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Simple Summary: The aim of this work was to investigate prognostic genetic factors in melanoma
patients. Phenotypic and disease data as well as biomaterial were collected after informed consent
from patients followed up in a Skin Cancer Center of a University clinic. Genome-wide analysis
(GWAS) was performed with survival data of 556 melanoma patients and genetic data including
more than 300,000 common polymorphisms. The SNP rs7551288 reached suggestive genome-wide
significance (p = 2 × 10−6). This intronic variant of the DHCR24 gene is involved in the cholesterol
synthesis pathway. Further analyses and a literature review suggest an important role of this locus
for the clinical course of disease in melanoma patients.

Abstract: Melanoma incidence rates are high among individuals with fair skin and multiple naevi.
Established prognostic factors are tumour specific, and less is known about prognostic host factors. A
total of 556 stage I to stage IV melanoma patients from Germany with phenotypic and disease-specific
data were analysed; 64 of these patients died of melanoma after a median follow-up time of 8 years.
Germline DNA was assessed by the HumanCoreExome BeadChip and data of 356,384 common
polymorphisms distributed over all 23 chromosomes were used for a genome-wide analysis. A
suggestive genome-wide significant association of the intronic allele rs7551288*A with diminished
melanoma-specific survival was detected (p = 2 × 10−6). The frequency of rs7551288*A was 0.43 and
was not associated with melanoma risk, hair and eye colour, tanning and total naevus count. Cox
regression multivariate analyses revealed a 5.31-fold increased risk of melanoma-specific death for
patients with the rs7551288 A/A genotype, independent of tumour thickness, ulceration and stage of
disease at diagnoses. The variant rs7551288 belongs to the DHCR24 gene, which encodes Seladin-1, an
enzyme involved in the biosynthesis of cholesterol. Further investigations are needed to confirm this
genetic variant as a novel prognostic biomarker and to explore whether specific treatment strategies
for melanoma patients might be derived from it.
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1. Introduction

Melanoma has high incidence rates among fair-skinned populations and is still a
deadly cancer once metastasised. The predominant localisation of melanoma is the outer
skin reflecting the exceptional vulnerability to the main carcinogen, UV radiation, but
also the ideal suitability for early detection [1]. Melanomas most often arise from single
melanocytic cells but also evolve from existing naevi, which are benign conglomerations of
melanocytes in the skin [2]. As a tumour also affecting young adults, melanoma is among
those cancers with the most substantial impact on years of life lost [3]. Incidence rates are
still rising globally [4]. So far, environmental, phenotypic and genetic risk factors have been
described for melanoma development. UV exposure is the only known environmental risk
factor, and both UV exposure and genetic variants influence the number of melanocytic
naevi, which is the most important independent melanoma risk factor [5]. Further es-
tablished independent risk factors are the number of large or clinically atypical naevi,
hair colour, skin type, a positive family history, freckling and a history of sunburns, as
described in a risk algorithm tool based on a pooled dataset from 16 case–control studies [6].
Several genome-wide association studies (GWAS) on melanoma risk have been conducted
in recent years and have identified an increasing number of risk loci [7–15]. Some of these
melanoma risk loci are independent from host pigmentation traits and have been described
in other cancer entities as well, such as variants within TERT, which are associated with
longer telomere length [16], or variants of the gene CDKN2A, which are involved in tumour
suppression [17]. Most of the retrieved melanoma risk loci, however, e.g., variants within
the genes MC1R, SLC45A2, ASIP, MTAP, IRF4 and TYR, are associated with pigmentary
traits or total naevus count (TNC) [18].

The reported incidence and mortality rates of melanoma vary greatly among different
global regions and ethnicities. While in some world regions, such as Middle Africa, nearly
all melanoma patients die of their disease, in other world regions, the vast majority of
patients do not develop metastases after the excision of the primary tumour. This is mostly
seen in those areas with the highest incidence rates [19]. Studies on melanoma risk have
been mainly performed on cohorts of populations with high incidence rates including a
substantial rate of low-risk melanomas. Melanoma deaths are caused by metastases, which
are rarely evident at primary diagnoses and develop typically with a latency of 1–3 or
more years [20]. Prognostic factors for disease progression and melanoma survival have
been established so far on tumour-specific characteristics, such as tumour thickness and
ulceration. These factors contribute to the latest AJCC staging classification [21]. A focus
on melanoma survival instead of melanoma development for genetic risk analyses might
be suitable to select and classify patients who are at risk of developing metastasis. This
study was carried out to find host-specific genetic prognostic markers in order to identify
patients at risk of melanoma death. This might allow improved patient surveillance and
management in the future.

2. Materials and Methods
2.1. Patient Recruitment and Measures

To conduct the present survival analyses, a cohort of 556 melanoma patients from
Tübingen, Germany was drawn from a case–control study, “hereditary effects in malignant
melanoma”. The control group of patients without melanoma was not included for the
present analyses. The study was approved by the ethics committee of Eberhard Karls
University in December 2007 (ethics number 376/2007B01). The first participant was
included in 2007 and the last one in 2011. All study participants gave written informed
consent prior to study entry.

Study participants were recruited and investigated by physicians during their regular
appointments at the melanoma outpatient clinic. The patients completed a questionnaire
covering information on pigmentation traits, response to sun exposure, personal sun
behaviour as well as personal and family history of melanoma or other cancers. The total
naevus count (TNC) was recorded by the physicians after physical examination and by
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the patients as a self-recorded estimate. A blood sample was taken from each patient for
DNA analyses.

All melanoma patients were part of the Central German Melanoma Registry after
written informed consent. The Central German Melanoma Registry recorded melanoma-
specific data, such as the excision date of the primary melanoma, localisation, histology and
initial stage of disease as well as date and localisation of subsequent metastases, subsequent
clinical stages, date and cause of death. Data of the patients were prospectively obtained
by the responsible physicians and entered by research assistants of the Central German
Melanoma Registry.

2.2. Genotyping

Genomic DNA was derived from 2 mL EDTA whole blood samples, which were
stored at −20 ◦C. The DNA extractions were performed with the column-based QIAamp
DNA Blood Midi Kit (Qiagen, Inc., Valencia, CA, USA) according to the manufacturer’s
instructions. Purified DNA was eluted from the affinity column with Buffer AE using
volumes between 300 and 500 uL. The total yield per sample ranged between 2.9 and
140 µg of DNA. To obtain the required DNA concentrations of the genotype assays, a
total of 372 samples were processed with a centrifugal evaporator (Savant Instrument,
Inc., Farmingdale, NY, USA, model no. SVC 100 H). The DNA quality and concentration
were measured using a spectrophotometer (NanoDrop™, Thermo Scientific, Waltham, MA,
USA). Genotyping was performed using the Illumina HumanCoreExome-24 Chip array
by the UQ Centre for Clinical Genomics (UQCCG) at the Translational Research Institute
(TRI). A minimum of 2.5 µg of DNA was provided. The samples were submitted at a
concentration range of 100 to 300 ng/uL, aliquoted in 96-well semi-skirted PCR Plates
(Axygen Scientific, Union City, CA, USA) and sealed with Clear Self-Adhesive Topseal
(PerkinElmer, Akron, OH, USA). Genotyping results were provided in a binary format
(“bed”, “bim”, “fam” files). Study-participant genotyping success rates were 98.3% on
average (minimum 97.2%). We removed monomorphic SNPs, those with a Hardy–Weinberg
p-value < 1 × 10−5, and retained rarer SNPs, pruning only those where one alternative allele
was observed in the entire sample, as empirically these did lead to spuriously significant
survival association results.

2.3. Statistics

Genotypic data were extracted with the open-source C/C++ tool Plink [22]. Question-
naire data, registry data and genotypic data were entered and analysed using the statistical
package SPSS (IBM statistics version 21) and Sib-pair (© by David Duffy, Version 1.0 beta).
The genome-wide association study was performed with Sib-pair using the log-rank test
with gene-dropping based empirical p-value estimation. The analysed time was defined
between the date of first diagnoses and date of the last follow up. Melanoma deaths were
recorded as events. Censored cases were patients who died of another reason and patients
who were alive at the time of the last follow up. Survival probabilities were calculated using
the Kaplan–Meier method. Survival plots were generated with Stata (StataCorp, College
Station, TX, USA). An association test of the phenotype variables was performed using a
two-sided Pearson Chi-Square test. Cox proportional hazard models were used to estimate
hazard ratios (HRs) and their 95% confidence intervals (CIs). Patients with missing data
were excluded. Multivariate analysis was performed using a forward stepwise method,
p-values of <0.05 were considered significant.

3. Results

A cohort of 556 melanoma patients from Germany and genetic data of 356,384 common
polymorphisms of each patient were available for analyses. A genome-wide association
study was carried out to investigate the impact of each single polymorphism on overall
survival. The statistical significance levels were visualised by a Manhattan plot (Figure 1).
Each dot corresponds to the p-level of a single polymorphism (y-axis) and to its chromo-
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somal location (x-axis). A post-analysis investigation of the top hits was performed and
significant results driven by single events were deselected. The Bonferroni level of signifi-
cance (p < 5 × 10−8) was reached by none of the remaining polymorphisms. The threshold
for a suggestive association which requires further validation was set at p < 5 × 10−6. The
polymorphism rs7551288, located at chromosome 1, reached this suggestive genome-wide
significance level with p = 2 × 10−6.
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gle base change from guanine to adenine (G/A) in an intronic region of the DHCR24 gene. 
In the European population, the rs7551288*G allele has a higher frequency than the
rs7551288*A allele. There are three different genotypes, the homozygous genotypes GG 
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populations as reported in the dbSNP database. The Kaplan–Meier survival curves shown
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(G/G) had the best survival probabilities (green line), patients with two rs7551288*A al-
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between (red line). Survival probabilities were calculated for the whole cohort of 556 mel-
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Figure 1. Manhattan plot illustrating the genome-wide association results of survival analyses in
556 melanoma patients from Germany. Each dot represents the −log10 p-value of the log rank test
of the genotyped polymorphisms in association to the survival time of the patients. The dots are
displayed on the x-axis according to the position of the polymorphisms on the 23 chromosomes. The
SNP rs7551288 reached suggestive genome-wide significance with a p-value of 2 × 10−6.

The polymorphism rs7551288 is a single-nucleotide polymorphism (SNP) with a sin-
gle base change from guanine to adenine (G/A) in an intronic region of the DHCR24
gene. In the European population, the rs7551288*G allele has a higher frequency than the
rs7551288*A allele. There are three different genotypes, the homozygous genotypes GG
and AA and the heterozygous genotype GA with a rs7551288*G allele and a rs7551288*A
allele. The minor allele frequency (MAF) of rs7551288*A was 0.43 in the assessed cohort
from Germany. The rs7551288*A frequency was between 0.37 and 0.43 in European popula-
tions, between 0.75 and 0.87 in Asian populations, and between 0.79 and 0.88 in African
populations as reported in the dbSNP database. The Kaplan–Meier survival curves shown
in Figure 2 revealed significant differences in survival probabilities between patients ac-
cording to their rs7551288 genotype (p < 0.001). Patients with two rs7551288*G alleles (G/G)
had the best survival probabilities (green line), patients with two rs7551288*A alleles (A/A)
had the worst outcome (blue line) and heterozygous patients (G/A) were in between (red
line). Survival probabilities were calculated for the whole cohort of 556 melanoma patients
starting at the date of primary diagnoses (Figure 2a), the time was given in months (y-axis).
A total of 64 melanoma-specific deaths were recorded during follow up. Of the 556 patients,
92 patients developed distant metastases and entered stage IV and 1 patient died in the
month of stage IV diagnosis. Survival probabilities were calculated for the subgroup of
91 stage IV patients (Figure 2b). The Kaplan–Meier curve demonstrates again a significant
impaired survival for stage IV patients with two rs7551288*A alleles (A/A, blue line), log
rank overall comparison, p < 0.001.
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Figure 2. Kaplan–Meier curves stratified for the three different genotypes at rs7551288, patients
homozygous for the rs7551288*A allele (A/A), heterozygous (A/G) and homozygous for the
rs7551288*G allele (G/G). Survival probabilities were calculated from (a) date of primary diagnoses
and (b) date of stage IV diagnoses until last date of follow up, time is given in months.

During the recruitment period, new treatment options emerged for metastatic disease
and melanoma survival increased with therapies such as immune-checkpoint inhibitors
or BRAF inhibitors for patients with BRAF-positive melanomas. We therefore assessed
survival times according to the systemic treatments the patients received. The BRAF
status was known for 32 patients (34.8%) in our cohort of stage IV patients; 18.5% were
BRAF positive and 16.3% were BRAF negative (Figure 3a). Half of the patients received
systemic treatment within a clinical trial, 57.6% received chemotherapy, 14.1% received
BRAF inhibitor treatment and 44.6% received immunotherapy, which included anti CTLA4
and PD1 antibodies as well as other immunotherapies within clinical trials (Figure 3a).
Most patients received more than one systemic treatment. The three genotypes G/G, A/G
and A/A were evenly distributed among the different treatment groups. The median
overall survival in stage IV was 15 months for the whole cohort, 31 months for patients
with G/G genotype, 21 months for patients with A/G genotype and 9 months for patients
with A/A genotype. Patients who received BRAF inhibitors had a median survival of
31 months compared to 14 months for patients who did not receive BRAF inhibitors.
Patients with the A/A genotype who received BRAF inhibitors had a median survival of
14 months compared to 9 months for those without BRAF inhibitor treatment. However,
due to small numbers, these results must be treated with caution. Patients who received
immunotherapy had a median survival of 18 months compared to 11 months for patients
without immunotherapy. Patients with genotype A/A and immunotherapy had a median
survival of 15 months compared to 7 months for those without immunotherapy. Patients
with the genotype A/A who received chemotherapy had a median survival of 9 months;
those who received no chemotherapy had a median survival time of 6 months.

The SNP rs7551288 was not associated with melanoma risk. This was assessed in
the present cohort in comparison with 1988 patients unaffected of melanoma from south
Germany as part of the KORA study [23]. In addition, the absence of a melanoma risk
association was confirmed in the dataset from Law et al. [12] comprising 16,000 melanoma
patients and 26,000 controls (p = 0.49). The presence of one or two rs7551288*A alleles was
not associated with pigmentation related traits, such as hair colour, eye colour, tanning
response or TNC (Table 1). There was no association with other host-specific factors, such
as obesity, a history of a second cancer or a positive family history of melanoma.
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green 91 (16.4) 18 (18.8) 42 (14.8) 31 (17.6)
brown 133 (23.9) 19 (19.8) 72 (25.4) 42 (23.9)

na 4 (0.7) - 1 (0.4) 3 (1.7)

UV tanning response

no tan 97 (17.4) 20 (20.8) 52 (18.3) 25 (14.2)

0.400
light tan 271 (48.7) 49 (51.0) 141 (49.6) 81 (46.0)

strong tan 130 (23.4) 20 (20.8) 59 (20.8) 51 (29.0)
always tan 52 (9.4) 7 (7.3) 27 (9.5) 18 (10.2)

na 6 (1.1) - 5 (1.8) 1 (0.6)

Total naevus count

0–10 134 (24.1) 18 (18.8) 77 (27.1) 39 (22.2)

0.326

11–30 198 (35.6) 43 (44.8) 92 (32.4) 63 (35.8)
31–50 105 (18.9) 18 (18.8) 49 (17.3) 38 (21.6)
51–100 79 (14.2) 13 (13.5) 45 (15.8) 21 (11.9)
>100 38 (6.8) 4 (4.2) 20 (7.0) 14 (8.0)

na 2 (0.4) - 1 (0.4) 1 (0.6)
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Table 1. Cont.

Characteristics
All Patients

rs7551288 Genotype

p *A/A A/G G/G

n = 556 (%) n = 96 (%) n = 284 (%) n = 176 (%)

Obesity
BMI ≤ 30 426 (76.6) 77 (80.2) 220 (77.5) 129 (73.3)

0.606BMI > 30 100 (18.0) 14 (14.6) 53 (18.7) 33 (18.8)
na 30 (5.4) 5 (5.2) 11 (3.9) 14 (8.0)

Second cancer
yes 37 (6.7) 7 (7.3) 14 (4.9) 16 (9.1)

0.212no 519 (93.3) 89 (92.7) 270 (95.1) 160 (90.9)

Family history of Melanoma
yes 29 (5.2) 7 (7.3) 9 (3.2) 13 (7.4)

0.094no 508 (91.4) 88 (91.7) 263 (92.6) 157 (89.2)
na 19 (3.4) 1 (1.0) 12 (4.2) 6 (3.4)

* Pearson Chi-Square Asymp.Sig (2-sided).

The association of the rs7551288 genotype with melanoma-specific data was analysed.
A significant association of rs7551288*A with tumour thickness (p = 0.034) with the initial
stage at diagnoses (p = 0.041) and with melanoma-specific death (p < 0.001) was found.
There was no significant association with the histological subtype and with the presence of
ulceration of the primary tumour (Table 2).

Table 2. Tumour characteristics and rs7551288 genotype.

Characteristics
All Patients

rs7551288 Genotype

p *A/A A/G G/G

n = 556 (%) n = 96 (%) n = 284 (%) n = 176 (%)

Tumour
thickness

<1.0 mm 127 (22.8) 20 (20.8) 69 (24.3) 38 (21.6)

0.034
1.01–2.0 mm 213 (38.3) 31 (32.3) 100 (35.2) 82 (46.6)
2.01–4 mm 126 (22.7) 22 (22.9) 73 (25.7) 31 (17.6)

>4 mm 53 (9.5) 15 (15.6) 26 (9.2) 12 (6.8)
na 37 (6.7) 8 (8.3) 16 (5.6) 13 (7.4)

Histology

SSM 307 (55.2) 57 (59.4) 149 (52.5) 101 (57.4)

0.287

NM 90 (16.2) 12 (12.5) 53 (18.7) 25 (14.2)
LMM 26 (4.7) 5 (5.2) 18 (6.3) 3 (1.7)
ALM 28 (5.0) 6 (6.3) 11 (3.9) 11 (6.3)
others 51 (9.2) 9 (9.4) 26 (9.2) 16 (9.1)

na 54 (9.7) 7 (7.3) 27 (9.5) 20 (11.4)

Ulceration
no 322 (57.9) 58 (60.4) 165 (58.1) 99 (56.3)

0.914yes 122 (21.9) 24 (25.0) 62 (21.8) 36 (20.5)
na 112 (20.1) 14 (14.6) 57 (20.1) 41 (23.3)

Stage at
Diagnoses

Stage I 289 (52.0) 39 (40.6) 147 (51.8) 103 (58.5)

0.041
Stage II 169 (30.4) 31 (32.3) 93 (32.7) 45 (25.6)
Stage III 81 (14.6) 22 (22.9) 36 (12.7) 23 (13.1)
Stage IV 6 (1.1) 0 (0) 3 (1.1) 3 (1.7)

na 11 (2.0) 4 (4.2) 5 (1.8) 2 (1.1)

Melanoma
Death

yes 64 (11.5) 23 (24.0) 28 (9.9) 13 (7.4)
<0.001no 492 (88.5) 73 (76.0) 256 (90.1) 163 (92.6)

* Pearson Chi-Square Asymp.Sig (2-sided). Significant p-values shown in bold.

To quantify the impact on melanoma-specific survival of the rs7551288 genotype
compared to other established prognostic factors such as tumour thickness, ulceration and
stage at diagnoses, univariate and multivariate cox regression analyses were performed
(Table 3). Univariate analyses revealed an approximately four times increased risk of
melanoma death for patients with two rs7551288*A alleles (HR 3.95 [95% CI 1.99–7.83],
p < 0.001) compared to patients with two rs7551288*G alleles. Heterozygous patients
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showed a trend towards an increased risk of melanoma death (HR 1.46 [95% CI 0.76–2.83],
p = 0.26). Patients with a primary tumour thicker than 2 mm had a 1.84-fold increased
risk of dying from melanoma (HR 1.84 [95% CI 1.08–3.12], p = 0.024) compared to patients
with a primary melanoma of ≤2.0 mm. An ulcerated primary tumour increased the risk
of melanoma death 2.49-fold (HR 2.49 [95% CI 1.44–4.31], p = 0.001) and patients with
an advanced stage at diagnosis (stage III + IV compared to stage I + II) had a 3.62-fold
increased risk of melanoma death (HR 3.62 [95% CI 2.16–6.08], p < 0.001).

Table 3. Cox regression analyses for melanoma-specific survival.

Overall Survival

Definition Univariate
HR (95% CI) p-Value Multivariate

HR (95% CI) p-Value

Tumour thickness
≤2.0 mm 1 1
>2.0 mm 1.84 (1.08–3.12) 0.024 1.5 (0.84–2.74) 0.164

Ulceration
no 1 1
yes 2.49 (1.44–4.31) 0.001 2.07 (1.15–3.73) 0.016

Stage at Diagnoses Stage I + II 1 1
Stage III + IV 3.62 (2.16–6.08) <0.001 2.37 (1.25–4.49) 0.008

rs7551288 Genotype
G/G 1 1
G/A 1.46 (0.76–2.83) 0.26 2.13 (0.93–4.86) 0.07
A/A 3.95 (1.99–7.83) <0.001 5.31 (2.30–12.25) <0.001

HR hazard ratio, CI confidence interval. Significant p-values shown in bold.

Multivariable Cox regression including all four factors ‘tumour thickness’, ‘ulcera-
tion’, ‘stage at diagnoses’ and ‘rs7551288 genotype’ revealed an independent prognostic
significance of the rs7551288 A/A genotype in our melanoma patients with a more than
fivefold increased risk of melanoma-specific death for patients with two rs7551288*A alleles
at rs7551288 (HR 5.31 [95% CI 2.30–12.25], p < 0.001).

Using the public resource GTex portal [24], we reviewed the expression of DHCR24 in
different tissues and found a marked expression in the skin (Figure 4).
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4. Discussion

The present work was conducted to investigate prognostic factors in melanoma pa-
tients aside from established tumour-specific factors. The cohort of the assessed melanoma
patients was recruited within a University Hospital setting with a structured follow up
routine for patients with a tumour thickness above 1 mm. Patients with tumours below a
1 mm tumour thickness had either additional risk factors or were followed up because of
metastases despite their thin primaries. In a genome-wide approach with 356,384 common
polymorphisms, we identified an association of the variant rs7551288 with melanoma-
specific survival, independent of tumour thickness and other established prognostic factors.
The SNP rs7551288*A/G is an intronic variant of the DHCR24 gene. Carriers of one or two
rs7551288*A alleles exhibited a significant impaired melanoma-specific overall survival
compared to patients with rs7551288*G alleles. Searches of several data bases including
The Human Protein Atlas (www.proteinatlas.org (accessed on 26 April 2022)) found no
other gene immediately flanking the DHCR24 locus expressed at a high level nor in a
melanocytic-specific fashion (MROH7, TTC4, PARS2, TTC22, LEXM distal and RP11-67L,
TMEM61, BSND, PCSK9, USP24 proximal to DHCR24; www.genome.ucsc.edu (accessed
on 26 April 2022).

DHCR24 was first described in 1995 in Arabidopsis and was considered to be important
for plant growth [25]. By comparison of selected brain tissues from Alzheimer patients,
Greeve et al. discovered that DHCR24 was downregulated in severely affected regions [26].
They named the protein Selective Alzheimers’s Disease Indicator 1 (Seladin-1) and found
an improved resistance of Seladin-1 expressing cells through the inhibition of Caspase 3
activation, which protected the cells from apoptotic cell death. The DHCR24 gene encodes
for the 3beta-hydroxysterol delta24-reductase (DHCR24), an enzyme involved in the final
step of the cholesterol synthesis [27]. A binding site for DHCR24 was found in the tumour-
suppressor p53 protein [28], and the overexpression of DHCR24 was associated with
impaired p53 activity [29].

The impact of DHCR24 was investigated in different types of cancer so far. High
expression levels of DHCR24 in tissue specimens with urothelial carcinoma of 162 patients
were found to be significantly associated with an impaired progression-free survival [30].
In cell-line experiments, the authors could also demonstrate an enhanced proliferation,
adhesion and migration after enforced expression of DHCR24 and less cell viability after
DHCR24 loss. DHCR24 was highly expressed in a tissue microarray with endometrial car-
cinoma of 258 patients, and the upregulation was associated with reduced overall survival.
Silencing DHCR24 in cell lines led to a reduced metastatic ability of the endometrial cancer
cells [31]. Expression levels of DHCR24 were also assessed in a study with adrenocortical
adenomas and adrenocortical carcinomas and compared to normal adrenal glands. In this
study, expression levels were reduced in adrenal cancer [32]. A study investigating the role
of Rac1 activity in the malignant progression of sebaceous skin tumours identified DHCR24
as a target gene. Downregulation of DHCR24 was suggested to be an indicator for the
susceptibility of malignant progression [33]. A previous study on DHCR24 and melanoma
reported higher expression levels in melanoma metastases compared to primary tumours,
based on analyses of cell lines, which were obtained from cutaneous metastases and the
corresponding primary tumours. Upregulation of DHCR24 was shown to be associated
with resistance to apoptosis. Furthermore, the effect of the DHCR24 inhibitor U18666A was
demonstrated, which increased the sensitivity of the melanoma cells against H2O2, but not
against cytotoxic agents. This was suggestive for a protective role of DHCR24, specifically
against oxidative stress [34].

To date, there is quite some pre-clinical [35] and clinical evidence available to sup-
port an effect of statins and other lipid-lowering drugs in melanoma. Statins lower hu-
man plasma cholesterol levels [36], and statin drugs might thereby abrogate the effect
of high DHCR24 expression and increased cholesterol synthesis. A decreased incidence
of melanoma was found in a large randomized, placebo-controlled clinical cardiology
trial with lipid-lowering agents, including statins, as reviewed by Dellavalle et al. [37].

www.proteinatlas.org
www.genome.ucsc.edu
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The results were later revoked by a systematic review and meta-analyses and only a sub-
group analysis revealed a significant result for lovastatin use [38]. However, a subsequent
prospective study of cancer incidence again found a lower melanoma risk for patients
using cholesterol-lowering drugs for five or more years [39]. Another study found a lower
likelihood of ulcerated melanomas in statin users, indicating a shift towards prognostic
favourable tumours [40]. A trend towards a better survival in male patients with statin
use was seen in a population-based cohort study [41]. A recent study by Stamatakos et al.
investigated drug interactions in BRAF-inhibitor-resistant melanoma cells. The authors
describe a synergistic effect of a combination treatment with the BRAF inhibitor PLX4032
and the DHCR24 inhibitor U18666A [42]. These pre-clinical and clinical findings urge
further investigation of statins or the novel selective DHCR24 inhibitors [43] in melanoma
patients. Our stage IV patients with the A/A genotype had the worst outcome in all
treatment groups with a slight improvement under systemic treatment. Those patients
might well benefit from combination treatments.

We showed an association of the intronic variant rs7551288*A of the DHRC24 gene
with melanoma survival in a cohort of 556 melanoma patients. Additional studies are
needed to confirm this variant as a novel prognostic biomarker. The variant has an effect
on DHRC24 expression and thereby on cholesterol synthesis. We do not know if this
intronic variant may also influence other genes, which could also contribute to the poor
outcome of patients with the A/A genotype. However, available DHCR24 expression data
in various types of cancers, including melanoma, strongly support the need for further
functional studies on the DHCR24 genotype, DHCR24 expression, cholesterol synthesis and
melanoma survival. As there are some data supporting the effectiveness of lipid-lowering
drugs in melanoma as discussed above, additional knowledge of the impact of DHCR24
genotypes might help to individualize treatment.

5. Conclusions

The intronic variant rs7551288*A of the DHRC24 gene is associated with impaired
survival in our cohort of melanoma patients, independent of established prognostic factors.
The genetic polymorphism might influence the survival probabilities of melanoma patients
through an increase in Seladin-1 protein expression, which influences the cholesterol synthesis.

The variant is common and has a reported MAF of 0.37 and 0.43 in European pop-
ulations. Testing for this variant might reveal a relevant subset of patients who could
benefit from an intensified surveillance program and who might receive additional specific
therapeutic options.
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