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   Abstract: Background: As a new type of protein acylation modification, lysine glutarylation has been 
found to play a crucial role in metabolic processes and mitochondrial functions. To further explore the 
biological mechanisms and functions of glutarylation, it is significant to predict the potential glutaryla-
tion sites. In the existing glutarylation site predictors, experimentally verified glutarylation sites are 
treated as positive samples and non-verified lysine sites as the negative samples to train predictors. 
However, the non-verified lysine sites may contain some glutarylation sites which have not been ex-
perimentally identified yet.  
Methods: In this study, experimentally verified glutarylation sites are treated as the positive samples, where-
as the remaining non-verified lysine sites are treated as unlabeled samples. A bioinformatics tool named 
PUL-GLU was developed to identify glutarylation sites using a positive-unlabeled learning algorithm.  
Results: Experimental results show that PUL-GLU significantly outperforms the current glutarylation 
site predictors. Therefore, PUL-GLU can be a powerful tool for accurate identification of protein glu-
tarylation sites.  
Conclusion: A user-friendly web-server for PUL-GLU is available at http://bioinform.cn/pul_glu/. 
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1. INTRODUCTION 

 Protein post-translational modifications (PTMs) are cru-
cial steps in protein synthesis and regulate various biological 
processes such as protein signaling, localization, and degra-
dation. Among the various types of PTMs, acetylation, suc-
cinylation, malonylation, 2-hydroxyisobutyrylation, butyry-
lation, crotonylation, etc., can all occur at the ε-amino groups 
of specific lysine residues [1-6] and are known as lysine ac-
ylation modification. Recently, Tan et al. [7] discovered a 
new type of lysine acylation modification, named glutaryla-
tion, which is found in both prokaryotic and eukaryotic cells. 
Lysine glutarylation is a dynamic and evolutionarily con-
served modification process, in which a glutaryl group at-
taches to specific lysine residues of a substrate protein. Simi-
lar to succinylation and acetylation, lysine glutarylation has 
been found to play a crucial role in metabolic processes and 
mitochondrial functions, such as fatty acid metabolism, ami-
no acid metabolism and cellular respiration [6, 7]. Previous 
studies have shown that glutarylation of carbamoyl phos-
phate synthase 1 (CPS1) inhibits its activity but can be re-
versed by SIRT5 [7]. More importantly, molecular evidence 
suggested that abnormal glutarylation was closely related to 
several metabolic disorders, including diabetes, neurodegen-
erative diseases, glutaric acidemia type I and cancer [7]. 
Therefore, research on glutarylation would be beneficial for 
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drug discovery. Although some research work has been done 
to reveal the biological functions of glutarylation, the regula-
tory mechanism of glutarylation in cells is still largely un-
known. 
 In order to further investigate the molecular mechanisms 
of glutarylation, a fundamental and critical task is to identify 
glutarylation sites with high accuracy. Although several 
large-scale proteomics methods such as mass spectrometry 
[7, 8] have been applied to detect glutarylation sites, these 
experimental approaches are not only time-consuming but 
also expensive. The majority of lysine glutarylation sub-
strates and glutarylation sites still remain largely unknown. 
Therefore, it is urgent and necessary to develop computa-
tional methods to identify the potential glutarylated proteins 
and the corresponding glutarylation sites. Up to now, a few 
computational tools have been proposed to identify glutary-
lation sites. Ju and He [9] proposed the first glutarylation site 
predictor named GlutPred based on maximum relevance 
minimum redundancy (mRMR) feature selection algorithm. 
Xu et al. [10] developed a predictor, iGlu-Lys, by using the 
position-specific propensity matrix (PSPM) features around 
lysine-centered peptides and SVM algorithm. Huang et al. 
[11] proposed a prediction model by incorporating maximal 
dependence decomposition (MDD)-identified substrate mo-
tifs into an integrated SVM classifier. The cross-validation 
showed that amino acid composition features were most ef-
fective in discriminating between glutarylation and non-
glutarylation sites. Recently, Albarakati et al. [12] developed 
a novel predictor, RF-GlutarySite, by using the physiochem-
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ical and sequence-based features and random forest (RF) 
algorithm. 
 Note that in the aforementioned four existing prediction 
methods, the experimentally verified glutarylation sites were 
treated as the positive samples and the remaining non-
verified lysine sites were treated as the negative samples to 
train classifiers to predict glutarylation sites from unknown 
proteins. However, due to the limitations of experimental 
technique and condition, the remaining non-verified lysine 
sites might contain some glutarylation sites which have not 
been experimentally identified yet. Thus, the existing predic-
tors were actually built on the noisy dataset. As a result, the 
accuracy of the existing predictors would not be as good as 
they were supposed to be.  
 In contrast to previous methods, experimentally verified 
glutarylation sites were treated as positive samples and the 
remaining non-verified lysine sites were treated as unlabeled 
samples in our study. A novel glutarylation site predictor 
was developed by using a positive unlabeled (PU) learning 
technique [13]. Specifically, the algorithm had five stages: 
stage 1, the composition of k-spaced amino acid pairs 
(CKSAAP), binary encoding (BE), and amino acid factors 
(AAF) were combined to encode the glutarylation site; stage 
2, the crucial features were refined out using the maximum 
relevance and minimum redundancy (mRMR) feature selec-
tion method [14]; stage 3, a reliable negative set was selected 
from the unlabeled set by a maximum distance rule; stage 4, 
the reliable negative set was expanded and a series of SVM 
classifiers with RBF (Radial Basis Function) kernels were 
trained iteratively; stage 5, a final SVM model was trained 
on the positive set and the selected reliable negative set by 
10-fold cross-validation. This method was called PUL-GLU 
(PU Learning for GLUtarylation sites prediction). The exper-
imental results showed that the accuracy of PUL-GLU was 
79.77% on the training set evaluated by 10-fold cross-
validation and 76.65% on the independent test set.  
 As demonstrated by a series of recent publications [15, 
16] and summarized in three comprehensive review papers 
[17-19], to develop a really useful predictor for a biological 
system, one needs to follow “Chou’s 5-steps rule” [17] to go 
through the following five steps: (1) select or construct a 
valid benchmark dataset to train and test the predictor; (2) 
represent the samples with an effective formulation that can 
truly reflect their intrinsic correlation with the target to be 
predicted; (3) introduce or develop a powerful algorithm to 
conduct the prediction; (4) properly perform cross-validation 
tests to objectively evaluate the anticipated prediction accu-
racy; (5) establish a user-friendly web-server for the predic-
tor that is accessible to the public. The description of how to 
deal with these five steps is given below. 

2. MATERIALS AND METHODS 

2.1. Dataset 

 Benchmark dataset was collected from the recent litera-
ture (Ju and He, 2018) in this study. The identity of these 
proteins was reduced to 40% by the CD-HIT program [20]. 
The training set consisted of 167 proteins with 590 experi-
mentally annotated lysine glutarylation sites and 3498 non-
annotated lysine sites; the independent test set consisted of 

20 proteins with 56 experimentally annotated lysine glutary-
lation sites and 428 non-annotated lysine sites. Sliding win-
dow method was used to encode every lysine residue K of 
the dataset because glutarylation only occurred in lysine res-
idues K. Based on our previous work [9], the window size of 
every training peptide was selected as 35 here. That means 
every lysine residue in the training dataset and the testing 
dataset was represented as a peptide segment of length 35 
with 17 residues upstream and 17 residues downstream of 
lysine residue K. The training set and independent testing set 
are provided in Supplementary Material S1. 

2.2. Feature Construction 

2.2.1. Amino Acid Factors 

 Physicochemical properties of amino acids play a crucial 
role in the identification of PTMs site. By using multivariate 
statistical analyses, 544 physicochemical properties of amino 
acids in the AAIndex have been transformed into five multi-
dimensional patterns of attributes. The five multidimensional 
patterns of attributes reflect the polarity, secondary structure, 
molecular volume, codon diversity, and electrostatic charge, 
respectively [21]. These five generated attributes are named 
amino acid factors (AAF). For a given peptide, it can be en-
coded as a 35*5=175-dimensional vector by AAF. 

2.2.2. Binary Encoding 

 The information of amino acid composition and position 
can be effectively characterized by binary encoding (BE) 
[22]. Considering 21 amino acids were ordered as ‘AC-
DEFGHIKLMNPQRSTVWYX’ (‘X’ means virtual amino 
acid), each amino acid residue in a given peptide was trans-
lated into a 21-dimensional binary vector. For example, ami-
no acid ‘A’ is encoded as (100000000000000000000), …, 
and ‘X’ is encoded as (000000000000000000001). Thus, 
every training peptide can be expressed as a 35*21=735-
dimensional vector by BE encoding. 

2.2.3. Composition of k-spaced Amino Acid Pairs 

 The composition of k-spaced amino acid pairs 
(CKSAAP) can reflect the short linear motif information by 
calculating the occurrence frequency of the amino acid pairs 
in a given sequence fragment [23, 24]. An amino acid pair 
separated by any k amino acid residues is known as the k-
spaced amino acid pair. For example, the CKSAAP of a giv-
en peptide for k=1 yields a 441-dimensional numeric vector 
defined as: 

441( / , / ,..., / )AxA Total AxC Total XxX TotalN N N N N N                      (1) 

where ‘x’ represents any one of the 21 amino acids, and 

TotalN  represents the total number of 1-spaced amino acid 
pairs. Here, CKSAAP with k= 0, 1, 2, 3 and 4 was utilized to 
encode the training peptides as 2205-dimensional feature 
vectors. 

2.2.4. The Feature Space 

 In accordance with our previous work [9], the AAF, BE 
and CKSAAP were integrated to encode the training sam-
ples. Overall, each sample in the benchmark dataset was 
encoded as a 35*5+35*21+2205=3115-dimensional feature. 
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Since the integrated encoding generated a high-dimensional 
feature vector, the maximum relevance and minimum redun-
dancy (mRMR) feature selection method [14] and incremen-
tal feature selection (IFS) algorithm were used to remove the 
redundant features. Firstly, each component of 3115 features 
was ranked by the mRMR method. Then, the IFS algorithm 
was used to select 50 features with the highest score in each 
iteration. Here, the top 300 features were selected as optimal 
input features based on our previous work [9]. 

2.3. Prediction Method 

2.3.1. Support Vector Machine 

 To facilitate its description, the training set is denoted as 
{( ) 1 2 }i ix ,t , i , ,...,l= . The SVM can be formulated as fol-

lows:  
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where )(xΦ  is the non-linear mapping, and  ( =1, 2,..., )i i lx  
are slack variables. C  is the parameter determining the 
trade-off between model complexity (margin size) and clas-
sification errors. The Gaussian kernel function 
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the SVM. The Libsvm toolkit [25] was utilized to carry out 
the SVM models. Here,  C and γ  were set to the default 
values in Libsvm (i.e., 1=C  and 300/1=γ ). 

2.3.2. Positive-unlabeled Learning for Bioinformatics 

 In many fields, the obtainment of negative examples is 
usually costly and even not possible. Hence, many PU learn-
ing algorithms have been developed to deal with the prob-
lems which were lacking in negative examples. PU learning 
originated in text classification [25-28], and has been suc-
cessfully applied to many biological problems in recent 
years. For example, Wang et al. [13] developed a PU learn-
ing algorithm named PSoL to finding non-coding RNA 
genes; Zhao et al. [26] designed a PU learning algorithm, 
AGPS, for gene function prediction; Cerulo et al. [27] used a 
PU learning algorithm named PosOnly for the derivation of 
gene regulatory networks; Yang et al. [28] designed a PU 
learning algorithm named PUDI for disease gene identifica-
tion; Yang et al. [29] proposed an ensemble-based PU learn-
ing method for identifying disease gene by integrating multi-
ple PU learning classifiers; Li et al. [30] proposed a positive 
unlabelled (PU) learning-based method, PA2DE (V2.0), 
based on the AlphaMax algorithm for protein glycosylation 
site prediction [31-33]. 

2.3.3. Development of PUL-GLU 

 As mentioned above, in this study, experimentally veri-
fied glutarylation sites were treated as positive samples and 
the remaining non-verified lysine sites were treated as unla-
beled samples to build a classifier. In this way, the training 

dataset is divided into two parts: (1) the positive training 
dataset P and (2) the unlabeled training dataset U. Thus the 
prediction of glutarylation sites became learning from posi-
tive and unlabeled samples. An effective positive-unlabeled 
learning algorithm, PSoL [13], was used to construct PUL-
GLU. The flowchart of PUL-GLU is shown in Table 1. 
There are three stages in it: 
Stage 1. Selection of initial reliable negatives:  

 PUL-GLU selected the initial reliable negative set 0RN  
from the unlabeled set U  based on the formula (3). The 
formula (3) ensures that the selected initial negative set has 
the highest reliability because it is farthest from the positive 
example set.  
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||||
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Stage 2. Expansion of the reliable negative example set: 

 The initial negative set is gradually extended by iterative-
ly trained SVM classifiers. Let iRN  be the current reliable 
negative training set; and iU  be the current unlabeled set at 
the ith iteration. An SVM classifier if  was firstly trained on 
P  and iRN ; then, if  was used to classify iU  and calculate 
its decision value. To ensure the purity of the selected nega-
tive set, the selected negative samples with the decision val-
ue less than a threshold T  (here, T  was set to -0.2) were 
selected as the newly predicted negative set i

predN . To avoid 

the imbalance problem, the size of i
predN  was controlled less 

than || P , and iRN  is replaced with the negative support 
vectors i

SVN . At the (i+1)th iteration, i
pred

ii NUU \1 =+ ; 
i
SV

i
pred

i NNRN ∪=+1 . An SVM classifier 1if +  was trained 

on P  and 1+iRN . As the number of iterations increases, 
iRN  may contain more and more false-positive examples, 

therefore, iteration should be terminated if the size of iU  
goes below a threshold ||* Pr  (here r was set to 2). 

Stage 3. Acquisition of the final classifier: 

 Let RN be the representative reliable negative training 
set. A final SVM classifier f was trained on P and RN. 

2.4. Cross-validation and Performance Assessment 

 Jackknife test, K-fold cross-validation, and independent 
dataset test are three of the most common strategies for the 
evaluation of the performance of a predictor [17]. Although 
the jackknife test is the most objective among three evalua-
tion methods, it is the most time-intensive. Therefore, to re-
duce computational time, we adopted a 10-fold cross-
validation test to evaluate the proposed model. The 10-fold 
cross-validation is repeated 10 times. In addition, an inde-
pendent dataset test was also adopted to further evaluate our 
method.
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Table 1. The flowchart of the PUL-GLU algorithm. 

Input: 

- positive training set P  

- unlabeled set U  

Output: 

- final SVM classifier f  

Stage 1: Selection of initial reliable negative set:  

- ),(maxarg
||||

0 PNdRN
PN
UN
=
⊂

=  

Stage 2: Expansion of reliable negative set:  

- i = 0; 

- Repeat 

- iRNUU \= ; 

- Train SVM if  on P  and iRN ; 

- Classify U  by 
if ; 

- i
predN  is the predicted negative set, where |||| PN i

pred ≤  and 2.0)( −<i
predNf ; 

- i
SV

i
pred

i NNRN ∪=+1   where i
SVN  is the negative SVs of if ; 

- 1+= ii ; 

- until ||*2|| PU ≤ ; 

Stage 3: Acquisition of the final classifier: 

- A final SVM classifier f  was trained on P  and RN . 

 
 Five widely-accepted measurements, including sensitivi-
ty (Sn), specificity (Sp), precision (Pre), accuracy (ACC), 
and Matthew’s correlation coefficient (MCC), were used to 
evaluate the prediction performances of PUL-GLU, which 
are defined as: 

TPSn =
TP FN+                                                                     (5) 

TNSp =
TN FP+                                                                     (6) 

TPPre =
TP FP+                                                                   (7) 

TP TNACC =
TP FP TN FN

+
+ + +                                              (8) 

TP TN FN FPMCC
(TP FN) (TN FP) (TP FP) (TN FN)

× − ×=
+ × + × + × +    (9) 

where TP, TN, FP and FN stand for the number of true posi-
tives, true negatives, false-positives and false-negatives, re-
spectively.  

3. RESULTS AND DISCUSSION 

3.1. Performance of PUL-GLU 

 To select the representative reliable negative samples, a 
negative set expansion was implemented on the training set. 
As a result, the representative reliable negative set RN  con-
tains 1199 reliable non-glutarylated lysine sites (Supplemen-
tary Material S1). Finally, PUL-GLU was trained on the pos-
itive set P  and the representative reliable negative set RN . 
The 10-fold cross-validation of PUL-GLU on P  and RN  is 
shown in Table 2. As shown in Table 2, the prediction values 
for Sn, Sp, Pre, ACC, and MCC values reached 66.56%, 
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86.43%, 70.71%, 79.88% and 0.5384, respectively. The pre-
diction performance of PUL-GLU was much higher than the 
SVM model trained on positive samples and randomly se-
lected negative samples. This result indicated that the select-
ed representative reliable negative samples could be more 
effective than those selected randomly. To avoid the overes-
timation of PUL-GLU, it was performed on the entire train-
ing set. The performance of PUL-GLU also achieved a satis-
factory performance with an MCC of 0.35. 
 We compared PUL-GLU with existing glutarylation site 
predictors. As shown in Table 2, in the training dataset, 
PUL-GLU reaches the highest MCC values of 0.5384 by 10-
fold cross-validation. Although iGlu-Lys achieved the high-
est value of Sp (95.2%), the value of Sn (50.4%) was much 
lower than that of PUL-GLU (66.6%). It suggests that iGlu-
Lys tends to identify a query lysine site as a non-
glutaryllysine, and can predict less glutaryllysine sites than 
PUL-GLU. Moreover, the Sn value of MDDGlutar (66.7%) 
is slightly higher than that of PUL-GLU (66.6%), but the Sp 
value of MDDGlutar (61.9%) is much lower than that of 
PUL-GLU (86.4%). It indicates that PUL-GLU can predict 
more non-glutaryllysine sites than MDDGlutar at a similar 
level of Sn. As PUL-GLU and GlutPred were trained on the 
same training dataset with the same features, the better per-
formance of PUL-GLU suggested that by using the extracted 
reliable non-glutarylated lysine sites to train model, the pre-

diction performance has been improved effectively. In short, 
PUL-GLU outperforms the current glutarylation site predic-
tors remarkably on the training dataset. 

3.2. Comparison of PUL- GLU with Other Predictors on 
the Independent Test Set 

 To further evaluate the effectiveness of PUL-GLU, it was 
compared with the other current methods on the independent 
test set. It should be pointed out that RF-GlutarySite [12] did 
not provide a shared web-server. Hence, RF-GlutarySite was 
not compared with PUL-GLU. The compared results of ex-
isting predictors are shown in Table 3. Although iGlu-Lys 
achieved the best performance on the independent test da-
taset, the prediction results were overestimated. In fact, the 
training set of iGlu-Lys contains all of the samples of our 
independent test set; whereas PUL-GLU, GlutPred and 
MDDGlutar were trained and tested on the same dataset. As 
PUL-GLU was trained by the PU learning algorithm, the 
performance of PUL-GLU outperforms GlutPred and 
MDDGlutar. The results of the independent test and cross-
validation both demonstrated that PUL-GLU could be an 
effective predictor for the prediction of glutarylation sites. 

3.3. Prediction Server of PUL-GLU 

 Building a user-friendly online server can provide con-
venience for the related experimental researchers to further

Table 2. 10-fold cross-validation performance of PUL-GLU and other methods. 

Methods Sn(%) Sp(%) Pre(%) ACC(%) MCC 

SVM1 61.73±0.83 76.45±1.45 56.36±1.53 71.59±0.98 0.3738±0.0173 

GlutPred 64.80±0.99 76.60±0.28 31.84±0.49 74.90±0.32 0.3194±0.0087 

iGlu-Lys2 50.4±0.88 95.2±0.14 — 88.38±0.15 0.5098±0.0072 

MDDGlutar2 67.7 61.9 — 63.8 0.28 

RF-GlutarySite 74.9 69.7 71.2 72.3 0.45 

PUL-GLU 66.56±0.73 86.43±0.28 70.71±0.45 79.88±0.29 0.5384±0.69 

PUL-GLU3 71.69 75.07 32.66 74.58 0.3533 
1 SVM trained on 590 positive samples and 1199 randomly extracted negative samples. 
2 The values of Pre were not reported for iGlu–Ly and MDDGlutar, therefore, no comparison could be made with respect to this parameter. 
3 PUL-GLU was performed on the entire training dataset. 

 

Table 3. Comparison with other predictors on the independent test dataset. 

Methods Sn(%) Sp(%) Pre(%) ACC(%) MCC 

SVM1 51.79  76.87  22.66  73.97  0.2078  

GlutPred  51.79  78.50  23.97  75.41  0.2238  

iGlu-Lys  89.09  97.67  83.05  96.69  0.8416  

MDDGlutar  49.09  84.62  29.03  80.58  0.2715  

PUL-GLU  58.93  78.97  26.83  76.65  0.2785  
1 SVM trained on 590 positive samples and 1199 randomly extracted negative samples. 
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Fig. (1). The prediction interface of the web-server PUL-GLU. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

 
Table 4. The top 20 most likely glutarylation sites in non-validated lysine sites. 

Uniprot_AC Site SVM Score Uniprot_AC Site SVM Score 

P32020 432 3.04 Q8BMS1 411 1.63 

Q8BMS1 413 2.82 Q8BWT1 211 1.63 

P42125 242 2.51 P26443 386 1.62 

Q8BMS1 414 2.48 Q8BMS1 262 1.60 

Q8C196 906 2.36 P54869 342 1.59 

P32020 442 2.25 Q8C196 856 1.56 

Q8C196 908 2.21 Q9D819 238 1.53 

Q61425 206 1.93 Q8BMS1 249 1.53 

Q61176 39 1.65 Q9D172 155 1.53 

Q8BMS1 284 1.64 Q61425 202 1.52 

 
investigate the molecular mechanisms of glutarylation. 
Therefore, PUL-GLU has been implemented as a web-
server. The prediction server for PUL-GLU is available at 
http://bioinform.cn/pul_glu. The style of PUL-GLU is simi-
lar to the published webserver iGlu-Lys [10]. As shown in 
Fig. (1), PUL-GLU accepts single query protein or multiple 
query proteins in FASTA format. Or users can upload query 
proteins in FASTA format as a text document for the predic-
tion of glutarylation sites. The predicted results will be writ-
ten to a CSV-formatted file. 

3.4. Prediction of the Most Likely Glutaryllysine in Non-
annotated Lysine Residues 

 As mentioned earlier, there are 646 experimentally vali-
dated glutarylation sites and 3926 non-validated lysine sites 
in the training dataset. However, the non-validated lysine 

residues may contain some glutarylation sites which have not 
been experimentally identified yet. To find the most likely 
glutarylation sites from those non-validated lysine residues, 
all 3926 non-validated lysine sites in the training dataset 
have been re-predicted by PUL-GLU algorithm. The top 20 
most likely glutaryllysine in non-validated lysine residues 
are listed in Table 4. Here, we just give a possible hypothe-
sis, it remains to be experimentally identified whether those 
lysine residues can be glutarylated or not. The completed 
prediction results are given in Supplementary Material S2 
and may provide clues for studying glutarylation sites. 

CONCLUSION 

 In this study, we developed a bioinformatics tool named 
PUL-GLU for the prediction of glutarylation sites using the 
PU learning algorithm and multiple sequence features. To 
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the best of our knowledge, this is the first time PU learning 
has been applied to predict the glutarylation sites. Experi-
mental results have shown that PUL-GLU outperformed the 
current glutarylation site predictors. A web-server for PUL-
GLU was built, which could provide a great convenience for 
experimental researchers to investigate glutarylation. 
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