategy aug-

mented by the shutter, do explain the observed reduction in entropy in the “full” boards. ���,

p< 0.001.

(TIFF)

S12 Fig. A simulation of models using internal search (MCTS with 50, 200 or 500 simula-

tions with memory of previous computations) do not show significant reduction in

entropy between the move distribution in equivalent states of the truncated and full

boards. Internal search using alpha-beta pruning with k = 7 and depth = 1 (the best fitted

model) shows reduction in entropy, but not at the same extent as the behavioral data.

(TIFF)

S13 Fig. MCTS search shows memory-less dynamics with similar entropy in the “Full” and

“Truncated” conditions for equivalent states.

(TIFF)

S14 Fig. Example of square distances for shutter computation: if the last move was f5

(denoted with 1), there are three potential paths induced by this move, f6–f3, f5–f2 and

c5–f5 (marked in blue). Squares on these paths are considered at distance 0 from the last
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move. Squares adjacent (Manhattan distance = 1) to squares on open paths are considered at

distance 1 from the last move (marked in orange).

(TIFF)

S15 Fig. Missed winning moves for the ‘X’ and ‘O’ player in computational simulations

with a path shutter, and in the behavioral data. As the shutter size increases, the likelihood

of missing winning ‘O’ moves reduces, while the likelihood of missing winning ‘X’ moves

increases.

(TIFF)

S16 Fig. The distribution of shutter values for participants’ moves that were not on a cor-

rect winning path, and the fraction of those moves that were optimal (optimal moves in

orange, suboptimal moves in blue).

(TIFF)

S17 Fig. Log-likelihoods of scoring strategies’ predictions of participants’ moves. There are

three configurations for each scoring strategy: using the scoring strategy as is (“base”), adding

a shutter (based on best fit to participants), and further augmenting the scoring strategy with

both a shutter and decreased attention to the opponent (based on best fit to participants). For

all scoring strategies, adding the shutter significantly improved log-likelihood (in all cases

p< 10−5 using a likelihood ratio test which accounts for the additional parameter), and except

for the Density strategy (where opponent weight does not have a meaning), augmenting the

scoring strategy with decreased attention to the opponent further increased the log-likelihood

(2p< 10−5 using a likelihood ratio test which accounts for the additional parameter).

(TIFF)

S18 Fig. Limiting the trained deep learning models with a shutter of size zero (blue bars)

significantly improved their performance against an MCTS algorithm on all board config-

urations. A) Game win percentage of the deep learning models against MCTS with 1000 simu-

lations; B) Game win percentage of the deep learning models against MCTS with 500

simulations. All differences were statistically significant with p< 10−5.

(TIFF)
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