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p-Nitrophenol (PNP) is common in the wastewater from many chemical industries. In
this study, we investigated the effect of initial concentrations of PNP and glucose and
applied voltage on PNP reduction in biocathode BESs and open-circuit biocathode
BESs (OC-BES). The PNP degradation efficiency of a biocathode BES with 0.5 V (Bioc-
0.5) reached 99.5 ± 0.8%, which was higher than the degradation efficiency of the BES
with 0 V (Bioc-0) (62.4 ± 4.5%) and the OC-BES (59.2 ± 12.5%). The PNP degradation
rate constant (kPNP) of Bioc-0.5 was 0.13 ± 0.01 h−1, which was higher than the kPNP

of Bioc-0 (0.024 ± 0.002 h−1) and OC-BES (0.013 ± 0.0005 h−1). PNP degradation
depended on the initial concentrations of glucose and PNP. A glucose concentration
of 0.5 g L−1 was best for PNP degradation. The initial PNP increased from 50 to
130 mg L−1 and the kPNP decreased from 0.093 ± 0.008 to 0.027 ± 0.001 h−1. High-
throughput sequencing of 16S rRNA gene amplicons indicated differences in microbial
community structure between BESs with different voltages and the OC-BES. The
predominant populations were affiliated with Streptococcus (42.7%) and Citrobacter
(54.1%) in biocathode biofilms of BESs, and Dysgonomonas were the predominant
microorganisms in biocathode biofilms of OC-BESs. The predominant populations were
different among the cathode biofilms and the suspensions. These results demonstrated
that applied voltage and biocathode biofilms play important roles in PNP degradation.

Keywords: biocathode, p-nitrophenol reduction, bioelectrochemical system, high-throughput sequencing,
microbial community structure

INTRODUCTION

p-Nitrophenol (PNP), a priority pollutant listed by the United States Environmental Protection
Agency, is widely used for the synthesis of industrial products, and it is generated by the
degradation of pesticides in the environment (Kowalczyk et al., 2015). In addition, PNP is known
to have high toxicity, which can threaten ecosystem and human health if released directly into
the environment (Chen et al., 2016). Hence, it is necessary to treat PNP-containing wastewater.
The nitro group, with its high electron-withdrawing effect, and the benzene ring are resistant
to oxidative degradation (Li et al., 2016); thus, an easy reduction of PNP is essential. Some
physicochemical technologies have been applied to clean PNP-containing wastewater (Liu et al.,
2010; An et al., 2012; Arbab Zavar et al., 2012; Yarlagadda et al., 2012; Zhang et al., 2012a;

Frontiers in Microbiology | www.frontiersin.org 1 March 2018 | Volume 9 | Article 580

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.00580
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.00580
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.00580&domain=pdf&date_stamp=2018-03-27
https://www.frontiersin.org/articles/10.3389/fmicb.2018.00580/full
http://loop.frontiersin.org/people/515071/overview
http://loop.frontiersin.org/people/93693/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00580 March 27, 2018 Time: 12:24 # 2

Wang et al. PNP Degradation and Community Structures

Zhou et al., 2016), which require high costs, extreme pH
conditions, high power input, or a long processing time.
Therefore, it is necessary to develop effective methods for PNP
removal.

p-Nitrophenol degradation technology using the anaerobic
reductive process successfully transforms PNP to p-aminophenol
(PAP) when glucose is used as the electron donor (Sponza
and Kuşçu, 2005; Kuscu and Sponza, 2007). However, the
anaerobic process is usually slow and needs reductive conditions
(Shen et al., 2013). In addition, a direct power supply used
to enhance the degradation of difficult pollutions in anaerobic,
microbial reductive processes (Zhang et al., 2012b,c; Shen
et al., 2014). Bioelectrochemical systems (BESs) use electroactive
microorganisms to drive electron transfer (Wang and Ren,
2013), which has been used for the removal of challenging
pollutants, such as aromatic pollutants, nitrobenzene; azo dyes;
nitrofurans furazolidone; cefuroxime; phenols; chloramphenicol;
2,4-dinitrochlorobenzene; and nitrate (Kong et al., 2014, 2015;
Liang et al., 2014; Bajracharya et al., 2016; Cheng et al., 2016;
Yun et al., 2017). BES has an advantage over conventional
anaerobic treatment for recalcitrant pollutants degradation and
dye decolorization (Bajracharya et al., 2016). Recently, BESs
and BES-integrated conventional processes have shown excellent
PNP degradation efficiency (Shen et al., 2013, 2014; Lou et al.,
2015; Chen et al., 2016).

Some previous studies have shown that nitrophenols (such
as PNP) were reduced to aminophenols (PAP) with less toxicity
and easier mineralization (Wang et al., 2011, 2016; Shen et al.,
2012; Jiang et al., 2016). The use of biocathode BESs has
been reported as a low energy and sustainable method for
metals remediation and nitrate remediation (Huang et al., 2015).
A previous investigation reported that the cathode biofilms of
biocathode BESs played an important role in PNP degradation
when sodium bicarbonate was used as sole carbon source in the
cathodic chamber (Wang et al., 2016). The ecological conditions
affect PNP degradation and microbial community structure
of the biocathode biofilm in BESs. Optimizing the operation
conditions of BESs is necessary to accelerate PNP reduction
velocity. Nevertheless, the functional microbial community for
PNP reduction has not been fully investigated. Moreover, it is
important to investigate PNP degradation efficiency and stability
with different concentrations of glucose and initial PNP because
PNP-containing wastewater usually has variables carbon source
concentrations and PNP content.

In this study, we investigated the kinetics of PNP degradation
and PAP formation in biocathode BESs. We analyzed the effects
of applied voltage and the initial concentrations of glucose and
PNP on PNP degradation. We also explored the biocathode
microbial communities using high-throughput sequencing of 16S
rRNA gene amplicons.

MATERIALS AND METHODS

Reactor Setup
We used two-chamber BES reactors consisting of glass bottles
separated by a cationic exchange membrane (Ultrex CMI7000,

Membranes International, Inc., United States). The working
volume of each chamber was 300 mL. Carbon brushes (5 cm in
diameter and 7 cm long, fiber type: T700-12K, Toray Industries,
CO., Ltd.) were used as the electrodes. Prior to use, the membrane
and electrode brushes were pretreated as previously described
(Wang et al., 2016). The Ag/AgCl reference electrodes [0.247 V
vs. standard hydrogen electrode (SHE), model-217, Shanghai
Precision Scientific Instrument Co., Ltd., China] were inserted
into the cathode chambers for measuring cathode potentials and
for electrochemical analysis. The anode, cathode, and reference
electrodes were connected to a data acquisition system (Keithley
2700, Keithley, Co., Ltd., United States) with high-precision
external resistance (10 �). All electric potentials reported here
were already against the SHE.

Inoculation and Operation
The reactors with biocathode were inoculated in fed-batch mode
as previously described (Wang et al., 2016). PNP degradation was
operated under three modes: (I) biocathode with closed circuit
and 0.5 V of applied voltage (Bioc-0.5), (II) biocathode with
closed circuit with 0 V of applied voltage (Bioc-0), and (III)
OC-BES (as a control test). The anode anolyte culture medium
contained 1.67 g L−1 of NaAC, trace minerals, vitamins, and
50 mM of phosphate buffer solution (PBS) (Lovley and Phillips,
1988; Lu et al., 2012). The cathode was fed with 30 mg L−1

PNP, trace minerals, vitamins, and 0.5 g L−1 glucose mixed
with 50 mM PBS. We adjusted the glucose to 0.1, 0.3, 0.5,
0.8, and 1 g L−1 with 50 mg L−1 PNP to investigate the
influence of different glucose concentrations. We adjusted the
PNP concentration to 50, 70, 90, 110, and 130 mg L−1 with
0.5 g L−1 glucose to investigate the effects of different initial
PNP concentrations. The biocathodes were replaced with new
sterile carbon brushes (121◦C, 30 min) to determine the impact
of biocathode microbial communities on PNP degradation. The
reactors and the medium were autoclaved at 121◦C for 15 min. All
experiments were operated in replicated cycles for consistency,
and all experiments were conducted at 25± 2◦C.

Chemical Analyses and Calculations
The concentrations of PNP and PAP were determined, as
previously reported, and the production was analyzed by a
high performance liquid chromatography mass spectrometer
(HPLC-MS) (Wang et al., 2016). We used a gas chromatograph
(Agilent, 4890D; J&W Scientific, United States) with a flame
ionization detector and an appropriate column (19095N-123HP-
INNOWAX, 30 m × 0.530 mm × 1.00 µm, J&W Scientific,
United States) to analyze the concentrations of volatile fatty acids
(VFAs), including acetic acid, propionic acid, isobutyric acid,
butyric acid, isovaleric acid, and valeric acid (Liu et al., 2016). The
glucose concentration of the cathode effluent was analyzed with a
glucose determination kit (RSBIO, Shanghai). We measured cell
biomass of the cathode effluent with a Modified BCA Protein
Assay Kit (Sangon Biotech). Before the protein tests, the effluent
samples were frozen to −20◦C for 24 h, then thawed and boiled
for 10 min.

Current density (Am−3) was calculated based on the
cathode volume (300 mL). PNP degradation efficiency (DEPNP)
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was calculated based on the difference between the influent
and effluent PNP concentrations. The kinetics of the PNP
reduction and PAP formation were assumed to follow the
first-order reaction models C = C0e−kt and C = C0(1-e−kt),
respectively (C represents the PNP or PAP concentration (mg
L−1) at time (h) and C0 is the initial PNP concentration
or maximum PAP concentration); the rate constant k (h−1)
of PNP and PAP was calculated by Origin 8.0 software. The
half-life time (t1/2) of PNP was calculated using the equation
t1/2 = 0.693/k.

Electrochemical Analysis
We conducted cyclic voltammetry (CV) on the cathode using
an electrochemical workstation (WMPG1000K8 multichannel
potentiostat, WonATech, Co., Ltd., South Korea); the anode was
the counter electrode, and Ag/AgCl was the reference electrode
(+0.197 V vs. SHE). We measured CV for 30 mg L−1 of
PNP and 0.5 g L−1 of glucose at a scan rate of 5 mV/s. All
CV tests were operated at 25◦C with a scan range from −1.0
to +1.0 V. We used electrochemical impedance spectroscopy
(EIS) with the same instrument as the CV tests with a
frequency range from 100 KHz to 10 mHz using a 10 mV sine
wave.

Microbial Community Analysis
Samples of cathodic biofilms (Bioc-0.5-C, Bioc-0-C, and OC-
BES-C) and suspended growth cultures (Bioc-0.5-S, Bioc-
0-S, and OC-BES-S) were removed aseptically from the
corresponding reactors. DNA was extracted using the PowerSoil
DNA Isolation Kit (MO BIO, Carlsbad, CA, United States). DNA
samples were stored at −20◦C before analysis. Polymerase chain
reaction (PCR) amplifications of bacteria were sequenced using
the universal primers 8F (5′-AGAGTTTGATCCTGGCTCAG-
3′) and 533R (5′-TTACCGCGGCTGCTGGCAC-3′) for the
16S rRNA gene V1–V3 region (length of approximately
455 bp). We conducted 454 GS-FLX pyrosequencing using
the method described previously (Wang et al., 2016). The
abundance of a given phylogenetic group was defined by
the proportion of the number of sequences affiliated to
that group to the total number of sequences obtained,
and we conducted 454 pyrosequencing data analyses using
the methods detailed in our previous study (Wang et al.,
2016).

RESULTS

PNP Degradation in Biocathode BESs
The PNP degradation rate (kPNP) and PAP formation rate
(kPAP) were fitted with first-order kinetics (all R2 > 0.96)
(Supplementary Table S1). With the applied voltage, the PNP
degradation rate (kPNP) of Bioc-0.5 was 0.13 ± 0.01 h−1

(R2 = 0.996), which was five times greater than that of Bioc-0
(0.024 ± 0.002 h−1, R2 = 0.977), and almost 10 times greater
than that of OC-BES (0.013 ± 0.005 h−1, R2 = 0.991). The PAP
formation rate (kPAP) followed the same trend and the values
were 0.11 ± 0.01 (R2 = 0.983), 0.051 ± 0.012 (R2 = 0.967), and

0.038 ± 0.011 (R2 = 0.972) for Bioc-0.5, Bioc-0, and OC-BES,
respectively. The PNP degradation efficiency (DEPNP) of Bioc-
0.5 at 36 h was 99.5 ± 0.8%, which was significantly higher than
the DEPNP of Bioc-0 (60.9 ± 0.05%) and OC-BES (37.7 ± 5.2%)
(Figure 1 and Supplementary Table S1). These results indicated
that applied voltage significantly enhanced PNP degradation.

In all experiments, glucose was consumed quickly and the
concentrations were less than 11.4 ± 2.2 mg L−1 within 6 h
(Figure 2A). The concentration of VFAs of Bioc-0.5 was lower
than the VFA concentration of OC-BES and higher than the VFA
concentration of Bioc-0. Abundant cell biomass was present in
the suspension of cathodic chamber (Figure 2B), and the cell
biomass of the effluent was different among three modes. The cell
biomass of Bioc-0.5 increased in the first 12 h, then decreased
from 12 to 24 h, and the cell biomass was stable at the final
stage (from 24 to 36 h). The cell biomass of Bioc-0 and OC-
BES increased gradually, and the cell biomass was greatest in the
OC-BES.

Electrochemical Properties of
Biocathode BESs for PNP Removal
The cathode potential decreased and stabilized after 20 h at
approximately −1.0 V for Bioc-0.5, which was lower than
the cathode potential of Bioc-0 (−580 mV) and OC-BES
(−493 mV) (Figure 3). The current density of Bioc-0.5 reached
2.49–2.26 Am−3, which was much higher than the current
density of Bioc-0 (approximately 0.057 Am−3). After reaching
the maximum, the current density of Bioc-0.5 decreased and
stabilized at approximately 0.5 Am−3 after 20 h; the current
density of Bioc-0 was approximately 0.028 Am−3. These results
showed that applied voltage can significantly increase the
absolute cathodic potential and the current density.

FIGURE 1 | p-Nitrophenol (PNP) degradation and PAP formation in
biocathode BES under different modes, with initial PNP 30 mg L−1 and
glucose 0.5 g L−1. Error bars represent standard deviation (SD) based on
three tests. The Bioc-0.5 was the biocathode BES with 0.5 V voltage, Bioc-0
was t biocathode BES with 0 V voltage, OC-BES was BES with open circuit.
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FIGURE 2 | The concentrations of glucose and volatile fatty acids (VFAs)
(A) of 6 h and the biomass of the cathode effluent (B). Error bars represent
standard deviation (SD) based on three tests. The Bioc-0.5 was the
biocathode BES with 0.5 V voltage, Bioc-0 was the biocathode BES with 0 V
voltage, OC-BES was BES with open circuit.

FIGURE 3 | The dynamic changes of the cathode potential and current
density during PNP degradation under different operational modes. The
Bioc-0.5 was the biocathode BES with 0.5 V voltage, Bioc-0 was the
biocathode BES with 0 V voltage, OC-BES was BES with open circuit.

No redox peak was observed from the cathode of Bioc-0.5
and Bioc-0, but the polarization currents changed significantly
(Supplementary Figure S1A). Compared to the CV curve of Bioc-
0, the cathodic current of Bioc-0.5 was enhanced, and the onset
potential had a positive shift with an application of 0.5 V. The

EIS analysis indicated that the internal resistance of Bioc-0.5 was
391 �, which was 23% less than the internal resistance of Bioc-0
(508 �) (Supplementary Figure S1B).

Effect of an Exogenous Carbon Source
on PNP Reduction
Different initial concentrations of the exogenous carbon source
substantially influenced PNP reduction. With the addition
of 0.5 g L−1 of glucose kPNP, kPAP, and DEPNP were
0.093 ± 0.008 h−1 (R2 = 0.982), 0.086 ± 0.009 h−1 (R2 = 0.987),
and 99.8 ± 0.35%, respectively (Table 1). A higher glucose
concentration (>0.5 g L−1) resulted in PNP degradation
(0.070 ± 0.009–0.084 ± 0.008) decreased and a lower glucose
concentration (<0.5 g L−1) resulted in decreased PAP formation
(0.0391 ± 0.00945–0.0509 ± 0.0111). All samples had similar
cathode potentials (all approximately −1.0 V) (Figure 4A).
Maximum peak current density was at 0.5 g L−1 glucose
(3.1 Am−3) (Figure 4B). The peak current density of other
glucose concentrations decreased to <2.9 Am−3. These results
showed that 0.5 g L−1 was an optimum glucose concentration for
PNP degradation.

Current and cathode potential increased when the biofilms
were eliminated from the cathode (Supplementary Figure S2).
The PNP degradation rate (kPNP) decreased from 0.098 ± 0.011
to 0.022 ± 0.001 (Supplementary Figure S3). PNP removal
efficiency decreased from 98.4 ± 1.1 to 40.1 ± 2.8%,
and the PAP concentration of the effluent decreased from
26.5 ± 0.4 to 4.5 ± 1.0 mg L−1 at 24 h with no
biofilm (Supplementary Figure S4). These results showed that the
electrode biofilm contributed to PNP removal.

Effect of Initial PNP Concentration on
PNP Reduction
Five initial concentrations of PNP were used to assess PNP
reduction with 0.5 g L−1 glucose (Figure 5A). We found
that kPNP decreased from 0.093 ± 0.008 to 0.027 ± 0.0001,
kPAP decreased from 0.086 ± 0.00914 to 0.0231 ± 0.005,
and DEPNP decreased from 99.8 ± 0.35 to 64.1 ± 2.4%
when the initial concentration of PNP increased from 50 to
130 mg L−1 (Figure 5A). As the PNP concentration increased
from 50 to 130 mg L−1, the cathode potential and the
current density increased and then decreased (Figures 5B,C).
A lower initial concentration of 30 mg/L showed a higher kPNP
(0.13± 0.01 h−1) (Figure 1). These results showed that the initial
PNP concentration influenced the rate of PNP reduction and its
efficiency.

Microbial Community Structure in
Biocathode BESs
Total operational taxonomic units (OTUs) of 440–545 were
obtained from the clean reads of 7833–11121 (Supplementary
Table S2). Microbial communities of Bioc-0.5-S and Bioc-0.5-C
had higher species richness, and Bioc-0-C and Bioc-0-S had
higher species diversity. A principal component analysis (PCA)
(Supplementary Figure S5) indicated that Bioc-0.5-C and Bioc-
0.5-S were clustered together. In Bioc-0 and OC-BES, the
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TABLE 1 | The kPNP, R2
PNP, t1/2PNP, DEPNP, kPAP, R2

PAP of different glucose concentration on PNP degradation.

Glucose (g L−1) kPNP (h−1) R2
PNP t1/2PNP DEPNP (%) kPAP (h−1) R2

PAP

0.1 0.0699 ± 0.00906 0.958 9.92 97.7 ± 0.36 0.0391 ± 0.00945 0.980

0.3 0.0843 ± 0.00856 0.976 8.22 98.8 ± 0.34 0.0647 ± 0.00851 0.986

0.5 0.0933 ± 0.0082 0.982 7.42 99.8 ± 0.35 0.0865 ± 0.00914 0.987

0.8 0.0787 ± 0.007 0.980 8.802 94.8 ± 0.31 0.0573 ± 0.00721 0.989

1 0.0719 ± 0.00875 0.962 9.64 96.9 ± 0.34 0.0509 ± 0.0111 0.975

FIGURE 4 | The cathode potential (A) and current density (B) at different
glucose concentration on PNP reduction.

community compositions of the suspension and biocathode
biofilm were dissimilar.

The microbial communities of six samples were dominated
by the phyla Firmicutes, Bacteroidetes, and Proteobacteria
(Figure 6A). The predominant phyla of Bioc-0.5-C was
Firmicutes (60.4%) and Bacteroidetes (30.9%); Proteobacteria
(43.4%) and Firmicutes (35.7%) were the predominant phyla
in Bioc-0.5-S. By contrast, the predominant phyla were
Proteobacteria (72.8%) for Bioc-0-C and Bacteroidetes (58.3%)
and Proteobacteria (33.1%) for Bioc-0-S. In OC-BES, the main
phyla were Bacteroidetes (47.6%) and Proteobacteria (46.0%)
for OC-BES-C and Proteobacteria (71.8%) and Bacteroidetes
(23.6%) for OC-BES-S. At the family level, Streptococcaceae

FIGURE 5 | The PNP degradation rate, PAP formation rate and PNP
degradation efficiency (A) and cathode potential (B) and current density (C) at
different initial PNP concentration. Error bars represent standard deviation
(SD) based on three tests.

was predominant in Bioc-0.5-C (58.4%) and Bioc-0.5-S (29.6%);
Porphyromonadaceae was predominant in OC-BES-C (45.2%)
and Bioc-0-S (52.5%); Enterobacteriaceae was dominant in Bioc-
0-C (65.9%) (Supplementary Figure S6).

Most populations of bacteria in Bioc-0.5-C were affiliated
with Streptococcus (42.7%), Lactococcus (15.6%), and Bacteroides
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FIGURE 6 | Relative abundance of predominant phylum (A) and genera (B) in the cathode suspension and biofilm of BES. The “others” was the phyla and genera
less than 1% of the total summarized. The Bioc-0.5 was the biocathode BES with 0.5 V voltage, Bioc-0 was the biocathode BES with 0 V voltage, OC-BES was
BES with open circuit. C represents cathode and S represents suspension.

(11.4%). Streptococcus (22.2%), Comamonas (18.1%), and
Citrobacter (11.2%) were the predominant populations in
Bioc-0.5-S (Figure 6B). Bioc-0-C was mostly Citrobacter (54.1%)
bacteria, and Bioc-0-S was mostly Dysgonomonas (52.3%)
bacteria. By contrast, the relative abundance of Dysgonomonas
and Comamonas were 45.2 and 24.1%, respectively, in OC-
BES-C and 19.7 and 52.4%, respectively, in OC-BES-S.
These results indicated that power supply greatly affected
the community composition of the electrode biofilms and
suspensions.

DISCUSSION

This study proved BESs substantially enhanced PNP degradation.
Compared to a previous study, kPNP (0.093 ± 0.008 h−1)
of BESs fed with glucose was approximately three times
greater than the kPNP of BESs fed with sodium bicarbonate
(0.02978 ± 0.00339 h−1) (Wang et al., 2016). More importantly,
electrodes of the biocathode were not the sole electron donor to

PNP, glucose was also an electron donor for PNP degradation. In
the anodic chamber, H+ and electron were generated by NaAC
and were transferred to the cathodic chamber as the electron
for PNP reduction. The glucose in the cathodic chamber could
also generate e−, and PNP was reduced to PAP in the cathodic
chamber.

In the cathodic chamber, glucose was first transformed by
the bacteria to relatively lower molecular VFAs through a
fermentation process (Figure 2A). The VFAs were then used as
the electron donors for PNP degradation after the glucose was
consumed (6 h), which was called a syntrophic interaction in
a previous study (Zeng et al., 2015). Syntrophic relationships
between fermentative and PNP-reducing bacteria were essential
in the biocathode when the glucose was fully consumed within
6 h (for an initial glucose concentration of 0.5 g L−1). PNP
degradation in the OC-BES further indicated that partial PNP
reduction was by glucose and not by the cathode.

A previous study indicated that PNP can inhibit PNP
biodegradation because it is toxic to bacteria (Carrera et al.,
2011). A high concentration of PNP (over 90 mg/L) could
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depress bacteria biofilms and the performance of BES. In
our study, PNP reduction occurred from 30 to 130 mg L−1,
further demonstrating the advantage of PNP tolerance in
biocathode BES for PNP degradation. The biofilm removed
from the biocathode of BESs, the PNP degradation and the
PAP formation decreased (Supplementary Figures S3, S4),
implied that biofilms on the cathode and the applied voltage
influenced PNP degradation. The current of the BES with an
abiotic cathode was lower than the BES with a biotic cathode,
indicating that the biocathode can supply electrons for PNP
reduction.

p-Nitrophenol-degrading bacteria have been isolated
from enrichment cultures to reveal whether the same
microorganisms are responsible for PNP degradation in the
natural environment (Kowalczyk et al., 2015). Most PNP-
degrading bacteria can use PNP as their sole source of carbon,
nitrogen, and energy. The detected genera in this study were
mainly related to exoelectrogens. Pseudomonas (Kulkarni
and Chaudhari, 2006; Kowalczyk et al., 2015), Arthrobacter
(Sahoo et al., 2011; Wang et al., 2015), Flavobacterium
(Sahoo et al., 2011), Achromobacter (Wan et al., 2007),
Sphingomonas (Leung et al., 1997), Burkholderia (Pandey
et al., 2012), and Stenotrophomonas (Liu et al., 2007) are
PNP-degrading bacteria whose relative abundance was lower
in Bioc-0.5-C (0.15–2.3%), suggesting that a large number
of unknown PNP-degrading bacteria may be enriched in
BESs.

The relative abundance of Streptococcus was highest in the
biocathode biofilms of Bioc-0.5-C. Streptococcus, a biofilm-
forming pathogen, has been studied (Loo et al., 2000; Moscoso
et al., 2006), but its capability of PNP degradation is not known.
Dysgonomonas was present in the suspension and the OC-BES
cathode, and it was the predominant genus detected in the BESs
(Watanabe et al., 2011; Kodama et al., 2012). The electroactive
Comamonas, enriched in the biofilms and suspension of OC-
BESs, can use phenol, 4-nitrobenzoate, 4-chlorophenol, and
nitrobenzene (Groenewegen and Debont, 1992; Hollender et al.,
1997; Arai et al., 2000; Wu et al., 2006). The PNP degradation
of Streptococcus, Dysgonomonas, and Comamonas should be
investigated in the future. Revealing functional genes related with
PNP degradation and syntrophic interaction between different

populations using metagenomic technology is still important to
understand PNP degradation in future study on BES.

CONCLUSION

p-Nitrophenol degradation was enhanced in the biocathode
BESs with glucose and an applied voltage of 0.5 V. PNP
degradation efficiency of the BES was much higher than that
of OC-BES. The initial concentrations of glucose and PNP
influenced PNP degradation and PAP formation. The microbial
communities of the biocathode biofilm and suspension were
different in OC-BES and BES with different voltages, implying
that the differences in microbial communities and BES resulted
in different PNP degradation. These results demonstrated that
voltage and biocathode biofilms contribute to PNP degradation.
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