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Abstract: Alpinia galanga is widely cultivated for its essential oil (EO), which has been used in cosmet-
ics and perfumes. Previous studies of A. galanga focussed mostly on the rhizome but seldom on the
flower. Therefore, this study was designed to identify the chemical composition of A. galanga flower
EO and firstly estimate its antioxidant, antibacterial, enzyme inhibitory, and anticancer activities.
According to the results of the gas chromatography with flame ionization or mass selective detection
(GC-FID/MS) analysis, the most abundant component of the EO was farnesene (64.3%), followed by
farnesyl acetate (3.6%), aceteugenol (3.2%), eugenol (3.1%), E-nerolidol (2.9%), decyl acetate (2.4%),
octyl acetate (2.0%), sesquirosefuran (1.9%), (E)-β-farnesene (1.7%), and germacrene D (1.5%). For the
bioactivities, the EO exhibited moderate DPPH and ABTS radical scavenging effects with IC50 values
of 138.62 ± 3.07 µg/mL and 40.48 ± 0.49 µg/mL, respectively. Moreover, the EO showed strong-
to-moderate antibacterial activities with various diameter of inhibition zone (DIZ) (8.79–14.32 mm),
minimal inhibitory concentration (MIC) (3.13–6.25 mg/mL), and minimal bactericidal concentra-
tion (MBC) (6.25–12.50 mg/mL) values against Staphylococcus aureus, Bacillus subtilis, Enterococcus
faecalis, Pseudomonas aeruginosa, Escherichia coli, and Proteus vulgaris. Interestingly, the EO possessed
remarkable α-glucosidase inhibition (IC50 = 0.16 ± 0.03 mg/mL), which was equivalent to that of
the positive control acarbose (IC50 = 0.15 ± 0.01 mg/mL) (p > 0.05). It showed moderate tyrosinase
inhibition (IC50 = 0.62 ± 0.09 mg/mL) and weak inhibitory activity on acetylcholinesterase (AChE)
(IC50 = 2.49 ± 0.24 mg/mL) and butyrylcholinesterase (BChE) (IC50 = 10.14 ± 0.59 mg/mL). Further-
more, the EO exhibited considerable selective cytotoxicity to K562 cells (IC50 = 41.55 ± 2.28 µg/mL)
and lower cytotoxicity to non-cancerous L929 cells (IC50 = 120.54 ± 8.37 µg/mL), and it induced
K562 cell apoptosis in a dose-dependent manner. Hence, A. galanga flower EO could be regarded as a
bioactive natural product with great application potential in the pharmaceutical field.

Keywords: Alpinia galanga flower; farnesene; radical scavenging effects; antibacterial agent; enzyme
inhibitors; cytotoxicity; apoptosis

1. Introduction

Essential oils are secondary plant metabolites with strong odors and are composed of
a variety of volatile compounds [1,2]. Approximately 3000 essential oils are generated from
more than 2000 plants, among which 300 are valuable from a commercial standpoint [3].
Essential oils have been employed extensively in pharmaceutical, agriculture, food, per-
fume, cosmetic, and sanitary industries due to their various pharmacological and biological
effects, including antibacterial, antioxidant, anticancer, antidiabetic, virucidal, fungicidal,
anti-inflammatory, analgesic, antimutagenic, and antiprotozoal activities [3–6]. As synthetic
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products may have adverse health and environmental effects, this has prompted the search
for more natural and healthier alternatives, such as the utilization of essential oils [5–7].

Alpinia galanga (L.) Willd., also called greater galangal, is a perennial herb that is
cultivated primarily in Asia as an essential source of cosmetics, medicines, and culinary
products [8–10]. The A. galanga rhizome has been extensively used as a spice and food-
flavoring agent, as well as in Chinese, Ayurveda, Thai, and Unani traditional medicines
for the treatment of various diseases, such as stomach ache, vomiting, diarrhea, diabetes,
microbial infections, bronchitis, fever, headache, sore throat, whooping cough, kidney
disorders, ulcer, rheumatism, and chronic enteritis [11–15]. The fruit of A. galanga, which is
called Hongdoukou in China and is listed in the Pharmacopoeia of the People’s Republic
of China, has the effect of strengthening the stomach and promoting digestion and is
used to treat abdominal pain, indigestion, vomiting, nausea, diarrhea, dysentery, and
excessive drinking [16–18]. Its fragrant flower is often eaten raw or pickled and can
also be used as a spice [19,20]. The essential oils and extracts from different parts of
A. galanga, including the flower, rhizome, leaf, and fruit, have been used as cosmetic
ingredients, and are cataloged in the European Commission database for information
on cosmetic substances and ingredients (CosIng) and the “Catalogue of Cosmetic Raw
Materials Used (2021 Edition)”, which is approved by the China National Medical Products
Administration (NMPA) [21–24]. The rhizome of A. galanga was extensively investigated,
especially its essential oil used in cosmetics and perfumes [25,26]. Its rhizome essential oil
was reported as possessing multiple pharmacological and biological activities, including
antibacterial, antifungal, antioxidant, antitumor, insecticidal, repellent, antifeedant, and
anti-inflammatory activities [27–36].

A. galanga usually blooms from June to August in the subtropics, but it can bloom
year-round in the tropics [8]. Its flower can be used as a vegetable, spice, and cosmetic
ingredient. However, there are few studies on the A. galanga flower, only showing that its
hexane, ethanol, and methanol extracts have antibacterial, antimicrobial, and antioxidant
effects [8,11,37,38]. Nevertheless, no studies have been conducted on the bioactivities of
flower essential oil, which may limit the utilization of its flower in industry. Therefore,
the purpose of this research was to determine the chemical constituents of A. galanga
flower essential oil and firstly assess its antioxidant, antibacterial, enzyme inhibitory, and
anticancer activities.

2. Results and Discussion
2.1. Chemical Constituents

Relative to the fresh weight of A. galanga flowers, the extraction yield of the hydrodis-
tilled EO was 0.11% (w/w). A total of fifty-seven chemical constituents were identified
using GC-MS/FID analysis, which accounted for 96.0% of the total EO (Table 1). The
most abundant component of the EO was farnesene (64.3%), followed by farnesyl acetate
(3.6%), aceteugenol (3.2%), eugenol (3.1%), E-nerolidol (2.9%), decyl acetate (2.4%), octyl
acetate (2.0%), sesquirosefuran (1.9%), (E)-β-farnesene (1.7%), and germacrene D (1.5%)
(Figure 1). According to a previous study, the A. galanga flower essential oils collected
from a subtropical region (Pantnagar, India) and a subtemperate region (Purara, India)
were dominated by β-pinene (12.8 and 10.5%, resp.), 1,8-cineole (18.4 and 9.4%, resp.),
cis-sabinene hydrate (0 and 8.3%, resp.), α-terpineol (4.5 and 3.4%, resp.), and (E)-methyl
cinnamate (19.7 and 7.1%, resp.) [39]. In addition, the major volatile compounds of the
hexane extract from A. galanga flowers (obtained from Gainesville, USA) were α-humulane,
pentadecane, β-farnesol, dimethyl trisulfide, and mercaptomethylbutanol [8]. In contrast
to the above-mentioned studies, the chemical composition of A. galanga flower EO in this
study was quite different, which may have been caused by various factors, such as climatic
conditions, growth conditions, developmental stages, and genetic factors.
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Table 1. Chemical compounds of the essential oil from A. galanga flowers.

Compound a RT (min) RI b RI c %Area Identification d

Octane 7.066 800 800 0.1 RI, MS
Ethylbenzene 8.877 855 862 tr e RI, MS

p-Xylene 9.122 865 871 0.1 RI, MS
Nonane 9.961 900 900 0.1 RI, MS
α-Pinene 11.56 937 936 0.2 RI, MS

Camphene 12.257 952 952 0.1 RI, MS
Sabinen 13.306 974 976 0.2 RI, MS
β-Pinene 13.545 979 981 0.4 RI, MS
Sulcatone 13.714 986 985 0.6 RI, MS

2,2,4,6,6-Pentamethylheptane 14.02 990 992 0.2 RI, MS
Decane 14.356 1000 1000 tr e RI, MS

α-Phellandrene 14.831 1005 1008 tr e RI, MS
p-Cymene 15.86 1025 1026 0.1 RI, MS

D-Limonene 16.113 1031 1031 tr e RI, MS
Eucalyptol 16.281 1032 1034 0.4 RI, MS

Melonal 17.365 1054 1053 0.1 RI, MS
γ-Terpinene 17.768 1060 1060 tr e RI, MS

1-Octanol 18.214 1070 1068 tr e RI, MS
3-Methylbenzaldehyde 18.399 1071 1071 tr e RI, MS

Linalool oxide 18.543 1074 1074 0.1 RI, MS
Ethyl 2-(5-methyl-5-

vinyltetrahydrofuran-2-
yl)propan-2-yl

carbonate

19.47 1090 1090 tr e RI, MS

Linalool 20.049 1099 1100 0.7 RI, MS
6-Methyl-3,5-heptadiene-2-

one 20.34 1107 1105 0.1 RI, MS

Terpinen-4-ol 25.136 1177 1180 tr e RI, MS
α-Terpineol 25.959 1189 1193 tr e RI, MS

Decanal 26.725 1206 1205 0.1 RI, MS
cis-5-Octenyl acetate 26.88 1206 1208 0.1 RI, MS

Octyl acetate 27.044 1210 1211 2.0 RI, MS
Geraniol 29.888 1255 1255 0.1 RI, MS
α-Citral 30.993 1270 1272 0.1 RI, MS

Nonanol acetate 33.492 1309 1311 tr e RI, MS
Eugenol 36.71 1358 1361 3.1 RI, MS

Cerulignol 37.301 1373 1370 0.2 RI, MS
Copaene 38.038 1376 1382 0.1 RI, MS

Geranyl acetate 38.165 1382 1384 0.2 RI, MS
β-Elemen 39.009 1391 1397 0.6 RI, MS

Methyleugenol 39.546 1403 1406 0.1 RI, MS
Decyl acetate 39.815 1409 1410 2.4 RI, MS

Caryophyllene 40.853 1419 1427 0.8 RI, MS
trans-Bergamotene 41.662 1435 1440 0.2 RI, MS

Isoeugenol 42.473 1450 1453 0.3 RI, MS
(E)-β-Farnesene 42.804 1457 1459 1.7 RI, MS

Humulene 42.949 1460 1461 0.2 RI, MS
epi-β-Caryophyllene 43.404 1466 1469 0.1 RI, MS

Germacrene D 44.631 1481 1489 1.5 RI, MS
(Z)-α-Farnesene 45.135 1491 1497 0.3 RI, MS

Farnesene 46.296 1508 1516 64.3 RI, MS
Aceteugenol 47.163 1524 1531 3.2 RI, MS

Sesquirosefuran 48.691 1557 1557 1.9 RI, MS
E-Nerolidol 49.266 1564 1567 2.9 RI, MS

Germacrene D-4-ol 50.233 1574 1584 0.2 RI, MS
Spathulenol 50.387 1576 1586 0.5 RI, MS

Caryophyllene oxide 50.74 1581 1592 0.4 RI, MS
α-Cadinol 54.673 1653 1663 0.8 RI, MS
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Table 1. Cont.

Compound a RT (min) RI b RI c %Area Identification d

trans-Farnesal 58.842 1745 1754 0.5 RI, MS
cis-9-Hexadecenal 60.467 1803 1796 0.2 RI, MS
Farnesyl acetate 61.754 1843 1848 3.6 RI, MS

Monoterpene hydrocarbons 1.08
Oxygenated monoterpenes 1.59

Sesquiterpene hydrocarbons 69.64
Oxygenated sesquiterpenes 10.75

Others 12.97
Total (%) 96.0

Yield (w/w) (%) 0.11
a Compounds listed based on their elution order on an HP-5MS column. b Retention index (RI) from NIST 2020
mass spectral databases. c RI calculated using C8–C30 n-alkanes. d Identification: RI, matching calculated RI to the
RI in the Wiley 275 and NIST 2020 databases; MS, based on a comparison with the Wiley 275 and NIST 2020 MS
databases. e tr: trace (trace < 0.1%).
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2.2. Antioxidant Activity

DPPH and ABTS radical scavenging tests were used to assess the antioxidant activity
of A. galanga flower EO, and the findings are presented in Table 2. Compared with BHT and
ascorbic acid, the EO exhibited moderate DPPH and ABTS radical scavenging effects, with
IC50 values of 138.62 ± 3.07 µg/mL and 40.48 ± 0.49 µg/mL, respectively. Eugenol, which
is a phenolic compound used as a spice, has been well established as possessing potent an-
tioxidant and free-radical-scavenging activities in both in vivo and in vitro studies [40,41].
Aceteugenol, which is an acetylated derivative of eugenol, displayed significant activity
in scavenging DPPH free radicals, with an IC50 of 0.12 ± 0.03 µmol/L, and it showed a
synergistic effect with eugenol regarding inhibiting the oxidation of sunflower oil [42]. Fur-
thermore, isoeugenol is an isomer of eugenol, and methyleugenol is a methylated derivative
of eugenol. These eugenol-related compounds may play a key role in the antioxidant activ-
ity of A. galanga flower EO. According to past reports, farnesyl acetate, E-nerolidol, octyl
acetate, and germacrene D exhibit moderate-to-weak antioxidant effects [43–45]. Hence,
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these compounds could be responsible for the moderate antioxidant activity of A. galanga
flower EO.

Table 2. Antioxidant activity of A. galanga flower essential oil.

Samples
Antioxidant Activity (IC50, µg/mL) 1

DPPH ABTS

Essential oil 138.62 ± 3.07 a 40.48 ± 0.49 a

BHT 2 14.16 ± 0.30 b 1.99 ± 0.05 b

Ascorbic acid 2 0.52 ± 0.01 c 1.05 ± 0.02 c

1 IC50: the sample concentration required to achieve a 50% free-radical-scavenging efficiency in the test. 2 BHT
and ascorbic acid served as positive controls. a–c A significant difference (p < 0.05) is indicated by different letters
in the same column.

2.3. Antibacterial Activity

The antibacterial properties of A. galanga flower EO were tested using diameter of
inhibition zone (DIZ), minimum inhibition concentration (MIC), and minimum bactericidal
concentration (MBC) values (Table 3). The EO exhibited a broad-spectrum antibacte-
rial property against the tested bacterial strains, with DIZ values ranging from 8.79 to
14.32 mm. Based on previous research, MIC values under 5 mg/mL are thought to have
strong antibacterial activity [46]. Hence, the EO displayed a strong antibacterial effect
against Staphylococcus aureus (MIC = 3.13 mg/mL, MBC = 6.25 mg/mL), Bacillus subtilis
(MIC = 3.13 mg/mL, MBC = 6.25 mg/mL), Pseudomonas aeruginosa (MIC = 3.13 mg/mL,
MBC = 12.50 mg/mL), and Proteus vulgaris (MIC = 3.13 mg/mL, MBC = 6.25 mg/mL), and
showed moderate antibacterial property against Enterococcus faecalis (MIC = 6.25 mg/mL,
MBC = 12.50 mg/mL) and Escherichia coli (MIC = 6.25 mg/mL, MBC = 12.50 mg/mL).
Several studies attributed the antibacterial activity of essential oils to the active ingredient
farnesene [47,48]. In a previous study, farnesyl acetate showed significant antibacterial
activity against Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Staphylococcus
aureus, and Enterococcus faecalis, with MIC values ranging from 20 µg/mL to 28 µg/mL [49].
Additionally, other major constituents, including aceteugenol, eugenol, E-nerolidol, and
germacrene D, were shown to possess antibacterial properties [45,50–52]. Therefore, the
significant antibacterial activity of the EO can be explained by the presence of these main
components. According to these findings, A. galanga flower EO could be employed in the
pharmaceutical field as a novel natural antibacterial agent.

Table 3. Antibacterial activity of A. galanga flower essential oil.

Bacterial
Strains a

Essential Oil Streptomycin

DIZ b (mm)
MIC c

(mg/mL)
MBC c

(mg/mL) DIZ b (mm)
MIC c

(µg/mL)
MBC c

(µg/mL)

Gram-
positive
S. aureus 10.98 ± 1.14 3.13 6.25 19.78 ± 0.29 0.78 1.56
B. subtilis 14.32 ± 2.81 3.13 6.25 18.43 ± 0.82 0.78 1.56
E. faecalis 9.21 ± 0.92 6.25 12.50 8.38 ± 0.34 12.50 25.00

Gram-
negative

P. aeruginosa 9.54 ± 0.20 3.13 12.50 10.35 ± 0.19 1.56 3.13
E. coli 8.79 ± 0.49 6.25 12.50 11.83 ± 0.40 1.56 6.25

P. vulgaris 9.57 ± 0.42 3.13 6.25 16.92 ± 0.54 0.78 6.25
a Bacterial strains: Staphylococcus aureus (ATCC 6538P), Bacillus subtilis (ATCC 6633), Enterococcus faecalis
(ATCC 19433), Pseudomonas aeruginosa (ATCC 9027), Escherichia coli (CICC 10389), and Proteus vulgaris (ACCC
11002). b DIZ: diameter of inhibition zone (mm, including 6 mm disk). Disks contained 20 µL of pure EO or
streptomycin (100 µg/mL, w/v in distilled water). c MIC: minimal inhibitory concentration; MBC: minimal
bactericidal concentration.
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2.4. Enzyme Inhibitory Activity

The A. galanga flower EO was tested for its ability to inhibit the following enzymes:
α-glucosidase, tyrosinase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE).
All results are summarized in Table 4.

Table 4. The enzyme inhibitory activity of A. galanga flower essential oil.

Samples
Enzyme Inhibitory Effect (IC50, mg/mL) 1

α-Glucosidase Tyrosinase Acetylcholinesterase Butyrylcholinesterase

Essential oil 0.16 ± 0.03 a 0.62 ± 0.09 a 2.49 ± 0.24 a 10.14 ± 0.59 a

Acarbose 0.15 ± 0.01 a – – –
Arbutin – 0.19 ± 0.06 b – –

Galanthamine * – – 0.25 ± 0.06 b 4.65 ± 0.16 b

1 IC50: the dose of the sample that inhibits 50% of enzyme activities. a,b Significant differences (p < 0.05) are
indicated by different letters in the same column. * Galanthamine: IC50 (µg/mL).

The A. galanga flower EO exhibited remarkable α-glucosidase inhibitory ability
(IC50 = 0.16 ± 0.03 mg/mL), and its inhibitory effect was equivalent to that of the pos-
itive control acarbose (IC50 = 0.15 ± 0.01 mg/mL) (p > 0.05). Acarbose, which is an
α-glucosidase inhibitor, is widely used to treat type 2 diabetes, as it can lower postprandial
insulin and blood glucose levels by delaying carbohydrate absorption [53]. Concerns
about acarbose’s side effects, such as flatulence, diarrhea, and abdominal distension, have
prompted the search for natural products that inhibit α-glucosidase’s activity as comple-
mentary/alternative treatments for type 2 diabetes [54]. An earlier study demonstrated
that farnesene, which is the most predominant component of the A. galanga flower EO,
exerted significant α-glycosidase inhibitory activity [55]. Farnesyl acetate reduced post-
prandial blood glucose levels and was a potential α-glucosidase inhibitor [56]. In addition,
past studies demonstrated that other major components, including aceteugenol, eugenol,
and E-nerolidol, had α-glycosidase inhibitory effects [57–59]. Thus, the remarkable α-
glucosidase inhibitory activity of A. galanga flower EO could be attributed to these main
constituents, and it could be used in the pharmaceutical industry as a new source of natural
α-glucosidase inhibitors.

As depicted in Table 4, compared with the positive control arbutin (IC50 = 0.19± 0.06 mg/mL),
A. galanga flower EO showed a moderate tyrosinase inhibitory effect (IC50 = 0.62± 0.09 mg/mL).
Tyrosinase is a crucial enzyme in the enzymatic browning of fruits and mammalian melano-
genesis [5]. Eugenol had a significant inhibitory effect on tyrosinase and could be used as a
tyrosinase inhibitor [60]. Moreover, according to the research of Arung et al., eugenol and
eugenol acetate significantly inhibit melanin formation in B16 melanoma cells [61]. Hence,
the moderate tyrosinase inhibition of A. galanga flower EO may have been due to these
main components.

As shown in Table 4, compared with the positive reference galanthamine, A. galanga
flower EO showed weak inhibitory activity against AChE and BChE, with IC50 values
of 2.49 ± 0.24 mg/mL and 10.14 ± 0.59 mg/mL, respectively. Cholinesterase inhibitors
enhance cholinergic neurotransmission by inhibiting the decomposition of acetylcholine,
which has become an effective strategy for the treatment of Alzheimer’s disease [62].
Eugenol, which is a major component of EO, was reported to display significant inhi-
bition of AChE (IC50: 42.44 ± 1.21 µg/mL) and BChE (IC50: 63.51 ± 1.88 µg/mL) [63].
E-Nerolidol significantly reduces the AChE activity and oxidative/nitrosative stress, im-
proves locomotor activity, and reverses motor incoordination and cognitive impairment
after weight-drop-induced traumatic brain injury (TBI) in rats [64]. Thus, these major com-
pounds could be responsible for the anti-cholinesterase activity of A. galanga flower EO.

2.5. Anticancer Activity

The cytotoxic properties of A. galanga flower EO were investigated against human
tumor cell lines (lung adenocarcinoma A549 cells, prostatic carcinoma PC-3 cells, leukemic
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K562 cells, and non-small-cell lung cancer NCI-H1299 cells) and a non-cancerous cell
line (murine fibroblast L929 cells) using MTT assays. Cisplatin was used as a positive
control. As shown in Table 5, A. galanga flower EO showed significant cytotoxic activities
against the four human tumor cells, with IC50 values ranging from 41.55 ± 2.28 µg/mL
to 127.37 ± 4.15 µg/mL. In particular, EO exhibited considerable selective cytotoxicity
against K562 cells (IC50 = 41.55 ± 2.28 µg/mL), and its toxicity was almost 3 times that of
non-cancerous L929 cells (IC50 = 120.54 ± 8.37 µg/mL). Hence, the K562 cells were selected
for subsequent studies.

Table 5. Cytotoxic activity of A. galanga flower essential oil.

Samples
Cell Line (IC50, µg/mL) 1

A549 PC-3 K562 NCI-H1299 L929

Essential oil 102.09 ± 3.86 a 97.09 ± 5.02 a 41.55 ± 2.28 b 127.37 ± 4.15 c 120.54 ± 8.37 c

Cisplatin 15.13 ± 0.72 a 10.69 ± 0.69 b 6.32 ± 0.77 c 4.78 ± 0.93 d 9.16 ± 0.64 e

1 IC50: the concentration of sample that reduces the cell growth by 50%. Cisplatin was used as a positive
control. Cell lines: A549 (human lung adenocarcinoma cells), PC-3 (human prostatic carcinoma cells), K562
(human leukemic cells), NCI-H1299 (human non-small cell lung cancer cells), and L929 (murine fibroblast cells).
a–e Significant differences (p < 0.05) are indicated by different letters in the same row.

Cancer cells are capable of evading apoptosis; therefore, triggering apoptosis is a
key strategy for cancer therapies [65]. As shown in Figure 2A, the results of phase-
contrast microscopy revealed typical apoptotic morphological alterations in EO-treated
K562 cells, including cell shrinkage and fragmentation. Moreover, AO/EB staining and
Hoechst 33,258 staining were used to observe the changes in the nuclear morphology
of the K562 cells. According to the AO/EB staining results, after the EO treatment, the
percentage of apoptotic cells with orange-red fluorescent nuclei increased, while the per-
centage of living cells with bright green fluorescent nuclei reduced (Figure 2B). In the
Hoechst 33,258 staining analysis, the nuclei of K562 cells treated with EO displayed brighter
blue fluorescence, indicating that the nuclear chromatin of K562 cells was condensed
with apoptotic features (Figure 2C). In addition, the Annexin V-PE/7-AAD staining anal-
ysis was performed using a flow cytometer to quantitatively estimate the EO-induced
apoptosis. As shown in Figure 3A,B, the percentage of apoptotic cells (Q2 + Q3) in-
creased dose-dependently from 6.88 ± 0.07% in the control to 9.38 ± 1.12%, 18.36 ± 0.20%,
26.47 ± 0.30%, 32.13 ± 0.50%, and 55.04 ± 0.54% at the doses of 20 µg/mL, 40 µg/mL,
60 µg/mL, 80 µg/mL, and 160 µg/mL of EO, respectively. These results suggested that EO
significantly induced K562 cell apoptosis in a concentration-dependent manner.

Numerous farnesene-rich essential oils, such as those from Zornia brasiliensis, Malus
domestica, and Streblus asper, were shown to have anticancer properties [66–69]. Farne-
syl acetate had higher cytotoxicity against the tumor cells malignant melanoma MEWO
(IC50 = 734 µM) and promyelocytic leukemia HL-60 (IC50 = 121 µM) compared with non-
cancerous cells (fibroblasts HFIG, keratinocytes HaCaT, and epithelium of the small in-
testine IEC6) (IC50 > 1000 µM) [49]. The anticancer effects of eugenol have been well
recognized, and it can induce apoptosis in different cancer cells [70]. Furthermore, the
anticancer activities of other main components in EO, such as E-nerolidol, (E)-β-farnesene,
and germacrene D, were demonstrated in previous research [71–73]. Thus, A. galanga flower
EO’s significant anticancer properties could be explained by these main components. Based
on these findings, A. galanga flower EO may serve as a new source of natural anticancer
agents in the pharmaceutical field.
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Figure 2. Effect of A. galanga flower essential oil on the morphological changes of K562 cells.
(A) A phase-contrast microscope was used to observe the morphological alterations of K562 cells
(100×magnification). AO/EB staining (B) and Hoechst 33,258 staining (C) were employed to as-
sess the nuclear morphological alterations of K562 cells, which were viewed under a fluorescence
microscope with 100×magnification.
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Figure 3. Flow cytometry apoptosis analysis of K562 cells treated with A. galanga flower essential
oil. (A) K562 cells were labeled with Annexin V-PE and 7-AAD and then detected using flow
cytometry. Cells in the upper-left quadrant (Q1-UL: Annexin V-PE–/7-AAD+): necrotic cells; upper-
right quadrant (Q2-UR: Annexin V-PE+/7-AAD+): late apoptotic cells; lower-right quadrant (Q3-LR:
Annexin V-PE+/7-AAD–): early apoptotic cells; lower-left quadrant (Q4-LL: Annexin V-PE–/7-
AAD–): living cells. (B) Percentage of apoptotic cells and living cells. Results are presented as the
mean ± SD. *** p < 0.001 versus the control group.
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3. Materials and Methods
3.1. Plant Material

Alpinia galanga flower was harvested from Yulin City, Guangxi Province, China, in June
2020. It was identified by Prof. Guoxiong Hu from the College of Life Sciences, Guizhou
University. A voucher specimen (voucher no: AG20200621) was deposited in the National
and Local Joint Engineering Research Center for the Exploitation of Homology Resources
of Southwest Medicine and Food, Guizhou University.

3.2. Preparation of Essential Oil

The fresh, finely chopped flower of A. galanga (2.5 kg) was hydrodistilled for 4 h in
an all-glass Clevenger-type apparatus. After dehydration with anhydrous Na2SO4, the
essential oil (2.76 g, 0.11% w/w) was kept in a sealed vial at 4 ◦C for further analysis.

3.3. Analysis of Essential Oil

Quantitative analysis of the EO was carried out using a gas chromatograph (GC)
equipped with a flame ionization detector (FID) (model 6890, Agilent Technologies, Santa
Clara, CA, USA). Column: HP-5MS capillary column (60 m × 0.25 mm, 0.25 µm film
thickness). The GC settings were as follows: injection volume (1 µL), split ratio (1:20),
carrier gas helium (1 mL/min), and oven temperature program (kept at 70 ◦C for 2 min,
increased to 180 ◦C at 2 ◦C/min, raised to 310 ◦C at 10 ◦C/min, and finally kept at 310 ◦C
for 14 min). The gas chromatograph–mass spectrometer (GC-MS) (model 6890/5975C,
Agilent Technologies, Santa Clara, CA, USA) was used for qualitative analysis of the EO.
GC parameters and the column were the same as in the GC-FID analysis. The MS was
operated as follows: ion source temperature at 230 ◦C, interface temperature at 280 ◦C,
ionization voltage at 70 eV, and a scan range of m/z 29 to 500 amu. The relative abundance
(%) of the chemical constituents was determined using the peak area. Standard n-alkanes
(C9–C30) were used for the calculation of the retention index (RI). Each component of EO
was determined by comparing the RI and mass spectra in the Wiley 275 (Wiley, New York,
NY, USA) and NIST 2020 (National Institute of Standards and Technology, Gaithersburg,
MD, USA) databases.

3.4. Antioxidant Activity
3.4.1. DPPH Assay

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect was assayed by
utilizing Tian et al.’s method [74]. Briefly, the DPPH solution (2 mL, 0.08 mM) was blended
with the sample solution (2 mL) and then kept at room temperature for 30 min in the dark.
The optical density at 517 nm was recorded. Ascorbic acid and butylated hydroxytoluene
(BHT) served as positive controls. Data were presented as IC50 values.

3.4.2. ABTS Assay

The 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging
ability was determined by utilizing the method reported by Tian et al. [74]. ABTS•+ solution
was generated by mixing ABTS solution (50 mL, 0.7 mM) with K2S2O8 solution (50 mL,
2.45 mM) and incubating at room temperature for 12 h in the dark. Subsequently, methanol
was used to dilute the ABTS•+ solution, yielding an absorbance of 0.70 ± 0.02 at 734 nm.
The sample solution (0.4 mL) and diluted ABTS•+ solution (4 mL) were blended and
incubated at room temperature for 10 min in the dark, and then the optical density at
734 nm was measured. BHT and ascorbic acid were used as positive controls. The results
were expressed as IC50 values.

3.5. Antibacterial Activity
3.5.1. Bacterial Strains

The EO’s antibacterial effect was evaluated against the following bacterial strains:
Staphylococcus aureus (ATCC 6538P), Bacillus subtilis (ATCC 6633), Enterococcus faecalis
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(ATCC 19433), Pseudomonas aeruginosa (ATCC 9027), Escherichia coli (CICC 10389), and
Proteus vulgaris (ACCC 11002).

3.5.2. Disc Diffusion Assay

The disc diffusion method was employed to determine the diameter of inhibition zone
(DIZ) [5]. In brief, bacterial suspension (100 µL, 1 × 106 CFU/mL) was evenly spread
on Mueller–Hinton agar plates. Afterward, the filter paper discs (diameter 6 mm) with
20 µL of pure EO or streptomycin (100 µg/mL) were added and incubated for 24 h at 37 ◦C.
Finally, the DIZ was measured and recorded.

3.5.3. MIC and MBC Assays

The microdilution broth assay was utilized to detect the minimum inhibitory concen-
tration (MIC) and minimum bactericidal concentration (MBC) values [5]. The EO solution
(100 mg/mL, w/v in 0.1% DMSO) was two-fold serially diluted with the medium to concen-
trations of 50.00, 25.00, 12.50, 6.25, 3.13, 1.56, 0.78, 0.39, 0.20, and 0.10 mg/mL. Streptomycin
solution (100 µg/mL, w/v in distilled water) was also diluted with the medium to the dose
range of 0.10–50 µg/mL. The bacterial suspensions (100 µL) were seeded into each well of
96-well plates at a density of 5 × 104 CFU/well. Subsequently, 100 µL of the diluted EO
or streptomycin solution was added and cultured at 37 ◦C for 24 h. Resazurin aqueous
solution (10 µL, 0.01%) was utilized as a microbial growth indicator, added to each well,
and incubated in the dark for 2 h at 37 ◦C. The minimum sample concentration that did not
cause a color change was its MIC value. Furthermore, 10 µL of culture from the wells with
no change in color was spread on the Mueller–Hinton agar plate and inoculated at 37 ◦C
for 24 h. The MBC values were determined as the lowest concentration of EO that induced
no visible growth of the tested bacteria.

3.6. Enzyme Inhibitory Activities
3.6.1. α-Glucosidase Inhibitory Activity

The α-glucosidase inhibitory effect was performed following the protocol reported by
Hong et al. [5]. A total of 90 µL of EO solution or acarbose solution (positive control) was
mixed with α-glucosidase solution (10 µL, 0.8 U/mL) and added to each well of the 96-well
plates. After incubation at 37 ◦C for 15 min, the reaction was started by adding 10 µL of
p-nitrophenyl-α-D-glucopyranoside (p-NPG) substrate (1 mM) and maintained at 37 ◦C
for 15 min, then halted by the addition of 80 µL Na2CO3 solution (0.2 M). Subsequently,
the optical density at 734 nm was recorded using a microplate reader (Varioskan Lux
Multimode, Thermo Fisher Scientific, Waltham, MA, USA). The results of the α-glucosidase
inhibitory activity were presented using IC50 values.

3.6.2. Tyrosinase Inhibitory Activity

The tyrosinase inhibition was performed based on the protocol reported by Tian et al.
and utilized arbutin as a positive control [74]. A total of 70 µL of EO solution and 100 µL of
tyrosinase solution (100 U/mL) was mixed and incubated at 37 ◦C for 5 min in a 96-well
plate. After that, the L-tyrosine substrate (80 L, 5.5 mM) was added to start the reaction
and incubated at 37 ◦C for 30 min. Then, the optical density at 492 nm was recorded, and
the tyrosinase inhibitory activity was presented using IC50 values.

3.6.3. Cholinesterase Inhibitory Activity

The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory effects
were assessed based on Ellman’s method with a slight modification [75]. An AChE or
BuChE solution (10 µL, 0.5 U/mL, pH 8.0) and EO solution (50 µL) were blended and
maintained at 4 ◦C for 15 min in a 96-well plate. Then, 5,5′-dithiobis-(2-nitrobenzoic acid)
(DTNB) solution (20 µL, 2 mM, pH 8.0) and acetylthiocholine (ATCI) or butyrylthiocholine
(BTCI) solution (20 µL, 2 mM) were added to initiate the reaction. After incubating at
37 ◦C for 30 min, the absorbance at 405 nm was recorded. The galanthamine was used



Pharmaceuticals 2022, 15, 1069 11 of 15

as a positive reference. The AChE and BChE inhibitory activities were presented using
IC50 values.

3.7. Anticancer Activity
3.7.1. Cytotoxic Activity

The cytotoxic activities against human cancerous cells (A549 lung adenocarcinoma
cells, PC-3 prostatic carcinoma cells, K562 leukemic cells, and NCI-H1299 non-small-cell
lung cancer cells) and non-cancerous cells (L929 murine fibroblast cells) were evaluated
using MTT assays with a slight modification [76]. The EO solution (160 mg/mL, w/v
in DMSO) or cisplatin solution (40 mg/mL, w/v in DMSO) was diluted with RPMI-1640
medium, where the final concentration of DMSO was lower than 0.1%. The cell suspensions
(80 µL) were seeded into a 96-well plate (5 × 103 cells/well). After 24 h of incubation, cells
were treated with EO (0, 10, 20, 40, 80, and 160 µg/mL) or cisplatin (0, 1.88, 3.75, 7.5, 15, and
30 µg/mL) for 48 h. Subsequently, MTT solutions (10 µL, 5 mg/mL in PBS) were added
and incubated for 4 h. Finally, the formazan crystals in each well were dissolved in 150 µL
of DMSO, and a microplate reader was used to detect the absorbance at 490 nm. The results
of the cytotoxicity were presented as IC50 values.

3.7.2. Morphology Assay

K562 cells were seeded into a 6-well plate (5 × 105 cells/well) and cultured for 24 h.
Subsequently, the cells were subjected to the new medium with different doses of EO (0,
20, 40, 80, and 160 µg/mL) for 48 h. Finally, morphological alterations of K562 cells were
recorded using a Leica DMi8 inverted microscope (Leica Microsystems, Germany).

Acridine orange/ethidium bromide (AO/EB) staining and Hoechst 33,258 staining
assays were used to detect the nuclear morphology changes of the K562 cells. After the
treatment with EO as mentioned above, the cell suspensions (1.5 mL) were collected, cen-
trifuged at 1000× g for 5 min, fixed with 4% paraformaldehyde (0.5 mL) for 10 min, washed
twice with PBS (1 mL), and resuspended in 50 µL PBS. Afterward, the cell suspension
(10 µL) was dropped onto the glass slides. For AO/EB staining, cells were stained with
AO/EB dye (10 µg/mL AO and 10 µg/mL EB) for 5 min. After washing twice with PBS
(0.5 mL), the stained cells were viewed using a fluorescence microscope. For Hoechst
33,258 staining, K562 cells were stained with 500 µL of Hoechst 33,258 for 5 min, washed
twice with PBS (0.5 mL), and recorded using a Leica DMi8 inverted fluorescence microscope
(Leica Microsystems, Germany).

3.7.3. Flow Cytometry Assay

Quantitative analysis of the EO-induced apoptosis of K562 cells was carried out
using the Annexin V-PE/7-AAD apoptosis kit (Multi Sciences (Lianke) Biotech, Co., Ltd.,
Hangzhou, China) based on the manufacturer’s instructions. Briefly, cells were seeded into
a 6-well plate (3 × 105 cells/well), incubated for 24 h, and then treated with a new medium
supplemented with EO at different doses of 0, 20, 40, 60, 80, and 160 µg/mL. After 48 h of
incubation, cells were collected, rinsed with pre-cold PBS, and resuspended in 1× binding
buffer (500 µL). Then, the cells were labeled with Annexin V-PE (5 µL) and 7-AAD (10 µL)
for 5 min in the dark at room temperature. The apoptosis rate of cells was analyzed using
an ACEA NovoCyteTM flow cytometer (ACEA Biosciences, San Diego, CA, USA).

3.8. Statistical Analysis

Each experiment was repeated at least three times independently, and the results were
presented as the mean ± SD (standard deviation). SPSS software (version 25.0) was used
for the statistical analysis. The significant differences between groups were analyzed using
one-way analysis of variance (ANOVA) and the least significant difference (LSD) test at
* p < 0.05, ** p < 0.01, and *** p < 0.001.
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4. Conclusions

To our knowledge, this is the first study on the antioxidant, antibacterial, enzyme
inhibitory, and anticancer activities of A. galanga flower essential oil. Fifty-seven chemical
components were identified using GC-FID/MS. For the bioactivities, the A. galanga flower
EO exhibited moderate DPPH and ABTS radical scavenging effects. Moreover, it showed
strong-to-moderate antibacterial activities against S. aureus, B. subtilis, E. faecalis, P. aerugi-
nosa, E. coli, and P. vulgaris. In addition to the weak inhibition against AChE and BChE, as
well as moderate tyrosinase inhibition, an interesting finding was that it displayed remark-
able α-glucosidase inhibition comparable to that of acarbose. Furthermore, it exhibited
considerable selective cytotoxicity to K562 cells and lower cytotoxicity to non-cancerous
L929 cells, and it induced K562 cell apoptosis in a concentration-dependent manner. Hence,
A. galanga flower EO could be regarded as a bioactive natural product with great application
potential in the pharmaceutical field.
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