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Abstract

Caucasian clover is the only perennial herb of the genus Leguminous clover with under-
ground rhizomes. However, we know very little about its development process and mecha-
nism. Transcriptome studies were conducted on the roots of Caucasian clover without a
rhizome (NR) at the young seedling stage and the fully developed rhizome, including the
root neck (R1), main root (R2), horizontal root (R3), and rhizome bud (R4), of the tissues in
the mature phase. Compared with the rhizome in the mature phase, NR had 893 upregu-
lated differentially expressed genes (DEGs), most of which were enriched in ‘phenylpropa-
noid biosynthesis’, ‘phenylalanine metabolism’, ‘DNA replication’ and ‘biosynthesis of amino
acids’. A higher number of transcription factors (AP2/ERF, C2H2 and FAR1) were found in
NR. There were highly expressed genes for R4, such as auxin response factor SAUR,
galacturonosyltransferase (GAUT), and sucrose synthase (SUS). Phenylpropanoids are
very important for the entire process of rhizome development. We drew a cluster heat map
of genes related to the phenylpropanoid biosynthesis pathway, in which the largest number
of genes belonged to COMT, and most of them were upregulated in R4.

Introduction

Caucasian clover (Trifolium ambiguum Bieb.), also known as Kura clover) is the only long-
lived leguminous clover with developed underground rhizomes and strong clonal reproduc-
tion ability. Its rhizome characteristics have been confirmed to be closely related to plant cold
resistance [1], drought resistance [2] and grazing resistance [3]. Domestic and foreign scholars
have conducted considerable research on the introduction [4], hybrid breeding [4-6], stress
resistance [7-11], grazing utilization [12] and productivity [3, 13] of Caucasian clover. Due to
the lack of genomic information, the molecular mechanism of rhizome formation in Cauca-
sian clover is still poorly understood.

An increasing number of genes related to rhizome formation and development have been
discovered and identified in different plants. Some genes are highly abundant in or specific to
plant rhizomes, including energy and metabolism-related genes, such as monosaccharide
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transporter and methionine-S-methyltransferase in sorghum [14, 15] and B-glucosidase, starch
branching enzyme and trehalose-6-phosphate synthase in bamboo [16]. In addition, plant rhi-
zomes contain regulatory factors related to growth, such as elongation factors, tubulin and
growth regulators in wild rice, and important transcription factors (TFs) are expressed in the
root tip and elongation region of wild rice [17-22]. In addition, some resistance-related genes
specifically expressed in rhizomes have also been identified in wild rice (Oryza longistaminata)
[17-19], sorghum [20], lotus (Nelumbo nucifera) [21] and Phyllostachys edulis [22], such as
peroxidase, L-ascorbate peroxidase, glutathione S-transferase, and catalase.

Phenylpropane biosynthesis is an important way to produce lignin. Lignin is a cell wall
component, with cellulose and hemicellulose together constituting the main components of
the plant skeleton. Lignin fills the cellulose skeleton, enhances the mechanical strength of
plants, facilitates the transport of water in tissues, and resists adverse environmental conditions
and invasion. It plays an important role in regulating cell morphology and development. As
buds elongated, the expression levels of 16 lignin biosynthesis genes were upregulated in Bam-
busa, as determined by next-generation sequencing technology (RNA-seq) [23]. During the
development of Raphanus sativus, a large amount of lignin accumulated in the leaves and
roots. The lignin content increased significantly during the four stages of leaf development,
while the accumulation of lignin decreased slightly in the thickening stage of roots [24]. To the
best of our knowledge, there are relatively few studies on the complex lignin of rhizomes in
Caucasian clover. It is possible to understand rhizome development by identifying key phenyl-
propanoid biosynthetic pathway genes.

Caucasian clover has no rhizome in the early stage but has only an upright main root and
then grows a root neck, a horizontal root and rhizome buds in sequence. For a particular
plant, the configuration of the root system can be stabilized until the mature stage. The root
system of plants presents an axial root type at the young seedling stage, and it can produce
obvious rhizomes until the mature phase [25]. Rhizomes appear in the mature phase of Cauca-
sian clover. This study used RNA-seq technology combined with morphological and key gene
verification analyses to study the different tissue parts of the roots (the mature phase root
neck, main root, horizontal root, rhizome bud, and young seedling stage without the rhizome
during the development of Caucasian clover). We identified differentially expressed genes
(DEGs) in rhizome development, which served as the foundation for further exploration of the
developmental mechanism of Caucasian clover and related gene function research.

Materials and methods
RNA sequencing and de novo assembly

Caucasian clover plants were collected from the wild cultivation nursery of Northeast Agricul-
tural University (45°39'N, 126°30'E). The first sampling date was July 15, 2017. At the young
seedling stage, the main roots of Caucasian clover were cut approximately 5 cm from the
ground surface with a scalpel (NR). The second sampling was carried out on July 15, 2018. The
root neck of Caucasian clover at the mature phase was cut with a scalpel (R1). In the mature
phase, the main roots of Caucasian clover were approximately 5 cm above the surface (R2). In
the mature phase, Caucasian clover grew horizontally from the main root, and the horizontal
root was 5 cm away from the main root (R3). In the mature phase, buds approximately 1 cm
from the horizontal root tips of Caucasian clover were formed (R4). Photographs of the spe-
cific locations of the five tissue sites sampled are shown in Fig 1. Plant materials were intro-
duced from the Inner Mongolia Grass Variety Engineering Technology Research Center of
Inner Mongolia Agricultural University, which performed formal identification of the
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Fig 1. Schematic diagram of plant sampling.

https://doi.org/10.1371/journal.pone.0254669.9001

samples, provided details of the specimens deposited and approved sample collection. The
IPNI Life Sciences Identifier (LSID) for Caucasian clover is urn: Isid:ipni.org:names:522843-1.

Total RNA from each tissue was isolated using a MiPure Cell/Tissue miRNA Kit (Vazyme
Biotech) following the manufacturer’s instructions. The Nanodrop, Qubit 2.0, and Agilent
2100 methods were used to detect the purity, concentration, and integrity of RNA samples to
ensure that qualified samples were used for transcriptome sequencing. Complementary DNA
(cDNA) library construction and normalization were performed according to published pro-
tocols. Three cDNA libraries (leaf, stem, and rhizome) were sequenced using an Illumina
HiSeq X-ten platform, and paired-end reads were generated. Clean reads were obtained by
removing adapter sequences, low-quality sequences, and sequences shorter than 35 bases. The
remaining high-quality reads were assembled de novo into candidate unigenes using the Trin-
ity programme.

Determination of unigene expression levels

Because no reference genome was available for Caucasian clover, the clean reads from each
sequencing library were mapped back to the assembled unigenes using Bowtie with a maxi-
mum mismatch of 2 nucleotides. The expression level of each unigene was normalized and cal-
culated as the value of fragments per transcript kilobase per million fragments mapped
(FPKM), which eliminated the influence of different gene lengths and sequencing
discrepancies.

Unigene annotation

The Basic Local Alignment Search Tool (BLAST) software was used to compare unigene
sequences with the NR, Swiss-Prot [26], and KEGG databases [27]. KOBAS2.0 was used to
obtain unigene KEGG orthology results in KEGG. After predicting the unigene amino acid
sequence, HMMER software was used for comparison with the Pfam database to obtain uni-
gene annotation information.

Quantitative real-time PCR (qRT-PCR) validation of RNA-seq data

Ten DEGs involved in rhizome development were chosen for validation using quantitative
real-time PCR (qQRT-PCR). Primers for qRT-PCR were designed with Primer 3.0 software
(http://biotools.umassmed.edu/bioapps/primer3_www.cgi) (S1 Table). qRT-PCR was per-
formed using the ABI StepOne "™ Plus Real-Time PCR System with ChamQ Universal SYBR
qRT-PCR Master Mix (Vazyme Biotech, Dalian, China), and the products were amplified with
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a mixture of 1 uL of cDNA template, 2x ChamQ Universal SYBR qRT-PCR Master Mix, and
0.4 uL of each primer (10 umol/pL) in water to a final volume of 20 uL. The amplification pro-
gram consisted of one cycle at 95°C for 30 s, followed by 40 cycles at 95°C for 10 s and at 60°C
for 30 s. Fluorescent products were detected in the last step of each cycle. A melting curve anal-
ysis was performed at the end of 40 cycles to ensure proper amplification of target fragments.
The melting curve analysis consisted of one cycle at 95°C for 15 s and then at 60°C for 30 s, fol-
lowed by one cycle at 95°C for 15 s. qRT-PCRs for each gene were performed for three biologi-
cal replicates, with three technical repeats per experiment. Relative gene expression was
normalized by comparison with the expression of Caucasian clover (c257504.graph_c0) and
analysed using the 27**CT method [28].

Results
RNA-seq statistical data

The total transcriptomes from the root neck (R1), main root (R2), horizontal root (R3), rhi-
zome bud (R4) and rootless root (NR) were obtained using Illumina-based next-generation
sequencing technology (RNA-seq) (Table 1). We obtained 25,396,794 reads from R1,
21,898,739 reads from R2, 24,268,708 reads from R3, 22,665,113 from R4, and 21,834,965
reads from NR. In total, we obtained 148.01 Gb of clean data with an average content of more
than 41.51%, and each sample reached 6.09 Gb (a unit used to measure the amount of data,
where 1 GB = 1,000,000 bp), and Q30 reached 90.48%. Clean data were assembled as described
in the Methods section to generate 209,861 transcripts and 98,512 unigenes (assembled highly
complex cDNA sequences) (S2 Table). Transcripts and unigenes had high assembly integrity,
with N50 values of 1,854 and 1,598 and average lengths of 1158 and 846, respectively. The
length distribution of the unigenes is shown in S1 Fig. The clean data of each sample were
aligned with the assembled transcript or unigene library, and the results of the comparison are
shown in S2 Table. Reads that are compared with transcripts or unigenes are called mapped
reads, and mapped reads were used for subsequent analysis (S3 Table).

Analysis of differentially expressed genes in different tissues

We compared the up- and downregulated DEGs of NR tissues with those of other rhizome tis-
sues (R1, R2, R3 and R4) (FDR<0.01-fold change>2) (Fig 2A and 2B). To study the DEGs in
NR, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis of 839 co-upregulated (Fig 2C) and 481 co-downregulated genes in NR (Fig 2D). Most
of the co-upregulated genes were enriched in ‘starch and sucrose metabolism’, ‘phenylpropa-
noid biosynthesis’, ‘phenylalanine metabolism’, ‘DNA replication’ and ‘biosynthesis of amino
acids’. Compared with other rhizome tissues (R1, R2, R3 and R4), energy-related pathways

Table 1. Summary statistics of clean reads in the five tissues of the Caucasian clover rhizome.

R1 R2 R3 R4 NR
Raw reads 25,396,794 21,898,739 24,268,708 22,665,113 21,834,965
Base number 7,599,474,508 6,546,248,531 7,263,680,664 6,785,234,564 6,534,299,629
Clean read 25,396,794 21,898,739 24,268,708 22,665,113 21,834,965
Clean read percentage (%) 99.39 99.22 99.38 99.26 99.22
Mapped reads 17,497,291 15,430,415 16,929,287 15,147,941 15,065,868
Mapped ratio (%) 68.90 70.46 66.76 66.83 69.00
GC percentage (%) 42.38 41.88 42.21 42.21 41.51
%>Q30% 91.29 91.32 91.22 90.66 91.04

https://doi.org/10.1371/journal.pone.0254669.t001
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Fig 2. NR differential gene analysis. (A) Venn diagram of upregulated genes. (B) Venn diagram of downregulated
genes. (C) KEGG pathway enrichment analysis of upregulated genes for NR. (D) KEGG pathway enrichment analysis
of downregulated genes for NR.

https://doi.org/10.1371/journal.pone.0254669.9002

were dominant in NR co-downregulated genes, mainly > homologous recombination’, ‘phenyl-
propanoid biosynthesis’, ‘plant hormone signal transduction’, ‘phenylalanine metabolism’ and
‘mismatch repair’.

For mature rhizomes, R4 had more DEGs than the other tissues (R1, R2 and R3), and the
number of DEGs in R1 vs R4, R2 vs R4 and R3 vs R4 was 9,385, 8,884 and 7,352, respectively.
R2 vs R3 had fewer DEGs (2,471; S4 Table).

We studied several genes that were more highly expressed in the buds (R4) and roots (R1,
R2 and R3) (Fig 3). Most genes related to the starch and sucrose metabolism pathways, includ-
ing the auxin response factor SAUR, galacturonosyl transferase (GAUT) and sucrose synthase
(SUS), were upregulated in R4.

It is worth noting that lipoxygenase (LOX) genes, which are involved in linoleic acid metab-
olism and play an important role in the response to coercion, were also upregulated in R4.
These genes are related to the formation of the rhizome buds of Caucasian clover.

The DEGs in the Caucasian clover rhizome (R1, R2 and R3) are involved in many molecu-
lar functions and metabolic pathways; many of these DEGs are transcription factors, such as
bZIp, MYB and HD-zip, which are related to plant development and hormones and have been
identified in previous studies on plant roots.

Additionally, the DEGs in the two tissues (R4 and NR) that were transcription factors that
regulate growth and development were significantly different (Fig 4). More AP2/ERF, C2H2
and FAR1 DEGs were found in NR, whereas more bHLH, WRKY and Bzip DEGs were found
in R4.

Differentially expressed genes in the five different tissues

We used a Venn diagram to show the number of DEGs identified for each part (each repeat of
each tissue FPKM>0.1) (Fig 5). The FPKM (fragments per kilobase of transcript per million

PLOS ONE | https://doi.org/10.1371/journal.pone.0254669  July 13, 2021 5/15


https://doi.org/10.1371/journal.pone.0254669.g002
https://doi.org/10.1371/journal.pone.0254669

PLOS ONE Rhizome development of Caucasus clover

C T N c253896.graph_c0 (SAUR

PN c251303.graph_c1 (SAUR 1.50
BN 255844 .graph_c0 (SAUR

; f_ N 260977.graph_c1 (SAUR 1.00

- IE _ c247223.graph_c0 (SAUR

[ | BN c234641.graph_c1 (SAUR 0.50

1 €266380.graph_c1 (GAUT

== c250722.graph_c1 (GAUT 0.00
\ €266380.graph_c2 (GAUT

c262882.graph_c5 (GAUT I-0-50

] II
i

II| i 2

[ | BN c271071.graph_c0 (GAUT
I 269694 .graph_c2 (GAUT -1.00
€250722.graph_c0 (GAUT

] BN c263839.graph_c0 (GAUT -1.50

| BN c267058.graph_c0 (GAUT
1 BN c272540.graph_c0 (GAUT
= B ¢258679.graph_c0 (SUS
[ I c272220.graph_c0 (SUS
|| BN c268741.graph_c0 (SUS
— BN c265490.graph_c1 (SUS
= BN c267145.graph_c0 (SUS
I | €265490.graph_c0 (SUS
1 c241018.graph_c1 (LOX
L1 c245111.graph_c0 (LOX
[ c255380.graph_c0 (LOX
[— €226040.graph_c0 (LOX
] €228235.graph_c0 (LOX
2 | €237892.graph_c0 (LOX
[ /. €243924.graph_c0 (LOX
7 BN 266866.graph_c0 (LOX
| €266127.graph_c0 (LOX
=3 €270561.graph_c0 (LOX
S I e &

Fig 3. Heat map of highly expressed genes in R4.
https://doi.org/10.1371/journal.pone.0254669.9003

mapped reads) value was used to indicate the expression abundance of the corresponding uni-
genes. R1 and R4 had more genes uniquely expressed in those tissues (5,929 and 2,427, respec-
tively), and the number of genes co-expressed in the five tissues was 23,657. Co-expressed
genes may affect the overall development of Caucasian clover.

We selected some genes in different tissues that had FPKM values more than twice that of
other tissues and may be related to rhizome development (Table 2). In R1, ¢273329.graph_c0
(ubiquitin-conjugating enzyme, UBE2D) and ¢250145.graph_c0 (RAC1, Ras-related C3) are

25

® NRup-regulated  ®WR4 up-regulated

The number of TFs
5 T 5

h

. IIIIIIIIIIIlllIlI |
&@*ﬁ" FFIFFEL S f

Fig 4. Bar plot of the number of transcription factors differentially expressed in R4 and NR.
https://doi.org/10.1371/journal.pone.0254669.g004
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Fig 5. Venn diagram of gene expression in the five tissues.

https://doi.org/10.1371/journal.pone.0254669.g005

related to the mitogen-activated protein kinase (MAPK) signalling pathway, which is a crucial
pathway for plant root nodules and swelling.

In R2, some metabolic pathways are worth studying. Some key enzymes stand out, such as
c244261.graph_cl (KAR1) and ¢247601.graph_cO (glutathione S-transferase, GST).

For R3, the number of DEGs related to molecular function was relatively high; these
included c263901.graph_c1 (PPNA) and c158369.graph_c0 (RLK-Pelle_RLCK-VIIa-2).

Most genes with higher expression in R4 than in other tissues were related to peroxidase,
xyloglucan and phenylalanine ammonia-lyase, which are closely related to stress resistance
and some metabolic energy pathways.

Most DEGs highly expressed in NR are related to glycogen synthesis and metabolism.
€261263.graph_c0 (1,4-alpha-glucan branching enzyme, GBE) is a key enzyme that catalyses
glycosidic linkages of glycogen branches and is of great significance for biological energy
storage.

€250773.graph_c0 (MYB) is a transcription factor and an important gene regulating rhi-
zome growth and development. ¢269539.graph_c0 and ¢260389.graph_c0glgC (glucose-
1-phosphate adenylyltransferase, glgc) are also a special class of genes that are highly expressed
in NR.

Analysis of the phenylpropanoid biosynthesis pathway

Lignin plays a role in maintaining the structural integrity, strength, and hardness of the cell
wall, aiding in the transport of water, prevention of cell wall permeation and protection of
plants from pathogen infection. Lignin is mainly polymerized by three monomers, including
coumaryl alcohol (H-lignin), coniferyl alcohol (G-lignin) and sinapyl alcohol (S-lignin). The
sequencing results in the KEGG pathway database were annotated and analysed to obtain the
key synthetase genes in the phenylpropane biosynthesis pathway (Fig 6). PAL initially directly
catalyses the deamination of L-phenylalanine to produce cinnamic acid; CYP3A and 4CL cata-
lyse hydroxylation and acetylation, respectively, and produce P-coumaroyl acid and P-cou-
maroyl CoA in turn. Under the action of HCT, CYP94A and F5H, P-coumaraldehyde can be
converted to 5-hydroxyconiferaldehyde, which is important for the production of S-lignin.
CCR and CAD produce cinnamaldehyde and cinnamyl alcohol, respectively, by catalytic
reduction, and CAD can also produce P-coumaryl alcohol (as a precursor of H lignin).
CCoAOMT and COMT catalyse the O-methylation reaction and eventually produce G-lignin
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Table 2. Statistical data of genes with higher expression in each tissue.

ID R1 R2 R3 R4 NR Gene description
€212626.graph_c0 727.57 0.17 17.89 0 0 -
€273329.graph_c0 34.07 0.00 0.54 0.11 0.05 UBE2D (ubiquitin-conjugating enzyme)
¢250145.graph_c0 12.52 0.08 1.60 0.24 3.65 RACI (Ras-related C3 botulinum toxin substratel)
c231546.graph_c0 23.30 0.07 0.83 0.53 0.39 THOC4 (THO complex subunit 4)
c244144.graph_c0 15.34 0.01 0.03 0.00 0.00 malZ (alpha-glucosidase)
c244261.graph_cl 125.87 307.42 138.12 126.78 115.26 KARLI (ketol-acid reductoisomerase)
c247601.graph_c0 0.12 13.38 0.40 0.87 0.71 GST (glutathione S-transferase)
c270772.graph_cl 29.62 76.55 31.75 29.18 19.92 FBL (rRNA 2’-O-methyltransferase fibrillarin)
€270969.graph_c3 46.35 168.07 74.57 88.75 30.20 peroxidase
c212382.graph_c0 0.03 37.28 0.16 9.16 0.45 RFAI(replication factor A1)
c271019.graph_c0 23.46 39.54 100.17 32.66 21.80 CYFIP (cytoplasmic FMR1 interacting protein)
€266956.graph_c0 1.72 0.09 4.99 0.00 0.26 POR (NADPH-ferrihemoprotein reductase)
c158369.graph_c0 0.00 0.00 2.83 0.00 1.22 RLK-Pelle_RLCK-VIIa-2
c271751.graph_cl 4.22 1.94 22.21 4.62 3.53 RFAL1 (replication factor Al)
€249389.graph_c0 0.01 0.02 4.40 1.10 0.58 fabF (3-oxoacyl-[acyl-carrier-protein] synthase IT)
€260938.graph_c0 8.81 31.38 38.57 933.74 86.97 peroxidase
c268035.graph_c0 149.10 191.79 201.32 622.01 274.40 fructokinase
c260214.graph_cl 42.93 128.84 66.87 587.34 25.07 Xyloglucan (xyloglucosyl transferase)
€252926.graph_c0 11.74 6.05 19.17 393.08 18.82 peroxidase
€246619.graph_c0 13.60 32.17 36.37 383.67 28.41 peroxidase
€269011.graph_c0 13.68 12.65 11.08 300.55 7.44 peroxidase
€266443.graph_cl 12.29 1.39 4.55 294.37 4.83 peroxidase
c270344.graph_cl 1.97 1.02 3.39 141.15 6.77 TAA (auxin-responsive protein)
c271721.graph_c0 97.33 26.91 87.19 253.36 7.96 TAA (auxin-responsive protein)
c271111.graph_c0 39.29 11.07 63.75 242.37 19.63 PAL (phenylalanine ammonia-lyase)
€269539.graph_c0 216.73 248.56 207.66 101.39 2740.09 glgC (glucose-1-phosphate adenylyltransferase)
€261263.graph_c0 511.11 687.00 550.31 263.98 2000.90 GBE1 (1,4-alpha-glucan branching enzyme)
€260389.graph_c0 152.51 123.05 121.15 126.58 1123.70 glgC (glucose-1-phosphate adenylyltransferase)
c250773.graph_c0 7.94 17.81 7.69 31.72 189.47 MYB

https://doi.org/10.1371/journal.pone.0254669.t002

and S-lignin. In addition, we also found that caffeic acid 3-O-methyltransferase (COMT) had
the highest number of annotated genes, at 20, followed by cinnamyl-alcohol dehydrogenase
(CAD), at 19; 4-coumarate—CoA ligase (4CL), at 17; shikimate O-hydroxycinnamoyltransfer-
ase (HCT), at 13; PAL, at 11; CCR, at 10; caffeoyl-CoA O-methyltransferase (CCoAOMT), at
7; ferulate-5-hydroxylase (F5H), at 7; 5-O-(4-coumaroyl)-D-quinate 3’-monooxygenase
(CYP98A), at 5; and trans-cinnamate 4-monooxygenase (CYP3A), at 3.

Some PAL genes had the same variation trend. Nine genes were upregulated in R4, and
four genes were significantly upregulated. Most genes are downregulated in R1. Most genes
with CCR expression levels were higher in R4. For F5H, genes were mainly upregulated in R1
and R3. The expression levels of the COMT and CCoAOMT genes were similar; specifically,
they were upregulated in R4, and downregulated in most other tissues.

Validation of RNA-seq data by qRT-PCR

To verify the accuracy of the genes obtained by RNA-seq, we used c257504.graph_c0 as the
internal reference gene and used the 2-AACT method to detect the expression levels of the 10
selected DEGs (Fig 7). QRT-PCR technology was used to verify that the expression levels of the
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Fig 6. Heat map of phenylpropanoid biosynthesis-related genes in the five tissues.

https://doi.org/10.1371/journal.pone.0254669.9006

R1, R2, R3, and R4 genes of Caucasian clover were consistent with the gene expression levels
determined by RNA-seq. The trends of the two results are basically the same, demonstrating
that the accuracy and validity of the RNA-Seq results are effective for data analysis.

Discussion

Caucasian clover is a legume plant with special rhizomes, and previous studies have provided
the full-length transcriptome of Caucasian clover rhizomes, revealing gene expression patterns
and annotations in different tissues. We also explored the role of hormones, especially IAA, in
rhizomes. However, there are few studies on the role of the phenylpropane biosynthesis path-
way in different tissues of the Caucasian clover rhizome [29]. RNA-seq transcriptome data
have accelerated our understanding of the complex system of gene transcription patterns, gene
structural differences and gene regulatory networks. The data we obtained greatly enrich the
transcriptome information of the Caucasian clover rhizome. Rhizomes are the absolute
branches that initially form rhizome buds in uncertain positions of the lateral roots; then, they
differentiate, grow and are finally removed from the matrix. This type of rhizome structure is
evolutionarily formed via adaptation to natural conditions.
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Fig 7. Comparison of qRT-PCR verification and FPKM value. The left y-axis indicates the FPKM value of ten
differently expression genes in transcriptome. The right y-axis indicates the relative expression level of ten differently
expression genes in qRT-PCR.

https://doi.org/10.1371/journal.pone.0254669.9007

We used RNA-seq to obtain mapped reads of five tissues, where R1 reached a maximum of
17,497,291. R1 is the root node, which is particularly important for the formation of rhizomes.
We divided the five tissues into two parts for DEG analysis. First, we compared the rootless til-
ler (NR) at the young seedling stage with the four tissues (R1, R2, R3 and R4) in the mature
phase and then studied the DEGs in the four tissues (R1, R2, R3 and R4) in the mature phase.

Phenylpropanoids are very important for the entire process of rhizome development. Lig-
nin widely exists in the secondary cell wall of vascular plants and can provide structural rigidity
for plant uprightness, and its synthesis has been well studied in Melilotus albus [30]. Many key
genes are involved in the lignin synthesis pathway, such as PAL, 4CL, CCR, CAD, HCT, F5H,
COMT and CCoAOMT [31]. For example, CCR and CAD are key enzymes involved in the
specific pathway of lignin synthesis [32, 33]. Previous studies have shown that CAD can
change the structure of lignin but does not have much effect on the content of lignin [34]. As
the first key enzyme in the biosynthetic pathway of lignin, PAL is the first rate-limiting enzyme
in the phenylpropane biosynthesis pathway. It can catalyse the deamination of L-phenylala-
nine to generate cinnamic acid [35]. 4CL can acetylate P-coumaroyl acid to produce P-cou-
maroyl CoA ester, which is the last key enzyme in the phenylpropane biosynthesis pathway
[36]. COMT and CCoAOMT are considered to have important regulatory effects on the
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synthesis of S-type lignin monomers and G-type lignin monomers, respectively [37, 47]. We
identified 10 DEGs in the phenylpropane biosynthesis pathway. We found that most genes
belonging to PAL, 4CL, COMT and CCoAOMT were upregulated in R4 compared with NR
(Fig 7). The upregulation of the expression of these key genes involved in the phenylpropane
biosynthesis pathway may lead to the promotion of lignin synthesis. These results may be
related to the fact that R4 cells divide more actively than NR cells and constantly produce new
cell walls.

During the young seedling stage of rootless tiller growth, starch and sucrose metabolism
have important roles in early development, which may be to accumulate energy for subsequent
growth and promote growth conditions. Genes related to plant hormone signal transduction
are abundant in the mature phase after development is completed. These results are consistent
with the results of studies on the development of lateral buds from the Phyllostachys edulis rhi-
zome [38].

In the process of root development of Caucasian clover, the genes and pathways that regu-
late the development of each part are different. The high content of RACI1 in R1 has been con-
firmed to be related to cell proliferation [39]. In other plants, KAR1 plays an important role in
the synthesis of fatty acids, especially type II fatty acids [40].

The TAA/ABA ratio can regulate praecox rhizome bud germination [40]. Peroxidase can
determine the function of cell wall lignification, cell elongation, stress defence, phytohormonal
regulation, desiccation and structural protein formation [41]. IAA, peroxidase, MYB and
WRKY TF genes are highly expressed in R4, and these genes may be key bud growth genes or
function in enhancing the resistance of buds to prepare for the growth of ground plants. Com-
pared with the other three tissues at the mature phase, many genes in R4 were upregulated, for
example, SAUR, GAUT, SUS and LOX (Fig 3). SAUR is an auxin response factor. The lack of
SAUR function in Arabidopsis leads to shorter hypocotyls and decreased auxin transport [42,
43]. Therefore, we speculate that SAUR can positively regulate the growth of Caucasian clover
root tip cells by regulating the transport of auxin. It has been reported that the GAUT gene
family is of great significance for plant cell wall pectin biosynthesis, and we have also found
high expression of the GAUT gene in Caucasian clover R4, which may have important signifi-
cance for the synthesis of the Caucasian clover cell wall [44]. Another highly expressed gene in
R4, LOX, was confirmed to increase the activity of LOX as the hypocotyl of sunflower seedlings
elongated [45]. Therefore, we speculate that the upregulation of LOX in R4 may be related to
the accumulation of lipids in the root tip. Previous research has shown that sucrose can control
the upward bending of the red rice rhizome [46, 47]; however, we have identified highly
expressed sucrose synthase (SUS) in R4 Caucasian clover, and we speculate that it may have
significance in controlling the direction of rhizome development. Some studies have shown
that MYB transcription factors regulate phenylpropane biosynthesis [48].

In NR, a highly expressed hemicellulose regulatory enzyme, GBE1 (1,4-alpha-glucan
branching enzyme); MYB, which is related to secondary metabolism [49]; and 23 upregulated
ethylene response factor (AP2/ERF) TFs that play essential regulatory roles in plant biotic and
abiotic stress responses and secondary metabolism biosynthesis were upregulated [50]. How-
ever, the genes 4CL, CAD, COMT, and CCoAOMT, which are key enzymes in the lignin syn-
thesis pathway, were mostly downregulated, which is normal for the initial stage of young
roots [34]. Genes related to lignin synthesis were differentially expressed in different parts, but
there was no obvious pattern. We speculate that some 4CL genes in R4 exhibited upregulated
expression because isomers can guide metabolic flux through different pathways to synthesize
various phenolic compounds, such as different monoethylene glycols, flavonoids and isofla-
vones [49]. CAD may change the structure of lignin without exerting much influence on the
lignin content [34]. COMT has different effects on G lignin content and S lignin content in
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different plants, and its effects on lignin content specifically in Caucasian clover need to be
determined [51].

Conclusions

In summary, we reported the transcriptome of the mature phase of the Caucasian clover rhi-
zome and annotated the transcripts. The expression levels in different tissues and annotation
for the transcripts are provided. We analysed the specific expression of genes in different tis-
sues and compared the differences between the NR and mature-phase rhizomes. In addition,
we emphasized the role of the phenylpropane biosynthesis pathway in the rhizome. This study
provides unique insights into the development of Caucasian clover, laying a molecular founda-
tion for future research.
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