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Mental illnesses have long been perceived as the exclusive consequence of
abnormalities in neuronal functioning. Until recently, the role of glial cells in the
pathophysiology of mental diseases has largely been overlooked. However recently,
multiple lines of evidence suggest more diverse and significant functions of glia with
behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and
microglia have led to their examination in brain pathology and mental illnesses. Indeed,
abnormalities in glial function, structure and density have been observed in postmortem
brain studies of subjects diagnosed with mental illnesses. In this review, we discuss
the newly identified functions of glia and highlight the findings of glial abnormalities in
psychiatric disorders. We discuss these preclinical and clinical findings implicating the
involvement of glial cells in mental illnesses with the perspective that these cells may
represent a new target for treatment.
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INTRODUCTION

Treatment of mental illnesses dates back to ancient times where imprisonment and confinement
to chains were the mode of action to control what was perceived as influences of witchcraft and
supernatural forces. With the introduction of Hippocratic medicine back in the 4th century B.C.,
mental illness had a physical attribute and the cause was linked to humoral imbalances. Though,
the idea of demons and supernatural forces still persisted. Towards the end of the 18th century,
the idea of mental illness as a disease of the mind rather than the body began to develop and it was
towards the mid-19th century when it became viewed as a disease of the brain. Though, the term
mental was coined to it till this day, mainly due to the lack of cerebral pathology at macroscopic
and microscopic levels at the time (Kendell, 2001).

In the 1950s, psychopharmacology emerged. Following serendipitous clinical observations,
chlorpromazine (dopamine antagonist) and iproniazid (monoamine oxidase inhibitor) were
observed to have antipsychotic and antidepressant effects respectively (Deverteuil and
Lehmann, 1958; Ban, 2007; Nestler and Hyman, 2010). These observations paved the way to
the development of current psychotropic drugs whose pharmacology is essentially based on
monoamine neurotransmission. Despite the availability of these psychoactive medicines, there
remains however an increasing prevalence, undeniable disability, economic and social burden
(Hyman, 2008). The reason for the lack of success is that these psychotherapeutic drugs were
not founded on real evidence of underlying pathology. Instead, the reverse engineering of
these drugs lead to the identification of molecular targets that are possibly not the actual culprit.
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With the emergence of in vivo brain imaging techniques
and improvement in the methods of microscopy,
immunocytochemistry and stereology, interest in re-examining
cerebral pathology at the macro- and micro-scopic level ensued
(Rajkowska et al., 1999). The microscopic approach has notably
brought glial cells to light with newly identified functions. With
access to the right tools, findings of glia pathology in psychiatric
disorders began to surface (Di Benedetto and Rupprecht, 2013).
In this review, we will introduce the different types and functions
of glia and then discuss findings implicating their involvement
in the different types of mental illnesses.

GLIA IN BRAIN FUNCTION AND HEALTH

While the legacy of the last century of research in psychiatry has
centered on deciphering the role of neuronal systems in brain
functions in health and disease, little attention has been paid
to non-neuronal cells. Glial cells in fact outnumber neurons in
several areas of the human brain (Kandel, 2000; Pelvig et al., 2008;
Azevedo et al., 2009; Herculano-Houzel, 2011). Interestingly
enough, this ratio is decreased in rodents (Nedergaard et al.,
2003; Rajkowska and Miguel-Hidalgo, 2007; Herculano-Houzel,
2011) indicating that increased glial densities is associated with
higher brain functions. The term neuroglia was initially coined
by the German anatomist Rudolf Virchow in 1856 to refer to
a scaffolding material. Traditionally seen as silent supportive
cells, growing evidence suggest a more dynamic and active
function. Glial cells provide a source of metabolic energy and
growth/neurotrophic factors, are involved in regulating synaptic
plasticity, modulating neuronal excitability, neurotransmitter
modulation/reuptake and relay of information, among other
functions. In short, they have emerged to be important players
that alter neuronal state and connectivity.

Based on lineages, there are two types of Central Nervous
System (CNS) glia: macroglia and microglia. Macroglia
(astrocyte, oligodendrocyte) arise from ectodermwhile microglia
originate from monocyte-macrophage lineage (Ventura and
Goldman, 2006; Rajkowska and Miguel-Hidalgo, 2007). Each
type has a specialized function and a unique morphology
(Ventura and Goldman, 2006; Rajkowska and Miguel-Hidalgo,
2007). While oligodendrocytes and microglia were long thought
to have specialized functions, astrocytes proved to be the most
complex and functionally diverse.

Astrocytes
The term astrocyte was initially described by Von Lenhossek
in 1893 based on its star-like morphology. It turns out that
astrocytes are quite heterogeneous in cell morphology, a fact that
also reflects inherent functional specialization. Astrocytes can be
categorized into at least five different types: (1) white matter
astrocytes which take on a star shape; (2) gray matter astrocytes,
which have a less complex shape; (3) ependymal astrocytes,
which are stained positive for a marker of astrocytes, GFAP,
and are found in the stem cell niches of the brain; (4) radial
glia found within ventricular zone which originally provide
a scaffold for migrating neurons during brain development;
and (5) perivascular, also GFAP+, whose end-feet are in close

proximity to blood vessels (Claycomb et al., 2013). Novel
discoveries on the diverse functions of astrocytes have challenged
the long-time held dogma that astrocytes are merely passive cells.
From an evolutionary point of view, the ratio of astrocytes to
neurons and the morphology of astrocytes increase with the
complexity of brain functions (Oberheim et al., 2009; Pereira
and Furlan, 2010; Herculano-Houzel, 2011). The diversity of
astrocytic roles are discussed below and range from local
modulation of information processing within a synapse to brain
large-scale integrative functions, and extend to interactions
with the vasculature system and the immune system. Some of
these functions support its involvement in cognitive and mood
functions and the ones pertinent to psychiatric illnesses are
discussed below.

Neurovascular Unit
Astrocytes form a bridging gap, coupling the vasculature
system with neuronal circuits. The surface of intraparenchymal
capillaries is covered at 99% by astrocytic end-feet (Kacem et al.,
1998). Astrocytic end feet wrap around the endothelium of blood
vessels and via this contact, they can influence cerebral blood flow
(Takano et al., 2006; Magistretti and Allaman, 2015) and control
the transport of substances in and out of the brain to ensure
proper brain homeostasis (Abbott et al., 2006).

Metabolic Coupling
Astrocytes have been shown to support neurons metabolically.
Astrocytes express glucose transporters of the GLUT1 type along
their astrocytic end feet (Allaman and Magistretti, 2013). Upon
increased neuronal activity and glutamate reuptake by astrocyte-
specific glutamate transporters, a sequence of events is triggered
resulting in the uptake of glucose from blood vessels and erobic
glycolysis, a process also known as the Astrocyte Neuron Lactate
Shuttle (for review, see Magistretti and Allaman, 2015). With
Lactate being the end product, it is released into the interstitial
space for neuronal uptake (Walz and Mukerji, 1988; Pellerin and
Magistretti, 1994; Chuquet et al., 2010). Furthermore, astrocytes
are the only cells to store energy in the form of glycogen in
the adult brain. It was shown that this energy reserve can be
mobilized by various neuroactive signals such as noradrenaline
and vasoactive intestinal peptide (Magistretti et al., 1981; Sorg
andMagistretti, 1991). Thus, there is an interplay between energy
metabolism and neuronal activity with astrocytes being the
mediators. Lactate released by astrocytes has been shown to exert
additional important physiological functions such as induction
of neuroplasticity and taking part in higher cognitive functions
such as learning and memory (Suzuki et al., 2011; Yang et al.,
2014).

Tripartite Synapse, Gliotransmission and Synaptic
Function
Astrocytes express a range of receptors and ion channels
that are similarly expressed in neurons (Verkhratsky et al.,
1998). At most glutamatergic central synapses, the extremity
of protoplasmic astrocyte process wraps the synaptic cleft, and
communicates with pre- and post-synaptic neurons, forming
what is called a tripartite synapse (Araque et al., 1999; Bezzi et al.,
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2001). At those processes, they express glutamate transporters
responsible for glutamate re-uptake and clearance from the
synaptic cleft. With this feature, astrocytes can prevent the
excitotoxic build-up of glutamate concentrations, and hence
provide a form of neuroprotection (Choi, 1987; Rothstein
et al., 1996; Tanaka et al., 1997). Furthermore, emerging
data suggest that astrocytes are excitable cells able to release
transmitters and thus regulate synaptic function. Some of the
gliotransmitters released by astrocytes include ATP, D-serine,
adenosine, glutamate and cytokines (Volterra and Meldolesi,
2005). Some of these gliotransmitters are involved in modulating
synaptic function. For example, D-serine is one of the required
coactivators of NMDA receptors at the glycine site. It is three
times more potent than glycine (Miyazaki et al., 1999); both D-
serine and glycine are released by astrocytes, hence enabling these
cells to regulate N-Methyl-D-aspartate (NMDA) receptor activity
(Schell et al., 1995; Wolosker et al., 1999a,b). To add another
layer of complexity and heterogeneity of astrocyte specializations,
distinct population of astrocytes contain exocytosis machinery
such as vesicular glutamate transporter (vGluT) and are capable
of initiating vesicular release of glutamate upon activation (Bezzi
et al., 2004; Kreft et al., 2004; Montana et al., 2004; Zhang et al.,
2004; Jourdain et al., 2007).

Neurotrophic Function
Astrocytes can synthesize and release many neurotrophic factors
such as fibroblast growth factor 2 (FGF2; Gonzalez et al.,
1995), brain-derived neurotrophic factor (BDNF; Jean et al.,
2008) and other growth factors involved in modulating synaptic
transmission and plasticity (Levine et al., 1995; Lo, 1995;
Zechel et al., 2010). These growth factors can ultimately
impact cognition and mood associated behavior (Graham and
Richardson, 2011; Elsayed et al., 2012; Quesseveur et al.,
2013).

Response to Injury and Pathogen
In response to injury, astrocytes become reactive, change their
morphology and pattern of gene expression. They can also be
induced to express major histocompatibility complex antigen to
identify pathogen, modify Blood Brain Barrier permeability and
secrete various cytokines to attract immune cells from the blood
circulation (Sparacio et al., 1992; Farina et al., 2007; Burda and
Sofroniew, 2014).

Gap Junctions
The complexity of astrocytes is further enhanced by the
expression of connexins which form gap junctions (Giaume
et al., 2005; Orthmann-Murphy et al., 2008). This feature allows
the formation of a syncytium whereby astroglia communicates
intercellularly. Gap junction coupling is not static and is
modulated by a number of signaling pathways (Anders et al.,
2014). Mainly, sensory, cognitive and emotional patterns
transmitted from spatially distributed neuronal and glial
populations can result in the activation of astroglial calcium
waves that can be transmitted across the astrocytic syncytium
(Pereira and Furlan, 2010).

Oligodendrocytes
Oligodendrocytes are smaller and less branched than astrocytes
(Fawcett, 1994). Similarly to astrocytes, there are two types
of oligodendrocyte residents in the cortex: (1) perineuronal
oligodendrocytes, which are located in the gray matter
and (2) interfascicular oligodendrocytes which are found in
the white matter (Rajkowska and Miguel-Hidalgo, 2007).
Myelin formation has been the classical function attributed to
oligodendrocytes with the function of insulating axons hence
enabling faster conduction speed of action of potential. White
and gray matter myelinations are exceptionally high in humans
when compared to other species including primates (Zhang
and Sejnowski, 2000; Miller et al., 2012) pointing to a higher
structural connectivity as part of an evolutionary mechanism.

All this comes at a high energetic cost, with a large
proportion of brain energy metabolites being directed towards
creating and supporting myelination along with maintenance of
transmembrane ionic gradients to sustain excitability (Connor
and Menzies, 1996; Attwell and Laughlin, 2001; Sanchez-Abarca
et al., 2001; Alle et al., 2009; Rinholm et al., 2011).

While initially thought as static components of the nervous
system, recent studies suggest that myelin formation by
oligodendrocytes is a highly dynamic processes influenced by
neuronal activity (Ishibashi et al., 2006), learning (Bengtsson
et al., 2005) and environmental input (Markham and
Greenough, 2004). Moreover, myelination is not restricted
to a developmental program but can occur through adulthood
suggesting contribution to brain plasticity (De Hoz and
Simons, 2015). By enhancing speed and efficiency of action
potential transmission, myelination enables synchronization
of neural networks, which underlie the basis of our cognitive
and behavioral repertoires and hence making this process
a vital one for brain functioning (Haroutunian et al.,
2014).

In addition to myelin formation, oligodendrocytes also
express growth factors (Byravan et al., 1994), gap junctions
(Orthmann-Murphy et al., 2008) and can supply energy in the
form of Lactate to support axonal function (Funfschilling et al.,
2012; Lee et al., 2012). Furthermore, they express glutamate
receptors and are thus a target of neurotransmitters and
glutamate excitotoxicity (Matute, 2006).

NG2-Glia
The notion that the adult brain is a static organ has been disputed
over at least the past 30 years. In fact, the brain is a dynamic organ
with neuronal and non-neuronal cells undergoing cellular plastic
events regulated by endogenous and exogenous cues (Dong and
Greenough, 2004). It is accepted now that cell proliferation, one
aspect of cellular plasticity, occurs during brain development and
continues into adulthood. The areas and rates of cell proliferation
vary depending on the cell type in question (i.e., neurons or
glia), or on the conditions surrounding these cells. In healthy
conditions, gliogenesis is a slow-turnover process that occurs
in the white and gray matter of the adult brain. It involves the
proliferation of NG2-glia, otherwise known as oligodendrocyte
precursor cells (OPC). While, a generally agreed upon role of
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NG2+ cells is to generate oligodendrocytes, they are also thought
to generate neurons and astrocytes (Dayer et al., 2005). Though,
the latter remains controversial (Clarke et al., 2012). They are
one of the largest proliferative cells in the adult cortex (Dawson
et al., 2003). Nevertheless, not all NG2+ cells are proliferating
at rest (Butt et al., 2005). Furthermore, a subset of them also
appears to be involved in some aspects of information processing
in partnership with neurons (Bergles et al., 2000; Lin and Bergles,
2002; Hamilton et al., 2009; Richardson et al., 2011). The varied
functional roles of NG2-glia are not yet completely understood
and await further studies (Peters, 2004; Richardson et al., 2011).

Nevertheless, it is clear that these cells are influenced by
different manipulations, environmental and pharmacological,
triggering its proliferation. Gliogenesis has been shown to be
influenced by stress (Banasr et al., 2007; Czeh et al., 2007),
exercise (Mandyam et al., 2007), growth factors (Elsayed et al.,
2012), pharmacological and non-pharmacological modes of
antidepressant treatment (Kodama et al., 2004; Wennström
et al., 2006; Czeh et al., 2007). Furthermore, formation of new
myelin is speculated to contribute to motor learning in humans
(Richardson et al., 2011) as indicated by studies reporting
changes in white matter structure following extensive piano
practice (Bengtsson et al., 2005) or juggling (Scholz et al., 2009).

Microglia
Microglial cells are the resident macrophage cells of the CNS.
Unlike the other glia, they are ontogenetically related to the
mononuclear phagocyte lineage. They act as a warden (CNS
surveillance) and cleaner (macrophage). Microglial cells have a
distinct morphology, small soma with fine and short processes.
In 2010, a fate mapping study shed new light on the period
of microglia migration to the brain. The study demonstrates
that migration occurs during early embryonic development,
challenging the idea that it enters the brain after birth (Ginhoux
et al., 2010). Hence, this study indicates that migration of
microglia coincides with neuronal development. This realization
led to the identification of new roles of microglia in neuronal
development and wiring in the healthy brain (Tremblay et al.,
2010; Schafer et al., 2012). In addition, microglia are involved
in CNS surveillance and maintenance. They have constantly
motile cellular processes canvassing the extracellular space
(Kettenmann et al., 2011; Wu et al., 2013) and are involved
in synaptic pruning and refinement of neuronal circuits (Chu
et al., 2010). Furthermore, microglial cells are involved in
neuroinflammation. In response to a pathogen or injury,
microglial cells once activated change in morphology. They
proliferate, migrate to the site of injury (or infection) and they
phagocytose damaged neurons, myelin and degenerating cells
(Ginhoux et al., 2013). They are also involved in activating
the immune system by releasing factors (such as cytokines and
chemo-attractive factors) to promote neuronal protection and
survival.

GLIA AND BEHAVIOR

The diverse functions of glia discussed above clearly indicate
that they are not just structural fillers. Rather, they play

an integral part of functional communication in the brain,
see Figure 1. Thus, it is not surprising to come across
studies demonstrating the impact of glia on behavior. While
neurons have long received attention as the main and ultimate
drivers in inducing a behavioral output, glia are emerging
as equally important influencers in certain behavioral aspects.
One supportive study demonstrates cognitive and mood deficits
following glial damage. Upon infusion of the gliotoxin L-
alpha-aminoadipic acid (L-AAA) into the prefrontal cortex
(PFC), anhedonia- and despair-like behaviors were manifested.
Moreover, the gliotoxin triggered morphological changes in the
neurons. Interestingly, inducing neuronal loss by infusion of
the neurotoxin ibotenate into the PFC did not replicate these
results. This indicates that glial dysfunction is an important
player with capability of inducing depressive symptoms possibly
by contributing to neuronal adaptive changes responsible in
eliciting the expression of symptoms of depression (Banasr and
Duman, 2008). Behavioral impairments were also found when
targeting specific astrocytic activities. Following impairment
of astrocytic vesicular release through genetic manipulation,
gamma oscillations were found to be impacted and this was
accompanied by a deficit in novel object recognition test
indicating memory impairment (Lee et al., 2014). Another
study examined the behavioral impact following impairment of
glycogenolysis in the rodent hippocampus. Glycogenolysis is a
process that occurs uniquely in astrocytes and involves break
down of glycogen and lactate formation. Inhibiting this astrocytic
function interfered with long-termmemory formation. A similar
behavioral output also occurred following manipulation of
astrocytic export or intra-neuronal uptake of lactate. These
findings suggest that manipulating one aspect of astrocyte
function can have a strong impact on important physiological
functions, such as long-term memory formation (Suzuki et al.,
2011). Additional evidence comes from a recent study suggesting
that glial cells have computational and cognitive enhancement
abilities. The authors engrafted human glial progenitor cells
into neonatal immune-deficient mice. At adulthood and upon
maturation, these chimeric mice contain both mice and human
astroglia. What was puzzling about these mice is that they
exhibited enhanced learning and LTP when compared to mice
allografted with murine glial progenitor cells (Han et al., 2013).
This study alludes to the notion of astrocytic evolution geared
towards the enhancement of our cognitive abilities. In sum,
these studies are some of many emerging findings that strongly
highlight the importance and impact of glia on modulating
cognition and emotions. Since impairments in cognition and
mood are features of mental illnesses, it makes sense to draw our
attention to glia and the pathological findings reported in these
cell types.

MENTAL ILLNESSES

According to Center for Disease Control and Prevention (CDC),
mental illnesses refer to disorders generally characterized by
dysregulation of mood, thought, and/or behavior, as recognized
by the Diagnostic and Statistical Manual DSM-IV. Unlike
neurodegenerative disorders, mental illness is not characterized
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FIGURE 1 | Role of glia in health and disease. This is a figure depicting some of the various roles glial cells can play under normal and pathological conditions.
(A) In healthy conditions, astrocytes provide protective and metabolic support to neurons via the supply of trophic factors and metabolic products and via the
reuptake of synaptic glutamate. In addition, some of the factors and gliotransmitters released are involved in inducing synaptic plasticity. Microglia are involved in
synaptic pruning, canvassing extracellular space and phagocytosing apoptotic cells. NG2-glia act mainly as oligodendrocyte progenitor cells. When activated, they
proliferate and differentiate into oligodendrocytes. Oligodendrocytes, on the other hand, support neurons metabolically, are neuroprotective, and provide a source of
myelin necessary for proper propagation of action potential. These various functions of glia are all crucial for maintaining proper neuronal functioning and
communication. (B) In pathological conditions, loss of different types of glia can result in loss of trophic support, loss of synaptic plasticity, excitotoxicity,
inflammation, loss of myelination, etc. All of these effects can impair neuronal activity and function and ultimately behavior.

by significant loss of neurons but rather by a prominent glial
pathology (Rajkowska, 2002b; Rajkowska and Miguel-Hidalgo,
2007).

MAJOR DEPRESSIVE DISORDER

Clinical Studies
Major depressive disorder (MDD) is characterized by depressed
mood, anhedonia and altered cognitive function. The experience
of some of these symptoms can be disabling, interfering with
one’s daily activities and function. In some cases, these disabling
symptoms are recurrent; they may reappear several times in the
lifetime of MDD patients.

MDD is a multifactorial brain disorder with both genetic
and environmental components. Brain imaging and molecular
pathology studies have identified alterations in key structures
involved in the regulation of mood and cognitive functions.
Functional neuroimaging studies measuring changes in glucose
metabolism (Positron Emission Tomography), blood perfusion
(functional Magnetic Resonance Imaging) and volumetric
studies (Magnetic Resonance Imaging) show structural and
functional alterations in the PFC, hippocampus, striatum and
amygdala (Drevets, 1999, 2000, 2001; Zhu et al., 1999). More
specifically, reports indicate a decrease in metabolism of

dorsolateral PFC (dlPFC), subgenual anterior cingulate, and an
increase in orbital cortex/ventrolateral PFC, posterior cingulate
cortex (Drevets et al., 2002a) and amygdala (Drevets et al.,
2002b). Though, normal and hyperfrontal normal activities
have also been reported (Mayberg, 2003; Fales et al., 2008)
indicating some inconsistencies. The decrease in some of the
cortical activity in depressed patients is restored following
antidepressant treatment (Mayberg et al., 2000; Liotti and
Mayberg, 2001). Amygdala activity is generally under negative
control by PFC; the general decrease in PFC function and
increased amygdala activity point to a disrupted circuitry.
Indeed, studies have reported decreased prefrontal-amygdala
functional connectivity (Matthews et al., 2008; Almeida et al.,
2009). This is consistent with impaired cognitive regulation
of negative emotions, a commonly experienced symptom by
depressed subjects. The disruption of this circuitry is further
substantiated by anatomical studies indicating cellular and
myelination changes in many of these brain regions (Zhu et al.,
1999; Manji et al., 2001).

One of the earliest reports of glia pathology dates back
to 1998, when a preliminary histopathological assessment of
subgenual part of Brodmann’s are (BA24) indicated reduction
in gray matter volume and diminution in glial density with
no changes in neuronal density in familial forms of MDD and
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bipolar disorder (BPD; Ongur et al., 1998). Further cellular
characterization was conducted indicating changes in different
glial cell types (Rajkowska et al., 1999). Glia pathology in
MDD has become well documented. Table 1 lists some of
these quantitative studies. Although there are numerous reports
substantiating glial reductions in different limbic brain regions,
there are some studies indicating otherwise. For a more detailed
review, please refer to Sanacora and Banasr (2013).

Studies on specific markers for oligodendrocytes have shown
a decrease in frontal cortex (Honer et al., 1999), in middle
temporal gyrus (Aston et al., 2005), in deep white matter of
the dlPFC (Regenold et al., 2007) and in white matter volume
of genual and splenial portions of corpus callosum (Brambilla
et al., 2004). The greatest changes were observed in layers III,
V, and VI (Rajkowska et al., 1999; Cotter et al., 2001, 2002;
Rajkowska, 2002b; Uranova et al., 2004; Banasr et al., 2007).
Given the presence of a large component of myelinated fibers
in these deeper layers, these findings support the hypothesis
that myelinating oligodendrocyte’s function is reduced in MDD.
Reductions in limbic regions such as the amygdala (Hamidi et al.,
2004) were also observed. Furthermore, white matter alterations
in the anterior cingulate, dlPFC and central white matter regions
were observed with Diffusion Tensor imaging and results suggest
that disconnections of cortical and subcortical regions occur with
depression (Bae et al., 2006).

In addition, changes in expression of astrocytic markers
critical to the function and regulatory mechanisms of
astrocytes have been reported in dlPFC, anterior cingulate
cortex, orbitofrontal cortex and locus coeruleus. A number of
postmortem brain studies of depressed subjects have consistently
shown reductions in the expression of GFAP (Miguel-Hidalgo
et al., 2000), AQP4 (Rajkowska et al., 2013), connexins (Miguel-
Hidalgo et al., 2014), S100B (Gos et al., 2013), glutamate
transporters and glutamine synthase expression (Choudary et al.,
2005; Medina et al., 2013) and TrkB.1, an isoform specifically
expressed in astrocytes (Ernst et al., 2009). One study identified
a significant reduction (by 50%) in the coverage of blood vessels
by astrocytic end feet in the gray matter of the orbitofrontal
cortex (Rajkowska et al., 2013). Being an active participant in
the neuro-vascular unit and a metabolic coupler of neuronal
activity with blood glucose uptake, this suggests that there is
a strong impairment in this particular metabolic astrocytic
activity. Hence, it is not surprising that these cellular changes,
particularly the coverage of blood vessels are accompanied

with metabolic changes in this particular brain region when
examined in anxious depressed subjects (Townsend et al., 2010).
To identify the etiological mechanism of astrocytic pathology
in depression, changes in DNA methylation patterns were
reported in astrocytes that were specifically altered in the brain
of depressed subjects (Nagy et al., 2015). Reductions of astrocyte
related marker GFAP was however, not observed in the older
MDD subjects (46-86 years of age; Miguel-Hidalgo et al., 2000).
The lack of effect in the older MDD population is thought to be
due to age-related astrocyte reactivity.

With regards to microglia, clinical evidence implicating
microglial dysregulation in MDD is limited. While no studies to
date have reported a loss of microglia, one study found significant
microgliosis in dlPFC, anterior cingulate cortex and mediodorsal
thalamus of suicidal subjects (Steiner et al., 2008). Furthermore,
quinolinic acid and pro-inflammatory cytokines, whose main
source of production and release is microglia are elevated in areas
within anterior cingulate cortex and in the cerebrospinal fluid
respectively in a subgroup of depressed subjects (Howren et al.,
2009; Steiner et al., 2011). Readers are referred to a recent review
that thoroughly discusses the findings and the potential role of
activated microglia in the pathophysiology of MDD and other
neuropsychiatric disorders (Beumer et al., 2012).

These cellular alterations are thought to be the underlying
mechanism for the structural changes and volumetric reductions
observed in specific brain regions of MDD subjects. Dysfunction
of glial cells, glial loss and/or reduced gliogenesis (Rajkowska
et al., 1999; Cotter et al., 2001, 2002), are possible mechanisms
that could lead to the reported neuronal atrophy and impairment
in neuronal functioning and output.

Preclinical Studies of Depression
The importance of glia in moodmodulation has been highlighted
recently in animal models of depression. An increase in cell
proliferation in the PFC of adult rats at baseline levels occurs
after 3 weeks of antidepressant treatment (Kodama et al., 2004).
Chronic stress and chronic corticosterone administration result
in at least 30% decrease of cell proliferation in the medial
PFC and cerebral cortex of adult rats (Alonso, 2000; Banasr
et al., 2007; Czeh et al., 2007) and mice (Elsayed et al., 2012).
Some of these changes are reversed by chronic fluoxetine
treatment (Banasr et al., 2007; Czeh et al., 2007). Furthermore,
the nature of the proliferative cells decreased by stress in
the PFC was identified as NG2+ cells and endothelial cells

TABLE 1 | Summary of the findings of glial cell reductions within the brain of depressed.

Cortical region Glial density Neuronal size Reference

DLPFC Decrease in glia 20% Cotter et al. (2002)
Supra and infragranular layers of Dec. glia 5–7% Rajkowska et al. (1999)
DLPFC and OrbitoFrontal Cortex (OFC)
Subgenual Anterior Cingulate Dec. in Glia (Area 24) across all layers Selective decrease in layer Vb and Gittins and Harrison (2011)
changes in neuronal size/shape
Anterior cingulate cortex Dec. in Glia density layer 6 (22%) 23% layer 6 Cotter et al. (2001)
Hippocampus (CA1 region) Dec. in astrocytes Not reported Gos et al. (2013)
Amygdala Dec. in glia and oligodendrocytes Not reported Bowley et al. (2002) and Hamidi et al. (2004)
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(RECA-1+ marker; Banasr et al., 2007; Elsayed et al., 2012).
This decrease in cell proliferation following chronic stress was
accompanied by a reduction in the number of newly generated
oligodendrocytes (RIP+; Banasr et al., 2007; Elsayed et al., 2012).
These studies suggest that reductions in cortical cell proliferation
could contribute to the glial alterations observed in depressed
patients and that antidepressants might act in part by blocking
or reversing these effects. In addition, rodent chronic stress
and maternal deprivation models of depression also resulted
in reduced astrocyte numbers and density in the hippocampus
(Leventopoulos et al., 2007; Araya-Callis et al., 2012) and PFC
(Banasr et al., 2010).

Factors that may contribute to a loss of glia include
the alterations in glucocorticoid secretion and glutamatergic
transmission evident during depression. Elevated glucocorticoid
concentration, as a result of repeated stress, can decrease the
proliferation of OPC (Alonso, 2000) and astrocyte density
(Nichols et al., 1990). Furthermore, the early loss of glia
in the initial stages of depression may lead to a reduction
in glutamate clearance from the synaptic cleft. As a result,
extracellular glutamate levels rise and can contribute to further
glial damage (Rajkowska and Miguel-Hidalgo, 2007). Indeed,
astrocytes, OPC and mature oligodendrocytes express glutamate
receptors making them responsive to glutamate signaling and
susceptible to excitotoxic damage from excess glutamate (Matute
et al., 1997; McDonald et al., 1998; De Biase et al., 2011; Vielkind
et al., 1990).

Astrocytes are functionally diverse and can exert a significant
impact on cognitive and emotion-related behaviors. One study
has shown that by interfering with astrocytic gliotransmission
and vesicular ATP release, animals exhibit depressive-like
symptoms (Cao et al., 2013). Furthermore, mice with
knock-out of the gene encoding for Aquaporin-4, a protein
predominantly expressed in astrocytes, show loss of astrocytes
and exacerbated depressive-like behaviors when subjected to
chronic corticosterone treatment (Kong et al., 2014). Together,
these studies suggest that astrocytic pathology is implicated in
the pathogenesis of depression.

Preclinical studies also suggest the involvement of microglial
activity in the expression of depressive symptoms. Upon
challenging the immune system and activating microglia,
rodents express depressive-like symptoms that can be reversed
with chronic antidepressant treatment (Yirmiya, 1996; Yirmiya
et al., 2001). Furthermore, microglial activity is sensitive to
antidepressant treatment and chronic stress (Hashioka et al.,
2007; Goshen and Yirmiya, 2009). Chronic stress increases
microglia activation in the rat PFC, an effect reversed by
minocycline, an antibiotic that blocks microglial function
(Hinwood et al., 2012) and exerts antidepressant effects (Arakawa
et al., 2012). Further evidence implicating this cell type comes
from studies on mice deficient in the fractalkine receptor
CX3CR1 which is exclusively expressed by microglia; these
mice exhibit depressive-like behaviors following activation of
microglia by lipopolysaccharide treatment (Corona et al., 2010).

Interestingly, in vitro studies of pure glial cell cultures indicate
a direct action of antidepressants on glia, in addition to their
classical effects on monoaminergic neurons. Studies show that

antidepressants can enhance astrocytic metabolism (Zhang et al.,
1993; Kong et al., 2002; Allaman et al., 2011), increase growth
factors expression (Allaman et al., 2011; Kajitani et al., 2012), and
reduce the production of inflammatory cytokines (Obuchowicz
et al., 2014). These in vitro studies point to a variety of glial-
mediated mechanisms that could underlie therapeutic effects
of antidepressants. The metabolic effects of antidepressants
observed in culture could also explain the clinical findings
indicating a recovery in glucose metabolism in affected brain
regions following antidepressant treatment (Mayberg et al., 2000;
Drevets et al., 2002a).

BIPOLAR DISORDER

BPD, also known as manic-depressive illness is another
classification of mood disorders. It is characterized by fluctuating
moods between depression and mania, and both phases can
occur with psychotic features. Moreover, unlike MDD it has a
significant genetic component.

Structural and functional neuroimaging studies have
indicated volumetric changes in cortico-limbic brain regions
(Ongur et al., 1998; Rajkowska, 2002a) and compromised white
matter integrity in BPD (Hercher et al., 2014). In addition to
alterations in density/size of specific types of cortical neurons,
glia loss has been reported to occur in postmortem brain
studies of BPD subjects. Loss of glia is up to 40% in mPFC
(area 24) as indicated by a study of a small cohort of familial
BPD, and was consistent with the neuroimaging findings
(Drevets et al., 1997; Ongur et al., 1998). Furthermore, unlike
MDD, these glial reductions are lamina-specific within the
dlPFC (Rajkowska et al., 2001) and are accompanied by glial
hypertrophy (Rajkowska et al., 2001). Glial reductions also
extend to subcortical regions such as the amygdala (Bowley
et al., 2002) but do not appear to be widespread (i.e., there is
no change in glia density in the supracallosal part of anterior
cingulate cortex; Cotter et al., 2001). Hence, these results suggest
reductions in glia density within regions of the cortico-limbic
structures, particularly within the ventrally located regions and
more subtle changes within dlPFC.

Studies delineating the specific types of glia involved suggest
a severe loss of oligodendrocytes and myelin with some mixed
results concerning astrocytes. In a microarray and qPCR study,
markers for oligodendrocytes which include myelination related
genes such as PLP1, MAG, CLDN11, MBP, MOG, GALC and
Transferrin were decreased in the PFC of BPD subjects (Tkachev
et al., 2003). Abnormalities in satellite oligodendrocytes were
also evidenced by electron microscopic analysis of PFC in BPD
(Uranova et al., 2001; Vostrikov et al., 2007; Drevets et al., 2008)
suggesting oligodendrocyte dysfunction. On the other hand,
decreased Glycogen Synthase Kinase 3 (GSK3) activity, as a result
of lithium treatment or variation in the promoter of GSK3 gene
seen in some patients, is associated with enhancement in white
matter integrity and improvement in clinical feature of BDP
(Benedetti et al., 2013). These results suggest the involvement
of oligodendrocyte/myelin integrity in the development and
treatment of BPD symptoms.
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There are some mixed results when it comes to astrocytic
reductions. One study reported a decrease in GFAP
immunostaining across all layers of the orbitofrontal cortex
while another study found no changes in the subgenual cingulate
cortex (Toro et al., 2006; Williams et al., 2013) despite a decrease
in GFAP mRNA expression in the dorsal portion (Webster et al.,
2005). Furthermore, the expression of another astrocytic marker,
glutamine synthase, was not changed in the dorsolateral and in
the orbitofrontal cortex (Toro et al., 2006).

Preclinical Studies of Bipolar Disorder
To date, there is no established animal model of BPD that
exhibit mania-like symptoms, particularly alternating episodes
of mania and depression-like behaviors. Hence, the field has
relied mostly on genetic studies and/or examining the effects
of two commonly used and oldest therapeutic drugs, Lithium
and Valproate. One study found that chronic lithium treatment
decreases NG2 cell proliferation within the hippocampus (Orre
et al., 2009), and reduces glycogen synthesis in astrocytes (Souza
Ade et al., 2010). Furthermore, lithium within therapeutic
concentrations was found to inhibit GSK3 activity (Bain et al.,
2007). One of the numerous effects of GSK3 is to regulate
oligodendrocyte differentiation andmyelination (Azim and Butt,
2011). As such, this can represent a mechanism by which
lithium can exert therapeutic effects via possible regulation
of oligodendrocyte differentiation and function. Additional
targets include neuregulin and its receptor, erbB4 that are
genetically linked to BPD and are implicated in oligodendrocyte
development (Roy et al., 2007).

These findings suggest that treatment of BPD could be exerted
via modulation of different pathways that regulate the activities
and functioning of different glial cell types. Nevertheless, more
preclinical studies would need to be carried out to further
establish this link.

ANXIETY DISORDERS

Anxiety disorders have a high degree of comorbidity with MDD.
While anxiety is a natural response to a life threatening situation,
it becomes a disorder when it disrupts one’s daily activities.
There are six subtypes of anxiety disorders defined by specific
symptoms: generalized anxiety disorder (GAD), panic disorder
(PD), obsessive-compulsive disorder (OCD), post-traumatic
stress disorder (PTSD) and agora- or socio-phobias. All have a
common feature which is a lack of correct processing of fear
stimuli.

Imaging and magnetic resonance studies report brain
structural alterations, (Li et al., 2014) and glial metabolite
changes in different subtypes of anxiety disorders (Seedat
et al., 2005; Kitamura et al., 2006). Furthermore, disruption in
myelin integrity and structure has been observed particularly
in OCD subjects within fronto-striato-thalamo cortical circuit.
These structural changes were associated with a functional
polymorphism in the myelin oligodendrocyte glycoprotein
(MOG; Atmaca et al., 2010). White matter contains fiber tracts,
surrounded by myelin sheaths and fibrous astrocytes. These
studies indicate that disturbed myelination/oligodendrocyte

function and/or astrocytic function are implicated in anxiety
disorders. Additional studies showed an association between
the polymorphisms in oligodendrocyte lineage transcription
factor OLIG2 and OCD, further supporting white matter and
oligodendrocyte abnormalities in this disorder (Stewart et al.,
2007).

In addition, Riluzole, a drug used in the management of ALS
has been shown to exert beneficial effects in patients with OCD
(Coric et al., 2003) and GAD (Mathew et al., 2005; Pittenger
et al., 2008). Riluzole can act on astrocytes and enhance astrocytic
uptake of extracellular glutamate in addition to other effects.
Given the numerous mechanisms it can exert, it is remains to be
determined whether its therapeutic effect is via enhancement of
astrocytic uptake of glutamate per se.

Preclinical Studies
While the most consistent pathological findings in postmortem
studies were disruptions in myelination, few preclinical studies
have been carried out to examine a causal link between
oligodendrocytes and anxiety. Rodents exposed to cuprizone, a
demyelinating drug, exhibit anxiety related behavioral responses
(Serra-De-Oliveira et al., 2015) thus providing a potential link
between impairment in myelin/oligodendrocyte functioning and
anxiety.

The association between astrocyte activation and different
behavioral forms of anxiety has been explored to some
extent. In one study, the metabolic and metabolite effects
of antidepressant/antipanic drug phenelzine in rat cortex was
examined using H1[13C]magnetic resonance spectroscopy.
The rate of glutamate-glutamine cycling flux between neurons
and glia was significantly reduced following treatment (Yang
and Shen, 2005). A transcriptome analysis performed in the
amygdala of rats exposed to fear learning, a behavioral model
of Posttraumatic Stress Disorder (PTSD), showed induction
of 84-astrocyte-enriched genes following shock exposure
(Ponomarev et al., 2010). This indicates a possible involvement
of astrocytes within the amygdala in stress-associated behavioral
response. Expression of FGF2, predominantly expressed in
astrocytes, is decreased in rats selectively bred for high anxiety.
Treatment with FGF2, on the other hand, has anxiolytic
effects. In addition, this treatment regimen results in increased
hippocampal neurogenesis and gliogenesis pointing to the
possible involvement of these cellular processes in anxiety
modulation (Perez et al., 2009). In another model of PTSD that
involves single prolonged stress (SPS), FGF2 administration
was shown to inhibit SPS-induced hyperarousal and anxiety
behavior, symptoms resembling PTSD. This was accompanied by
a specific upregulation of GFAP expression in the hippocampus
indicating that the anxiolytic effects of FGF2 could involve
astrocyte-based mechanisms (Xia et al., 2013). Furthermore,
riluzole administration in the medial PFC has been shown to
block anxiety-like behavior indicating the possible involvement
of astrocytic function in modulating anxiety via enhanced uptake
of extracellular glutamate (Ohashi et al., 2015).

With regards to microglial involvement, knock-out mice
for the Hoxb8 gene, a homeobox developmental patterning
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gene expressed prominently in the macrophage-lineage of
hematopoietic cells and expressed by a subset of microglia,
exhibit OCD-like behaviors which can be normalized following
repopulation of the brain with wild-type microglia (Chen et al.,
2010).

SCHIZOPHRENIA

Schizophrenia is a chronic and disabling neurodevelopmental
disorder with polygenic and environmental factors playing a
role. It is characterized by positive symptoms such as delusions,
hallucinations, disordered thoughts, and negative symptoms
such as deficits of normal emotional responses and thought
processes. While the positive symptoms are in general better
controlled with antipsychotics, negative symptoms are not.

Schizophrenia is regarded as a syndrome of inter- and
intra-hemispheric disconnectivity particularly that of reduced
cortical connectivity, for which the underlying biological and
genetic cause remains unclear. While cell biology studies have
predominantly focused on neurons, multiple lines of evidence
from neuroimaging, postmortem brains and genome-wide
associations implicate oligodendrocyte abnormalities and
compromised white matter/myelin integrity (Dwork et al., 2007;
Bernstein et al., 2015). Genetic and protein expression studies
in schizophrenia indicate abnormalities in Myelin associated
markers (Flynn et al., 2003; Iwamoto et al., 2005) within the
cortex (Aston et al., 2004; Aberg et al., 2006; Tkachev et al.,
2007) and within subcortical brain regions (Dracheva et al.,
2006; Barley et al., 2009) with the most profoundly affected
brain regions being the hippocampal formation, cingulate
and temporal cortices (Katsel et al., 2005a,b). One mechanism
contributing to this oligodendrocyte/myelin abnormality could
be linked to disrupted-in-schizophrenia-1 (DISC1) gene. DISC-1
disruption as a result of chromosomal translocation reduces
expression of Neuregulin and its receptor ErbB3. These are
some of several altered genes associated with the development of
Schizophrenia (Millar et al., 2000; Blackwood et al., 2001; Hakak
et al., 2001; Corfas et al., 2004; Silberberg et al., 2006). Being
expressed by different cell types including oligodendrocytes
(Deadwyler et al., 2000; Osbun et al., 2011), these proteins exert
a variety of functions including regulating oligodendrocyte
development, differentiation and CNS myelination (Vartanian
et al., 1999; Taveggia et al., 2005; Chen et al., 2006; Hattori
et al., 2014). Furthermore, postmortem histology studies
indicate reductions in glial cells in anterior cingulate cortex
(Stark et al., 2004) including decreases in oligodendrocyte
density (Uranova et al., 2004) in hippocampus (Schmitt
et al., 2009), in the perineuronal PFC (Vostrikov et al., 2007)
as well as layer specific oligodendrocyte reductions in the
dlPFC (Hof et al., 2003). This is accompanied with volumetric
reductions, abnormalities in adulthood myelination in the
frontal lobes, association areas (Bartzokis et al., 2003) and
temporal lobes (Chambers and Perrone-Bizzozero, 2004) and
in white matter fiber tracts interconnecting brain regions,
particularly the frontal and temporal lobes (Breier et al.,
1992; Paillere-Martinot et al., 2001). It was hypothesized that
the abnormalities in oligodendrocyte/myelin are possibly

due to alterations in proliferation and differentiation of
oligodendrocyte progenitor cells, NG2. Indeed, a microarray
study carried out on the brains of schizophrenic patients revealed
changes in gene expression associated with the regulation of
G1/S phase transition and oligodendrocyte differentiation
(Katsel et al., 2008). In support of a cell cycle impairment,
variation in OLIG2, a gene strongly implicated in the control of
oligodendrocyte development, was identified as a susceptibility
gene in schizophrenia (reviewed in Georgieva et al., 2006).
In addition, the reduction of perineuronal non-myelinating
oligodendrocytes suggests impairments in oligodendrocyte
functions that are beyond myelination. Together, these studies
indicate that inadequate myelination or myelin function,
abnormalities in oligodendrocyte development, density
and functions could contribute to the pathophysiology and
expression of schizophrenia symptoms.

Findings of abnormalities of astrocytes were less consistent
and not as well surveyed. Examination of the astrocytic
GFAP marker yielded differential results when examining it
in various affected brain regions. Studies examining GFAP
expression in cortical gray matter have identified no changes
(Falkai et al., 1999; Katsel et al., 2011a), decreased expression
(Johnston-Wilson et al., 2000; Steffek et al., 2008) or increased
expression (Pennington et al., 2008; Feresten et al., 2013).
Furthermore, some studies reported specific changes restricted
to subgroups of schizophrenic subjects (Arnold et al., 1996).
In sum, studies using GFAP as an astrocyte marker have
yielded inconsistent results. Since GFAP may not represent a
direct link to astrocyte density, other astrocytic markers were
examined. The expressions of a few selected markers were
found altered implying possible changes in specific astrocytic
functions and/or astrocytic subsets (Owen et al., 1987; Katsel
et al., 2011a; Feresten et al., 2013). These changes in astrocytic
markers were glutamate-related, an observation consistent with
the view that schizophrenia is associated with a hypofunction
of glutamatergic transmission. Supporting this, the expression
of astrocytic glutamate transporter was found increased in the
PFC of schizophrenic subjects (Matute et al., 2005; Lauriat et al.,
2006) and normalized following antipsychotic treatment (Matute
et al., 2005), while that of glutamine synthase was decreased
in the deep layers of the anterior cingulate (Steffek et al.,
2008).

Microglial cells are also altered in the brain of schizophrenic
patients. Cytology and imaging studies report increased number
of activated microglia in the frontal and temporal lobes of
schizophrenic patients (Bayer et al., 1999; Radewicz et al.,
2000; Wierzba-Bobrowicz et al., 2005; Van Berckel et al.,
2008). Activation of microglia can result in the release of
proinflammatory cytokines and free radicals that can lead
to abnormalities in white matter and neurons and thus
in the expression of schizophrenia symptoms. Interestingly,
minocycline, an inhibitor of microglial activation was found
to have therapeutic benefit when used as an adjunctive
treatment (Miyaoka et al., 2007; Levkovitz et al., 2010;
Chaudhry et al., 2012). These findings indicate overactive
microglia may play an important role in the pathophysiology of
schizophrenia.
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Preclinical Studies
Animal models of schizophrenia face serious and vexing
challenges given the complexity and difficulty to recapitulate
the symptoms of schizophrenia. Nevertheless, preclinical
studies have shed light and provided key insights into the
involvement of the different glial cells in the pathophysiology of
schizophrenia. For instance, demyelination and downregulation
of oligodendrocyte-associated genes in PFC was shown to
induce behavioral deficits associated with schizophrenia
(a deficit in the ability to shift between perceptual dimensions
in the attentional set-shifting task; Gregg et al., 2009). Mice
with selective ErbB3 receptor deletion in oligodendrocytes
exhibit deficits in social interaction and working memory
(Makinodan et al., 2012). Transgenic mice expressing mutant
human DISC1 specifically in the forebrain also show behavioral
deficits similar to schizophrenia. In addition, these mice were
found to exhibit premature oligodendrocyte differentiation
and increased proliferation of their progenitors (Katsel et al.,
2011b). These studies indicate that oligodendrocyte functional
impairment via ErbB3 signaling or alterations in DISC1 function
can contribute to schizophrenia pathogenesis and symptoms.
Furthermore, transgenic mice with a deficiency of DISC1
expression in astrocytes have impaired D-serine production
which in turn can affect NMDAR activity. These mice also
display schizophrenia like-behaviors (prepupulse inhibition
in the acoustic startle tests) consistent with hypofunction of
glutamatergic transmission via NMDA receptors (Ma et al.,
2013). Furthermore, pharmacological upregulation of the
astrocytic glutamate transporter Glt-1 expression result in
impairment of information processing, mimicking what occurs
in schizophrenia (Bellesi et al., 2009). In an animal model of
schizophrenia based on maternal infection during pregnancy,
microglia activation in brain regions involved in the pathogenesis
of schizophrenia i.e., hippocampus and striatum was observed
(Juckel et al., 2011; Mattei et al., 2014). The behavioral deficits
triggered in this animal model of schizophrenia were rescued
following treatment with minocycline (Mattei et al., 2014).
Lastly, antipsychotics have been shown to modulate microglial
activity promoting anti-inflammatory effects (Labuzek et al.,
2005; Kato et al., 2007). In sum, these findings support the
involvement of microglia, oligodendrocyte and astrocytes in the
pathophysiology and treatment of schizophrenia.

ATTENTION DEFICIT HYPERACTIVITY
DISORDER

Attention deficit hyperactivity disorder (ADHD) is a highly
heritable disorder characterized by a heterogeneous set of
symptoms that include problems in attention, impulsivity
and hyperactivity. Compelling lines of evidence indicate that
symptoms of ADHD are associated with hypofunctionality of
catecholaminergic pathways projecting to prefrontal cortical
areas (Biederman and Spencer, 2000; Semrud-Clikeman et al.,
2000; Todd and Botteron, 2001). For instance, unmedicated
ADHD subjects exhibit increased dopamine transporter
concentrations (Dougherty et al., 1999; Krause et al., 2000) that
are normalized following treatment (Krause et al., 2000). It is

well known that catecholamines can trigger glycogenolysis in
astrocytes followed by lactate release (Magistretti, 1988; Sorg
and Magistretti, 1991; Magistretti et al., 1993). It is hypothesized
as such that catecholamine hypofunction could result in
diminished activation of astrocytic energy metabolism and
supply to prefrontal cortical neurons (Semrud-Clikeman et al.,
2000; Russell et al., 2006; Killeen et al., 2013). In turn, rapid
synchronized neuronal firing can be impaired, which might
result in disturbances in neurotransmission (Todd and Botteron,
2001). This is supported by some imaging studies indicating
changes in cerebral blood flow and glucose metabolism in
ADHD subjects (Zametkin et al., 1990, 1993; Ernst et al., 1994;
Gustafsson et al., 2000; Hart et al., 2012) though these findings
were not always reproducible in other cohorts (Ernst et al., 1997).
The inconsistencies in these imaging studies might be related
to the phenotyping heterogeneity of the disease. In addition,
ADHD individuals exhibit altered myelination and disrupted
network connectivity (Fair et al., 2010; Nagel et al., 2011). Since
Lactate is involved in myelin production (Rinholm et al., 2011),
it is conceivable that this deficit in energy supply in the form of
Lactate could also interfere with myelin production and hence
neuronal transmission.

Preclinical Studies
Spontaneously hypertensive rats (SHR) display hyperactivity,
impulsivity and poor performance in tasks that require sustained
attention. Thus, they represent a model of ADHD. These rats
show reductions in proteins involved in energy metabolism and
myelination (Dimatelis et al., 2015). Given that glia particularly
astrocytes are key players in brain energy metabolism, this
finding further support a role of astrocytic energy metabolism
deficit in ADHD genesis. Further evidence supporting glial
contribution to the pathophysiology of this disorder is provided
by a study showing that mutant mice with a disrupted SynCam1
specifically in astrocytes result in behavioral deficits related to
ADHD symptoms (Sandau et al., 2012).

SUBSTANCE USE DISORDERS

Substance use disorders (SUD) is a chronic brain disorder with
profound effects on our society. Addicted individuals untiringly
seek substance of abuse despite the negative consequences
associated with it. Apart from the huge economic burden it
carries, SUD have devastating consequences on society and
quality of life. Vulnerability to addiction is influenced by genetics,
environmental factors and developmental stages (Volkow et al.,
2011). Chronic drug abuse impairs many aspects of behavior
necessary for proper functioning in social environment. For
example, alcohol dependance leads to impairments in executive
function and episodic memory (Bernardin et al., 2014). These
impairments are seen as a result of structural and functional
changes in limbic circuits and frontal brain regions. Indeed,
imaging studies indicate volumetric changes in the frontal lobe
in cocaine-, alcohol- and heroin-dependent subjects (Goldstein
and Volkow, 2002). While neuronal dysfunction particularly
dopaminergic, glutamatergic and opioidergic transmissions are
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the underlying pathophysiological mechanisms, pathological
changes in glial cells are also observed (Miguel-Hidalgo, 2009).

Alcohol dependent subjects exhibit reductions in glial
densities in dlPFC (Miguel-Hidalgo et al., 2002), orbitofrontal
cortex (Miguel-Hidalgo et al., 2006) and hippocampus (Korbo,
1999). Glial loss includes astrocytes and oligodendrocytes. While
there are also some neuronal losses, the deficit is not as
widespread. Unlike glia, there is no loss of neurons in the
hippocampus (Korbo, 1999) and it is limited to specific cortical
layers of the orbitofrontal cortex (Miguel-Hidalgo et al., 2006).
Several findings based on examination of a number of glial
markers substantiate glial pathology in alcoholic subjects. For
example, connexin 43, an astrocytic gap junction, is significantly
reduced in the orbitofrontal cortex of alcoholics indicating
impairment in astrocytic communication (Miguel-Hidalgo et al.,
2014). Furthermore, a mutation in a glutamate transporter
specifically expressed in astrocytes, GLT-1, was found to increase
vulnerability to alcohol dependance (Sander et al., 2000).
In addition to astrocytic pathologies, postmortem studies of
the brains of alcohol dependent subjects indicate increased
expression of microglial markers in specific brain regions (He
and Crews, 2008) and altered oligodendrocyte/myelin gene
expression indicating white matter dysfunction (Lewohl et al.,
2000; Pfefferbaum et al., 2000; Mayfield et al., 2002; Liu et al.,
2004). Some of these changes in oligodendrocyte markers and
the expression of several myelination related genes were also
observed in cocaine abusers (Albertson et al., 2004; Bannon et al.,
2005).

Preclinical Studies
Preclinical studies helped dissect the role of these pathologies
play in addiction. Studies demonstrating impairment in astrocyte
density/function particularly those pertaining to glutamate
homeostasis are of particular interest. Chronic exposure to both
cocaine and nicotine in rodents resulted in reduced expression
of a catalytic subunit of cysteine glutamate antiporter expressed
predominantly in glia (Kalivas et al., 2003; Kalivas, 2009).
Exposure to other forms of substances of abuse (i.e., alcohol,
heroin, etc.) was also shown to result in reduced expression levels
of GLT-1 in the nucleus accumbens (Kalivas, 2009; Sari and
Sreemantula, 2012; Gipson et al., 2013). While gene expression
levels of GLAST, another glutamate transporter subtype, were
found increased in the frontal cortex in alcohol-dependent
rodents (Rimondini et al., 2002), GLT-1mediated functions seem
to be disrupted in this brain region (Mulholland et al., 2009).
The reduction in glutamate re-uptake particularly in nucleus
accumbens seems to be a consistent maladaptive response to
these different drugs of abuse. This pathology may result in
potentiation of glutamatergic transmission and in activation of
non-synaptic glutamatergic compartment which is associated
with drug seeking behavior (Kalivas, 2009; Scofield and Kalivas,
2014). Additional aspects of astrocytic functions seem to also
be implicated. Alcohol preferring rats show increased GFAP-
immunoreactive cells following few weeks of exposure (Miguel-
Hidalgo, 2005) while longer duration resulted in reduction
in perineuronal glial cell densities (Khokhrina et al., 1991).

Furthermore, alcohol self-administration is increased following
infusion of the gliotoxin L-AAA or astrocytic gap junction
blockers into the prelimbic cortex (Miguel-Hidalgo et al., 2009).
In addition to the astrocytic pathologies and consistent with
clinical findings, chronic exposure to alcohol also results in a
decrease in oligodendrocyte/myelin gene expression (Okamoto
et al., 2006). Interestingly, the identification of a glial modulator,
ibudilast was shown to exert therapeutic effects in rodent models
of addiction (Snider et al., 2013; Bell et al., 2015).

Taken together, these studies suggest that alcohol and
additional substances of abuse can have profound effects on glial
density and function in relevant brain regions. Furthermore,
interfering with glial density and/or function seems to affect
vulnerability for addiction. Thus targeting specific functions of
glia could represent a new therapeutic avenue.

ALEXANDER DISEASE

Alexander disease is a rare and fatal disease of the CNS,
predominantly affecting infants and children. Affected patients
suffer from cognitive and motor impairments in the form of
mental retardation, seizures, megaloencephaly and progressive
deterioration (Prust et al., 2011; Verkhratsky et al., 2014). The
pathology is a glial one associated with sporadic mutations
in the non-conservative coding region of GFAP (Brenner
et al., 2001; Rodriguez et al., 2001). These mutations are
thought to result in cytotoxicity. Indeed, histological analysis
has indicated cytoplasmic inclusions in astrocytes that contain
the intermediate filament GFAP, otherwise referred as Rosenthal
fibers. It is thought that these fibers, represent the hallmark of
this disease (Sawaishi, 2009). Furthermore, variable degrees of
cerebral white matter degeneration, referred as leukodystrophies,
have been observed prominently in the frontal lobes (Messing
et al., 2012) and in close apposition to Rosenthal fibers.
Since astrocytes can release factors involved in myelination
(Ishibashi et al., 2006; Sawaishi, 2009), it is thus speculated
that white matter abnormalities are a consequence to astrocytic
pathology.

Preclinical Studies
To further cement the involvement of this astrocytic genetic
defect in Alexander disease pathology, mouse models of
Alexander Disease overexpressing human GFAP mutation
were generated. A similar astrocytic pathology with inclusions
of Rosenthal fibers was observed (Eng et al., 1998). In
addition, decreased glutamate transporter levels that were
also reported in human subjects (Tian et al., 2010) were
demonstrated along with cognitive impairments (Hagemann
et al., 2013).

In sum, these findings present Alexander disease as
a primary astrocytic genetic disorder. Impairment in
astrocytic function via decreased glutamate uptake and/or
release of factors involved in myelin formation, can
trigger the pathogenesis of neuronal and oligodendrocyte
injury/death and ultimately manifesting symptoms of Alexander
disease.
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TABLE 2 | Summary of the therapeutic drugs that target glial cells.

Neuropsychiatric disorder Glial cells
affected

Therapeutics targeting glial cells Glial cells
responsive
to therapeutics

Major depressive disorder Astrocytes
Microglia
Oligodendrocytes

Riluzole (Yoshizumi et al., 2012)
Fluoxetine, Paroxetine (Allaman et al., 2011)
Ceftriaxone (Li et al., 2012)
Minocycline (Hinwood et al., 2012)

-Astrocytes
-Oligodendrocyte
progenitors
-Microglia

Bipolar disorder Oligodendrocytes
Astrocytes
Microglia

Lithium (Orre et al., 2009; Souza Ade et al., 2010) -Astrocytes
-Oligodendrocyte
progenitors

Anxiety disorders Oligodendrocytes
Astrocytes

Riluzole (Pittenger et al., 2008)
Benzodiazepines (Patte et al., 1999)

-Astrocytes

Schizophrenia Astrocytes
Microglia
Oligodendrocytes

Minocycline (Chaudhry et al., 2012)
Risperidone (Kato et al., 2007)
Chlorpromazine and loxapine (Labuzek et al., 2005)

-Microglia

Substance use disorders Astrocytes
Microglia
Oligodendrocytes

Ibudilast, AV1013, minocycline (Snider et al., 2013) -Microglia

Alexander disease Astrocytes

CONCLUSION

Converging lines of evidence from clinical and preclinical
studies suggest that different types of glial cells can play
a substantial role in the pathology of mental illnesses.
Furthermore, there appears to be an overlap in glial
pathologies in some of the mental illnesses pointing to the
multi-functional impact of these cells in the expression
of diverse symptoms. For example, reports of reductions
in glial density within the dorsolateral PFC are indicated
in subjects diagnosed with depression (Rajkowska et al.,
1999) and alcoholism (Miguel-Hidalgo et al., 2002). A direct
cause effect is further demonstrated in preclinical studies
whereby injection of a gliotoxin into the PFC results in
behavioral effects associated with depression (Banasr and
Duman, 2008) and alcohol preference (Miguel-Hidalgo et al.,
2009). These overwhelming findings implicating glial cells
in the pathophysiology of mental illnesses should alter our
perception of mental illnesses. It should also promote interest
towards targeting glial cells as a new avenue of treatment.

Table 2 below is a summary of the glial pathological findings
reported among the different types of mental illnesses and
a list of compounds with therapeutic benefits that target
different types of glial cells, in hope to shed light on these
cast-aside cells that seem to hold more potential than we
think.
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