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Abstract: This work reports the photocatalytic degradation of methylene blue (MB) dye using
SnS2 and SnO2 nanoparticles obtained from a solvothermal decomposition (in oleylamine) and
pyrolysis (in a furnace) processes, respectively, of the diphenyltin(IV) p-methylphenyldithiocarbamate
complex. The complex, which was used as a single-source precursor and represented as
[(C6H5)2Sn(L)2] (L = p-methylphenyldithiocarbamato), was synthesized and characterized using
various spectroscopic techniques and elemental analysis. The structural properties and morphology
of the as-synthesized nanoparticles were studied using X-ray diffraction (XRD) technique and
transmission electron microscopy (TEM). UV-visible spectroscopy was used to study the optical
property. The hexagonal phase of SnS2 and tetragonal SnO2 nanoparticles were identified, which
exhibited varying sizes of hexagonal platelets and rod-like morphologies, respectively. The direct
band gap energies of both materials, estimated from their absorption spectra, were 2.31 and 3.79 eV
for SnS2 and SnO2, respectively. The photocatalytic performances of the SnS2 and SnO2 nanoparticle,
studied using methylene blue (MB) as a model dye pollutant under light irradiation, showed that
SnO2 nanoparticles exhibited a degradation efficiency of 48.33% after 120 min reaction, while the SnS2

nanoparticles showed an efficiency of 62.42% after the same duration of time. The higher efficiency
of SnS2 compared to the SnO2 nanoparticles may be attributed to the difference in the structural
properties, morphology and nature of the material’s band gap energy.
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1. Introduction

The continuous environmental pollution by different dyes released from different human and
industrial activities has stimulated the need for sustained fundamental and applied research in the
area of environmental remediation [1]. Most waste water from industrial effluents contains dyes such
as methylene blue (MB), rhodamine B (RhB) and methyl violet (MV) [2]. It is important to remove
these dyes from water in order to ensure its reusability, since some of them are highly toxic and
carcinogenic [3]. Methylene blue is a heterocyclic aromatic dye which belongs to the class of recalcitrant
dyes (azo dyes) [4,5]. Its increased usage in the textile industries and potential health hazards have
necessitated the need to devise a way to remove it from waste water before being reused. It causes
increased heart rate, vomiting and tissue necrosis in humans [4,6]. Different physical, chemical and
biological techniques have been developed for the removal of these pollutants and the alleviation of
their negative impact on the environment [7]. Most of these techniques are impeded by high energy
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costs and incomplete degradation. For example, while the adsorption process generates secondary
waste, methods such as reverse osmosis and coagulation are economically not viable and do not
completely remove recalcitrant pollutants such as dyes [1,5,8,9]. Heterogeneous photocatalysis is
considered as a cost-effective alternative with the potential to effect the complete decomposition of dyes
from wastewater. This requires the use of semiconductor nanomaterials such as metal sulfides and
metal oxides [10]. The process proceeds in the presence of solar energy, which supplies the necessary
energy required to drive the reaction process [11]. The solar energy plays an important role since much
of the natural purification of aqueous systems including lagoons, ponds, streams, rivers and lakes is
effected by sunlight, which initiates the breakdown of organic molecules into simpler molecules, and
ultimately to carbon dioxide and other mineral products [12].

Tin chalcogenides are semiconductor materials that have found diverse application in
photocatalysis, solar cells, Li-ion batteries, switches, light emitting diodes, gas sensors and holographic
recording mediums [13]. Generally, they show intense absorption across the electromagnetic spectrum,
with narrow band gaps [14]. Other advantages of these tin based compounds include their relative
abundance, and less toxicity compared to most metals used as semiconducting materials. They also
have tunable band gaps and controllable morphologies [14]. Thus, there has been growing interest
in the synthesis of tin chalcogenides. SnS is a n-type semiconductor with a band gap of 2.18–2.44 eV,
and interesting electrical and optical properties [15]. It has a CdI2-related crystal structure, which
consist of two layers of hexagonally closed packed sulfur anions with sandwiched tin cations, which
are octahedrally coordinated to the closest six neighboring sulfur atoms [16]. Similarly, SnO2 is a
n-type semiconductor. It has been used in diverse electrochemical and catalytic applications including
solar cells, transparent coating materials, heat mirrors, gas sensing and water treatment due to its
unique properties [17–22]. It has a high excitonic bonding energy of 130 eV with a direct band gap
energy of 3.7 eV [22]. SnO2 has attracted much attention due to the exhibition of some catalytic
properties and novel properties such as the quantum size effect on photochemistry and nonlinear
optical properties [23,24]. The control of the morphology of SnO2 is of great importance due its
interesting size- and shape-dependent properties [24].

Different approaches have been employed for the syntheses of these chalcogenides with diverse
morphological variations. A variety of methods, such as gas phase, laser ablation, sol-gel, solvothermal,
hydrothermal, mechanochemical, and pyrolysis of precursor compounds, have been reported [24–26].
The properties and performances of nanostructured materials are closely related to size, morphology,
crystallinity, crystal defect and surface property [26]. These properties could also be influenced by
the method and conditions of preparations [26]. Although several reports exist on the synthesis
of SnO2 and SnS2 nanoparticles, studies involving the use of a single precursor compound for
both chalcogenides, without the introduction of any other material, are very rare. The thermal
decomposition of a single-source precursor such as dithiocarbamates [27,28], diselenocarbamates [29],
semi-/thiosemicarbazone [27,30], carboxylates [31,32] and alkoxides [33] complexes has proven to be
a very important route in the synthesis of metal chalcogenides [34]. The decomposition process of
dithiocarbamate complexes often proceeds via a thiocyanate intermediate, under inert conditions,
which then decomposes to give corresponding metal sulfides as the final residue [35]. Organotin(IV)
dithiocarbamate complexes have shown great potential as single-source precursors for the synthesis of
clean tin sulfide (of different phases) or oxides nanoparticles, depending on the reaction conditions
(inert and in air respectively) [36,37].

In this study, we herein report the synthesis and photocatalytic degradation of methylene blue
dye using tin chalcogenides: SnS2 and SnO2. Both compounds were prepared from diphenyltin(IV)
p-methylphenyldithiocarbamate complex via the solvothermal method (under inert condition) and
direct pyrolysis (in air). The morphological and optical properties of these particles were also
investigated using X-ray diffraction (XRD) technique, scanning electron microscope (SEM) and
Ultraviolet-visible (UV-vs) spectroscopy. Methylene blue (MB), a common organic pollutant (dye) in
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most waste water [2], was used in this study as a model pollutant to investigate the photocatalytic
potency of these compounds.

2. Materials and Methods

Chemicals used in this research were purchased from Merck chemicals (Darmstadt, Germany) and
utilized without purification. The prepared complex was analyzed using nuclear magnetic resonance
spectrophotometer (Bruker Avance III 600 MHz) (1H, 13C and 119Sn NMR) (Billerica, MA, USA), while
the infrared spectrum was obtained on a Bruker Alpha-P FTIR spectrophotometer (Billerica, MA, USA).
The percentage compositions (C, H, N, and S) of the complexes were analyzed using Elementar, Vario
EL Cube (Langenselbold, Germany). Thermogravimetric and differential thermogravimetric analysis
(TGA/DTG) of the synthesized compound was achieved in a SDTQ 600 Thermal analyzer (Newcastle,
DE, USA). Furthermore, the phases of the obtained nanoparticles were identified using X-ray diffraction
(XRD) measurements (at a scanning rate of 0.0018 o/min, using a Rőntgen PW3040/60 X’Pert Pro XRD
diffractometer equipped with nickel filtered Cu Ka radiation (k = 1.5418 Å) at room temperature)
(Shanghai, China). The morphology of these nanoparticles was studied using a TECNAI G2 (ACI)
transmission electron microscopy (TEM) (Hillsboro, OR, USA) with an accelerating voltage of 200 kV.
The optical property study was achieved using ultraviolet–visible spectrophotometer (UV-1901 Agilent
Technology, Cary series UV–vis spectrometer, (Santa Clara, CA, USA). Pyrolysis of the precursor
compound was carried out at 400 ◦C (air) in a muffle furnace (Muffle furnace L 3/12, Nabertherm
GmbH, Bahnhofstr, Germany).

2.1. Synthesis of Sodium p-Methylphenyldithiocarbamate (NaL)

The preparation of the ligand followed an already reported procedure with some modifications
such as the use of NaOH instead of KOH [38].

2.2. Synthesis of the Diphenyltin(IV) p-Methylphenyldithiocarbamate Complex [(C6H5)2SnL2]

Diphenyltin(IV) chloride (0.005 mol) in 10 mL of cold ethanol (4 ◦C) was added to some freshly
prepared sodium salt of p-methylphenyldithiocarbamate in ethanol solution. The obtained mixture
was then stirred at 4 ◦C for about 2 h to give white precipitates. The white precipitated product was
washed with excess ethanol, filtered, and dried under vacuum for the whole day.

[(C6H5)2Sn(L)2]: Yield: 2.82 g (74.80%); M.pt.: 192–194 ◦C; Selected FTIR, υ (cm−1): 1508 (C=N),
1247 (C2–N), 998 (C=S), 2949 (–CH), 3056 (=CH), 3145 (N–H) 531 (Sn–C), 371 (Sn–S); 1H NMR (DMSO)
δ (ppm) = 7.48–7.20 (m, 8H, N–C6H4–CH3–), 2.36 (s, 6H, Ar–CH3), 5.29 (s, 2H, N–H), 7.58–7.49 (m, 10H,
Sn–C6H5); 13C NMR (DMSO) δ (ppm) = 200.01 (–NCS2), 135.46, 130.20, 129.87, 125.51 (N–C6H4–CH3),
21.06 (Ar–CH3), 140, 135.61, 130.11, 128.74 (Sn–C6H5); 119Sn NMR (CDCl3): δ ppm = −315.96;

C28H26N2S4Sn (637.5): C, 52.75; H, 4.11; N, 4.39; S, 20.12; Found: C, 52.25; H, 4.29; N, 4.01; S, 19.99.

2.3. Synthesis of Tin Disulfide Nanoparticles (SnS2)

The synthesis of SnS2 followed a similar report from our research group, with some
modifications [37]. In the heat-up approach, 1 g of [(C6H5)2SnL2] was dispersed into a 20 mL
of oleylamine in a 200 mL two necked round bottom flask. The mixture was degassed while being
stirred for 10 min before heating up to 120 ◦C under N2 gas. The stirring mixture was held for 20 min
and then heated up and maintained at 170 ◦C. After 1 h, the obtained mixture was kept for a few
minutes and allowed to cool to 70 ◦C. This was followed by the addition of excess methanol for the
precipitation of the nanoparticles. The obtained precipitate was washed and centrifuged several times
to obtain the purified nanoparticles.
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2.4. Synthesis of Tin Dioxide Nanoparticles (SnO2)

Similarly, to a reported literature procedure [39], about 2.5 g of the precursor complex
[(C6H5)2SnL2] in a crucible was placed in the furnace and heated at 400 ◦C for 2 h. After the pyrolysis,
the residue left in the crucible was cooled to room temperature and then collected for analysis.

2.5. Evaluation of the Photocatalytic Activities of the Nanoparticles

The photocatalytic properties of the as-synthesized nanoparticles were evaluated by their
degradation efficiency against methylene blue (MB) under a UV–visible light irradiation (k > 300 nm),
at room temperature. The photocatalytic potentials of these materials were carried out in a photo-reactor
equipped with a 160 W high pressure mercury lamp. In a typical procedure [40], an aqueous solution of
methylene blue (MB) (100 mg/L) was prepared by dissolving 0.10 g of methylene blue in 1 L deionized
water. Then, 10 mg of the as-synthesized nanoparticles was introduced into 50 mL solution of dye
and stirred magnetically for 2 h to establish equilibrium in the dark. The resulting suspension was
then stirred at a regular speed while being irradiated in the photo-reactor. Aliquots of about 3 mL at
different intervals were taken and the absorption spectra of these aliquots were obtained [41].

3. Results

3.1. Synthesis of the Ligand (L) and Complex [(C6H5)2SnL2]

Dithiocarbamate ligands obtained from primary amines are generally less stable compared to those
obtained from secondary amines due to the presence of the acidic hydrogen on the nitrogen [38,42].
The synthesis of dithiocarbamate ligands from primary amine may sometimes be carried out under
an inert atmosphere, as in the case of the p-methylphenyl dithiocarbamate L. This is because of their
instability, which often leads to their decomposition into their corresponding isothiocyanate [43]. The
complexes were prepared by the reaction of the ligands with the respective organotin salt, as shown in
Scheme 1. The reaction proceeded by the replacement of an equivalent number of chloride ions of the
organotin(IV) salt by the ligand. The complex was characteristically white, soluble in dichloromethane,
chloroform, dimethylsulfoxide and sparingly soluble in alcohols.
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Scheme 1. Synthesis route to diphenyltin(IV) and p-methylphenyldithiocarbamate [(C6H5)2Sn(L)2].

3.2. Spectroscopic Studies of the Precursor Complex [(C6H5)2Sn(L)2]

Fourier transform infra-red spectra of dithiocarbamate ligands and complexes have been widely
reported. The FTIR bands of the ligands and complexes were assigned following other similar
spectroscopic reports [42]. A stretching vibration band due to the partial double bond character of
C–N was observed at 1508 cm−1 in the spectrum of the complex. Also, the presence of a strong band
at 998 cm−1, ascribed to C–S stretching vibration, suggested a bidentate coordination between the
diphenyltin(IV) moiety and the dithiocarbamate ligand [44]. Furthermore, a low intensity peak at
371 cm−1 was also observed, which was ascribed to the presence of the Sn–S bond [45,46].

In the 1H NMR spectrum, the protons of the aromatic group appeared as a multiplet, in the
downfield region between 7.47 and 7.12 ppm, as shown in Figure 1a. The peaks with the chemical shift
in this region were attributed to the proton signals that are ortho to the carbon of the thioureide group
because they are more deshielded due to the electronegative N atom and the proximity to the –CS2

group [38]. Similarly, the signals due to the phenyl groups on the organotin moiety were found as a
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complex multiplet in the same range as the diphenyltin ring of the dithiocarbamate moiety. The signal
due to the protons of the methyl group found on the para position of the ring in the complex appeared
at 2.36 ppm. The signal observed at a higher frequency in the complex around 5.29 ppm has been
ascribed to the proton of the N-H, and its position is slightly higher because of the electronegative N
atom [47,48].
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The 13C NMR spectrum (presented in Figure 1b) showed a weak signal at 207 ppm, ascribed
to the thioureide carbon atom (–NCS2). The region in which these peaks occurred in the complex
suggested the contribution of the double bond character of the N–C bond in the dithiocarbamate
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moiety [38]. The aromatic carbon and the diphenyltin carbon signals resonated within the same
range of 140–125 ppm [47]. Furthermore, the signals ascribed to the para-methyl carbon of the
complex resonated at about 21 ppm [38]. The 119Sn NMR spectrum of the complex showed a peak at
approximately −315 ppm, which was suggestive of a hexa-coordinated geometry around the Sn metal.

3.3. Thermogravimetric Analysis (TGA) of Diphenyltin(IV) and p-Methylphenyldithiocarbamate
[(C6H5)2SnL2]

The thermogravimetric and the differential thermogravimetric (TG/DTG) plots of the complex
show a two-step decomposition pathway, as shown in Figure 2. The data obtained from the TG/DTG
plots are summarized in Table 1. The first step occurred in the temperature range of 100–217 ◦C. The
mass found after this stage was 82.98% of the starting mass and this could be attributed to the loss of
CH3–C6H4 from the ligand molecule of the complex, and agrees well with the calculated value (calc.
83.21%). This was followed by a second and final decomposition in the range 230–321 ◦C to give a black
residue. The mass found was 50.10% of the starting mass and this agreed well with the calculated value
of Sn2S3 (calc. 52.10%) [49]. The observed tin sulfide phase obtained indicates that, as the temperature
goes higher than 200 ◦C, different phases of tin sulfide are obtainable, which implies that the phase of
the residue is temperature dependent. Hence, to obtain the desired tin sulfide (nanoparticle) phase,
the thermolysis under nitrogen was carried out at 170 ◦C.
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Figure 2. Thermogravimetric and differential thermogravimetric (TG/DTG) curves of diphenyltin(IV)
p-methylphenyldithiocarbamate obtained under nitrogen atmosphere (75 mL/min), heating rate
10 ◦C/min.

Table 1. Thermal analysis data of diphenyltin(IV) and p-methylphenyldithiocarbamate.

Temperature Range of
Decomposition (◦C) DTG Peak T (◦C) Product Obtained after

Decomposition
Mass of Residue (mg)

Found (Calc)

1st step 2nd step 1st step 2nd step 1st step 2nd step 1st step 2nd step

100–217 230–321 216 303
(CH3-Ph)
(HNCS2)2
Sn (Ph)2

Sn2S3
11.90

(11.93) 7.19 (7.47)
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3.4. X-ray Diffraction Study of the Synthesized SnS2 and SnO2 Nanoparticles

The XRD patterns of the synthesized nanoparticles (SnS2 and SnO2) are presented in Figure 3a,b.
The observed diffraction peaks (Figure 3a) at 2θ = 28, 30, 32, 42, 46, 50, 51, 55, 58, 60, 63, 67 and 70
were indexed as (100), (002), (101), (102), (003), (110), (111), (103), (200), (201), (004), (202) and (113)
diffractions, respectively. These were found to match with the hexagonal phase of SnS2 nanoparticles,
with JCP2 card No. 40–1467 (lattice parameters a = 3.648 Å, c = 5.898 Å). The sharpness of these peaks
indicated good crystallinity, while the absence of any other peak, such as SnO2, SnS and Sn, suggests
that pure phase SnS2 nanoparticles was obtained [36]. Furthermore, the preferred orientation of the
synthesized SnS2 nanoparticles was towards the (101) plane, similar to the earlier report for SnS2 [50].
The diffraction pattern obtained from the calcined complex at 400 ◦C confirmed the formation of SnO2

nanoparticles. These SnO2 nanoparticles possess a tetragonal structure, with a JCP2 card No: 41–1445
(lattice parameters a = 4.738 Å, c = 3.187 Å) [51]. The XRD spectra, shown in Figure 3b, indicate that
the peaks are somewhat broader than those observed for the SnS2 nanoparticles, suggesting a smaller
crystallite diameter [52]. The obtained diffraction pattern for SnO2 nanoparticles suggests that the
preferred growth orientation is in the direction of the (211) plane, similar to those reported in the
literature [22,53]. In addition, the average crystallite size, estimated from the 101 peak of the XRD data
using Scherrer’s equation [54], indicated estimated particle sizes of 68.8 and 17.62 nm for SnS2 and
SnO2 nanoparticles, respectively.

Materials 2020, 13, x FOR PEER REVIEW 7 of 15 

 

that pure phase SnS2 nanoparticles was obtained [36]. Furthermore, the preferred orientation of the 
synthesized SnS2 nanoparticles was towards the (101) plane, similar to the earlier report for SnS2 [50]. 
The diffraction pattern obtained from the calcined complex at 400 °C confirmed the formation of SnO2 
nanoparticles. These SnO2 nanoparticles possess a tetragonal structure, with a JCP2 card No: 41–1445 
(lattice parameters a = 4.738 Å, c = 3.187 Å) [51]. The XRD spectra, shown in Figure 3b, indicate that 
the peaks are somewhat broader than those observed for the SnS2 nanoparticles, suggesting a smaller 
crystallite diameter [52]. The obtained diffraction pattern for SnO2 nanoparticles suggests that the 
preferred growth orientation is in the direction of the (211) plane, similar to those reported in the 
literature [22,53]. In addition, the average crystallite size, estimated from the 101 peak of the XRD 
data using Scherrer’s equation [54], indicated estimated particle sizes of 68.8 and 17.62 nm for SnS2 
and SnO2 nanoparticles, respectively. 

 
Figure 3. The obtained XRD pattern of (a) SnS2 and (b) SnO2 synthesized from diphenyltin(IV) p-
methylphenyldithiocarbamate. 

3.5. Morphology of the Synthesize SnS2 and SnO2 

The morphology and size of the obtained nanoparticles were studied using transmission 
electron microscope (TEM). Figure 4a,b shows the morphologies of both SnS2 and SnO2 nanoparticles 
in different magnifications. An irregular array of hexagonal plate was observed for the SnS2 (Figure 
4a) with an average side of 52.08 ± 17.99 nm. This observed shape is similar to those reported by Wang 
et al. [55] and Li et al. [56], which displayed a relatively better uniform structure. Furthermore, Mali 
et al. [57] also reported similar features, which suggested that the (101) and (110) preferred 
orientations in the XRD patterns might have influenced the formation of hexagonal sheets of SnS2 
[57]. The morphology of the SnO2 nanoparticles was completely different from what was observed 
for SnS2, as somewhat spherical nanoparticles which tended towards a short rod were obtained [54]. 
These particles were also smaller than the SnS2 nanoparticles. The average particle diameter was 
found to be 10.85 ± 4.043 nm for SnO2, which was within the estimated size obtained from the XRD. 

20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

In
te

ns
ity

 (a
.u

)

2θ (degree)

(1
00

)
(0

02
)

(1
01

)

(1
10

)

(1
02

)
(0

03
) (1

11
)

(1
03

)

(1
12

)
(2

01
)

(0
04

)

(2
02

)

20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800
* N

aC
l

(1
12

)

(2
11

)

(3
20

) (3
21

)

(3
01

)

(2
21

)

(0
02

)(2
20

)

(2
00

)

(1
01

)

(1
10

)

In
te

ns
ity

 (a
.u

)

2θ (degree)

(a) (b)

Figure 3. The obtained XRD pattern of (a) SnS2 and (b) SnO2 synthesized from diphenyltin(IV)
p-methylphenyldithiocarbamate.

3.5. Morphology of the Synthesize SnS2 and SnO2

The morphology and size of the obtained nanoparticles were studied using transmission electron
microscope (TEM). Figure 4a,b shows the morphologies of both SnS2 and SnO2 nanoparticles in different
magnifications. An irregular array of hexagonal plate was observed for the SnS2 (Figure 4a) with an
average side of 52.08 ± 17.99 nm. This observed shape is similar to those reported by Wang et al. [55]
and Li et al. [56], which displayed a relatively better uniform structure. Furthermore, Mali et al. [57]
also reported similar features, which suggested that the (101) and (110) preferred orientations in the
XRD patterns might have influenced the formation of hexagonal sheets of SnS2 [57]. The morphology
of the SnO2 nanoparticles was completely different from what was observed for SnS2, as somewhat
spherical nanoparticles which tended towards a short rod were obtained [54]. These particles were also
smaller than the SnS2 nanoparticles. The average particle diameter was found to be 10.85 ± 4.043 nm
for SnO2, which was within the estimated size obtained from the XRD.
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3.6. Ultraviolet-Visible Absorption Spectra

Semiconductors are known for their good optical properties, and hence found usage in
optoelectronic materials [58]. The optical properties of the as-synthesized materials were studied
using UV-vis spectroscopy and the obtained spectra are presented in Figure 5a,b for the SnO2 and
SnS2 nanoparticles, respectively. Their band gap energies (eV) were also estimated using the theory of
optical absorption for direct band gap semiconductors [13], and Tauc’s plots for both materials are
presented as an inset in Figure 5a,b. TheSnS2 nanoparticles showed a broad absorption around 405 nm,
while the SnO2 nanoparticles exhibited a strong absorption at 254 nm, with band gap energies of 2.31
and 3.79 eV respectively. These observed band gap energies were found to be within the range of those
reported in the literature [13,58–62].
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Figure 5. UV-vis spectra and Tauc’s plots (inset) of (a) SnO2 and (b) SnS2 nanoparticles.

3.7. Photocatalytic Study

The photocatalytic activities of the nanoparticles were evaluated with the aid of a UV-spectroscopy
and the obtained absorption spectra for the degraded dye are presented in Figure 6a,b for both SnS2

and SnO2 nanoparticles, respectively. The absorption maxima for MB is around 665 nm (see Figure 7)
due to the presence of the π-system within the dye molecules [63]. The photodegradation efficiency of
these materials was estimated using the formula:

Degradation Efficiency (%) =
A0 −At

A0
× 100% (1)

As shown in the figures, the type of nanomaterial used affects the degradation efficiency of MB
under the UV-visible light irradiation. The as-synthesized SnO2 nanoparticles exhibited a degradation
efficiency of 48.33% after 120 min reaction, while the SnS2 nanoparticles showed an efficiency of 62.42%
after the same duration of time. Furthermore, the plot of ln(Ao/At) against irradiation time presented
in Figure 6c,d shows a linear correlation, suggesting a pseudo first-order kinetics. The obtained rate
constant (k) reflects a good absorption rate [40]. The rate constant and correlation coefficient are
suggestive that the SnS2 nanoparticles have a better degradation potential than the SnO2 nanoparticles.
The observed differences in their photocatalytic activities may be due to a combination of several
factors such as the nature of the nanoparticles, band gap, morphology, crystal defect and photochemical
stability [15]. Generally, the mechanism of heterogeneous photocatalysis for the degradation of organic
pollutants involves the absorption of sufficient energy from light by the photocatalytic semiconductor
such as SnS2/SnO2 nanoparticles, as presented in Figure 7. The absorbed light energy causes the
excitation of electrons from the valence band (VB) of the semiconductor photocatalyst into the
conduction band (CB). This process leads to the formation of a reactive electron–hole pair, which then
migrates to the semiconductor–water interface to participate in redox reactions with the surrounding
species. The outcome of this interaction consequently leads to the degradation of the pollutants in
the medium [64]. In order to maximize the absorption of the solar radiation, it is important for the
semiconductor to have a band gap energy within the solar spectrum, because the narrowness of the
band gaps has been reported to play a vital role in the amount of photons it could absorb at a given
time. Hence, in this case, the SnS2 nanoparticle with a narrower band gap energy showed better
efficiency when compared to its SnO2 counterpart.

Dyes naturally undergo degradation in air and under sunlight [65,66]. However, this degradation
process is usually slow; hence, the introduction of a semiconductor photocatalyst to speed up the process
is a significant process. The use of light as a source of energy plays a key role in the photocatalytic



Materials 2020, 13, 2766 10 of 15

process. Related studies have shown that these semiconductors exhibited no appreciable catalytic
decomposition of dye molecules in the dark phase, often used as a control experiment [7,67]. These
studies confirmed that photocatalytic reactions rarely proceed in the absence of light, even in different
organic dyes and semiconductor materials [7].
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Figure 6. UV–vis spectra of (a) SnS2 and (b) SnO2 nanoparticles regarding the photocatalytic degradation
of MB; degradation efficiency in percentages of (c) SnS2 (d) SnO2; plot of ln Ao/At against time showing
the first order kinetics of (e) SnS2 (f) SnO2.
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4. Conclusions

A new diphenyltin (IV) complex of dithiocarbamate derived from a primary amine was successfully
synthesized and characterized. Spectroscopic analyses suggested that the p-methylphenyldithiocarbamate
ligand was coordinated in a bidentate fashion to the central tin atom which was bonded to the biphenyl
groups. The potential of the complex as a good precursor compound for the synthesis of SnS2 and
SnO2 was established. The obtained nanoparticles were optically and structurally characterized. Their
morphologies showed that hexagonal shaped sheets were obtained for SnS2, while the SnO2 nanoparticles
displayed spherical shapes that tend toward short rods. The optical study showed that both SnS2 and
SnO2 gave a direct band gap of 2.31 and 3.79 eV, respectively. The photocatalytic evaluation of both
compounds, using MB as a model pollutant, showed that SnS2 exhibited better degradation efficiency
compared to SnO2 nanoparticles under similar conditions. This novel complex has shown the capacity as
a useful precursor complex for the synthesis of useful tin chalcogens under varying conditions.
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