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Cell death is a systematic/nonsystematic process of cessation of normal morphology and 
functional properties of the cell to replace and recycle old cells with new also promoting in-
flammation in some cases. It is a complicated process comprising multiple pathways. Some 
are well-explored, and others have just begun to be. The research on appropriate control of 
cell death pathways after acute and chronic damage of neuronal cells is being widely re-
searched today due to the lack of regeneration and recovering potential of a neuronal cell 
after sustaining damage and the inability to control the direction of neuronal growth. In the 
progression and onset of various neurological diseases, impairments in programmed cell 
death signaling processes, like necroptosis, apoptosis, ferroptosis, pyroptosis, and path-
ways directly or indirectly linked, like autophagy as in nonprogrammed necrosis, are ob-
served. Spinal cord injury (SCI) involves the temporary or permanent disruption of motor 
activities due to the death of a neuronal and glial cell in the spinal cord accompanied by ax-
onal degeneration. Recent years have seen a significant increase in research on the intricate 
biochemical interactions that occur after a SCI. Different cell death pathways may signifi-
cantly impact the subsequent damage processes that lead to the eventual neurological defi-
ciency after an injury to the spinal cord. A better knowledge of the molecular basis of the 
involved cell death pathways might help enhance neuronal and glial survival and neurologi-
cal deficits, promoting a curative path for SCI.
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nal cord injury

INTRODUCTION

Spinal cord injury (SCI) is the traumatic or nontraumatic dam-
age to the spinal cord, causing impairment of motor function 
and leading to morbidity or permanent paralysis.1 In today’s 
world, SCI is still a significant source of illness and mortality. 
Acute traumatic SCI affects people worldwide, with an annual 
incidence of 15–40 cases per million.2 SCI is particularly con-
cerning on a social level because it primarily affects young, oth-
erwise healthy people, with injuries happening most frequently 
in those between the ages of 15 and 25.3 Creating effective re-
covery treatments requires a thorough understanding of SCI 

pathophysiology, stages, and diverse wound recovery mecha-
nisms.4 The major reason of SCI progression is the death of 
these different types cells relevant to spinal cord structural and 
functional homeostasis, initiated by numerous crosstalk be-
tween different cell death pathways. Many cell types interact in 
normal spinal cord physiology, including astrocytes, neurons, 
microglia, and oligodendrocytes. These multicellular interac-
tions are disrupted and disorganized after an SCI, resulting in 
slowed spinal healing.5 The critical process of neuroinflamma-
tion, which is connected to SCI, is implicated in neutrophils, mi-
croglia, macrophages, astrocytes, dendritic cells (DCs), B- and 
T-lymphocytes, as well as molecules including cytokines and 
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prostanoids.6 It involves the death of spinal cord neurons and 
associating glial cells like astrocytes, oligodendrocytes, and mi-
croglias.7 Neuronal and glial cell death ultimately catalyzes axo-
nal degeneration, accelerating SCI progression. Apoptosis, au-
tophagy, and necrosis are well established in SCI. They are well-
documented in helping axonal degeneration also.8 New cell 
death pathways include common ones like ferroptosis, mitop-
tosis, parthanatos, and pyroptosis, and rare ones like oxieptosis, 
alkaliptosis, and autoschizis, are being discovered in the patho-
genesis and progression of SCI.9

Due to their activation, SCI inevitably results in functional 
decline. The severity of subsequent damage caused by a cascade 
of cellular and molecular processes initiated by the primary 
trauma determines the fate of SCI.10 After a human SCI, the ne-
crotic and apoptotic cell death processes are known to occur. 
The contribution of autophagy in SCI is also well established.11 
The spinal cord's diameter is relatively small, and even a tiny 
transverse expansion of initial damage would result in a more 
significant disconnection between the brain and the spinal cord 
below the lesion site. Therefore, developing strategies to limit 
the secondary degenerative processes would be of utmost im-
portance in SCI research. This review aims to summarize all 
programmed and non-programmed cell death (non-PCD) path-
ways along with their molecular mechanisms, crosstalks and 
Involvement in the progression of the pathophysiology of SCI 
to pave the way for developing effective treatment strategies.

CELL DEATH PATHWAYS AND THEIR 
RELEVANCE IN THE PROGRESSION OF 
SCI

Cell death is the biochemical process by which a cell loses its 
ability to maintain its cellular morphology and homeostasis 
and serve its functions. It can be programmed when a cell be-
comes too old to continue serving its normal function or can 
be nonprogrammed, spontaneously induced by specific me-
chanical, ischemic or chemical trauma, causing the cell to die 
spontaneously. On one side, cell death is essential for a cell to 
cease its morphological and functional features through com-
plicated programmed or nonprogrammed interactions, leading 
to organismic homeostasis. On the other hand, it can be detri-
mental as it can promote inflammation at the death site and af-
fect other healthy cells to die, making it a double-edged sword.12 
The hallmarks of multiple cell death modes are identified and 
fitted into a basic classification framework, where cell death en-
tities are classed as programmed or non-PCD, depending on 

their signal dependency. PCD is categorized into 2 types: apop-
totic and nonapoptotic cell death. Programmed apoptotic cell 
death causes apoptosis and anoikis showing membrane bleb-
bing, mitochondrial disruption, and cell detachment from the 
surface. Programmed nonapoptotic cell death includes vacuole-
presenting cell death (autophagy, entosis, methuosis, and parap-
tosis), mitochondria-dependent cell death (mitoptosis and par-
thanatos), iron-dependent cell death (ferroptosis), and immu-
nomodulatory cell death (pyroptosis and NETosis). Non-PCD 
includes necrosis which is vital in injury progression. Cell death 
is vital in disease development, notably cancer and injuries.13,14 
All cell death pathways show a plethora of morphological chang-
es like the formation of fluid-filled bubbles inside the cell (parap-
tosis), mitochondrial disruption (mitoptosis and parthanatos), 
accumulation of iron (ferroptosis), formation of extracellular 
traps and gasdermin D mediated cleavage formation (NETosis 
and pyroptosis) or spontaneously induced (necrosis). Understand-
ing cell death is vital for understanding how some illnesses prog-
ress, which leads to new treatment development (Figs. 1, 2).

Cell death pathways play a major role in SCI pathogenesis 
and progression. Initial tissue injury results in secondary injury, 
which further damages the spinal tissues chemically and me-
chanically, causes neuronal excitotoxicity because the calcium 
level in the cells is too high, and increases reactive oxygen and 
glutamate levels.15 These events result in brain/spinal cord dys-
function by harming the underlying proteins, phospholipids, 
and nucleic acids.16 The secondary injury phase, which follows 
the main damage phase and lasts several weeks, reflects multi-
featured pathological processes. Caspase-mediated cell signal-
ing, ischemia, vasculopathy, hydrops, excitotoxicity, ionic im-
balance, inflammation, lipid peroxidation, free radical genera-
tion, demyelination, Wallerian degeneration, microglial scar-
ring, and cyst formation are all clinical manifestations of sec-
ondary injury.16 Ischemia is one of the major factors in disease 
progression, which can develop very once after traumatic SCI, 
and if it goes untreated, further damage may start within the 
first 3 hours and last for at least 24 hours.17 In addition, mono-
cytes, neutrophils, T and B lymphocyte cells, and macrophage 
infiltration occur due to blood vessel breakage, which causes 
bleeding in the spinal tissues. This phenomenon is also associ-
ated with the release of inflammatory cytokines such as inter-
leukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor (TNF) 
after 6 to 12 hours following damage.18 Inflammation of neu-
rons is promoted by immune cell penetration and inflammato-
ry cytokines.18 Secondary injuries come in 3 forms: acute, sub-
acute, and chronic, followed by primary injury.19
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Further, multiple inflammatory mediators, such as leukotri-
enes, bradykinin, prostaglandins, platelet-activating factors, and 
serotonin, are present in higher concentrations in the injured 
area.20 Cell death is the cell’s final event, which can be segregat-
ed into 2 forms; apoptosis and necrosis. Apoptosis is the PCD 
pathway; nowadays, many PCDs are discovered.21 PCD is cru-
cial for getting rid of unwanted and damaged cells and can serve 
as a defense; it is also linked with CNS disorders and SCI.22 On 
the other hand, apoptosis is a known physiological process that 
usually occurs and may be crucial in secondary SCI. The sec-
ondary injury after SCI is thought to be caused by the continu-
ation of cellular destruction through apoptosis, and the long-
term neurological deficits after SCI may result from a wide range 
of apoptosis of neurons and oligodendrocytes in the injured 
spinal cord.23

DIFFERENT CELL DEATH PATHWAYS 
ASSOCIATED WITH SCI

SCI pathophysiology is characterized by blood-spinal cord 
barrier collapse and breakdown, transmigration of immune 
cells, rupture of cellular axons and membranes, and myelin dis-
integration.6 Some key signaling pathways, including CDK1/
E2F1, AMPK/SIRT1, JNK/c-JUN, and Wnt-β catenin signaling 
pathways, are already involved in regulating apoptotic activity 
in SCI.24 Recently, programmed and non-PCD has been recog-
nized as a significant process after SCI. Several kinds of cell death 
pathways, including apoptosis, autophagy, ferroptosis, parapto-
sis, netosis, pyroptosis, and necroptosis, have been found in the 
direct link in the progression of primary and secondary SCI.9 
Here we will discuss them in more depth and detail (Fig. 3).

Fig. 1. Classification, mechanism, and factors involved in different key cell death pathways. Key cell death pathways can be bro-
adly classified on the basis of showing systemic death phenomenon or the presence of apoptotic hallmarks. (A) The first one is 
programmed apoptotic death consisting of caspase-mediated apoptosis and anoikis. (B) There are also nonprogrammed non-
apoptotic cell death pathways like necrosome-mediated necrosis. (C) The majority of cell death pathways are programmed non-
apoptotic origin, including vacuole-mediated autophagy and paraptosis, mitochondria-mediated mitoptosis and parthanatos, 
immune-factor-mediated NETosis and pyroptosis and miscellaneous factor-mediated necroptosis. DNA, Deoxyribonucleic acid; 
ULK1, Unc-51-like kinase 1; ATP, adenosine triphosphate; PARP-1, poly-(ADP-ribose)-polymerase 1; NETs, neutrophil extra-
cellular traps; GSDMD, gasdermin D; MLK-1, mixed lineage kinase 1; RIPK, receptor-interacting protein kinase.

A B
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Fig. 2. Morphology of different key cell death pathways. (A) Apoptosis and anoikis are classified under apoptotic programmed 
cell death (PCD). In apoptosis, nuclear DNA is fragmented, and the membrane is blebbed, while in anoikis, the cells lose their 
anchorage property to metastasize to other tissues. The morphological alteration in apoptotic non-PCDs is based on the pres-
ence of vacuoles, disruption of membrane integrity, organelle arrangement, chromatin density, and cell size. (B) It can involve 
mitochondria-mediated (mitoptosis, parthanatos), where mitochondrial integrity is disrupted, disabling the cell from producing 
energy for its survival; vacuole-mediated (autophagy, paraptosis), where the cell develops large hollow or fluid-filled vacuoles or 
cracks, iron-mediated (Ferroptosis), where cell accumulates iron inside to produce toxic effects, Immune factor-mediated (NE-
Tosis, pyroptosis) where immunological cascade controls the death of the cell or other various factor-mediated (necroptosis) 
that involves the change in oxidative stress, pH and formation of a necrotic cavity. (C) Nonprogrammed nonapoptotic form of 
cell death contains necrosis involving the spontaneous formation of necrosome and the release of cellular material that attack 
neighboring cells to go into necrosis. Triggered by toxins, physical injuries, and infections disrupting ionic pumps leading to 
Ca2+ influx, resulting in morphological alterations such as cytoplasmic swelling, consequential intracellular organelle loss with 
little to no chromatin condensation, and plasma membrane rupture.

A

B

C

1. Programmed Apoptotic Cell Death in SCI
1) Apoptosis in SCI

Apoptosis is the most typical form of PCD, where cells die 
systematically in a signal-mediated manner, influenced by a 
cysteine protease caspase family-mediated cell death leading to 

planned self-destruction of the cell.25 It is highly relevant to the 
progression of SCI. It is immunologically silent that occurs ei-
ther by intrinsic (mitochondrial), extrinsic (death receptor [DR] 
triggered), or granzyme/perforin pathway-mediated mecha-
nisms.26 Inflammatory mediators, free radicals, and excitotox-
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Fig. 3. Essential pathways involved in cell death associated with spinal cord injury. This image illustrates different cell death path-
ways and their crosstalks (apoptosis, anoikis, autophagy, methuosis, entosis, paraptosis, parthanatos, mitoptosis, ferroptosis, NE-
Tosis, pyroptosis, necroptosis, oxieptosis, and alkaliptosis). Anoikis uses the same signaling pathways as apoptosis involving the 
membrane and mitochondrial disruption and activation on executioner caspase-3, except that poor or incorrect cell-matrix con-
nections trigger it. This caspase 3 can also trigger mitochondrial rupture causing mitoptosis and PARP1 activation causing AIF 
and MIF to dimerize and translocate to trigger parthanatos. Autophagy basically involve ULK1 mediated autophagosome for-
mation that one side can trigger cleaning of cellular debries at injury site and also promote inflammation by triggering cytokine 
production. Ferroptosis involves GPX4 activation by iron accumulation leading to pH change and ROS production possibly 
triggering oxieptosis and alkaliptosis. Necoptosis occours by MLCK phosphorylation induced necrosome formation. Cell death 
modes with unknown mechanisms were excluded. The arrow direction shows the causal relationship. TRADD, type 1-associat-
ed death domain protein; FADD, Fas-associated death domain protein; RIPK, receptor-interacting protein kinase; MLKL, mixed 
lineage kinase domain-like protein; Bax, Bcl-2-associated X protein; Bid, BH3 interacting-domain death agonist; Bcl-2, B-cell 
lymphoma 2; Cyt-c, cytochrome-c; Apaf-1, apoptotic protease activating factor-1; Smac, second mitochondria-derived activator 
of caspase; IAP, inhibitor of apoptosis; ULK1, Unc-51-like kinase 1; MOMP, mitochondrial outer membrane permeabilization; 
AIF, apoptosis-inducing factor; MIF, macrophage migration inhibitory factor; PARP-1, poly-(ADP-ribose)-polymerase 1; LC3, 
microtubule-associated protein light chain 3; LAMP1, lysosomal-associated membrane protein 1; Rab-7, Ras-related protein-7; 
Rho-A, Ras homolog family member A; ROCK, Rho-associated coiled-coil containing protein kinase; GSH, glutathione; GPX4, 
glutathione peroxidase 4; ROS, reactive oxygen species; JNK, Janus kinase; c-JUN, C-junctional protein.
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ins are the chemicals that induce necrosis or apoptosis.23 They 
feature positional organelle loss, membrane blebbing, cell shrink-
age, and DNA fragmentation after condensation.27 A wide vari-
ety of apoptosis in oligodendrocytes and neurons in the dam-
aged spinal cord may produce long-term neurological abnor-
malities after SCI. Therefore better knowledge is needed to fur-
nish innovative treatment strategies.28

In recent years, more studies have been done on the role of 
apoptosis in SCI. Apoptosis is seen both in injured human spi-
nal cords and in animal models. The rat spinal cord showed 
apoptosis in astrocytes, neurons, microglia, and oligodendrog-
lia.29 Apoptotic oligodendrocytes are seen in white matter lon-
gitudinal filaments.30 Apoptosis-induced damage to type 3 col-
lagen of endoneurium leads to Wallerian degeneration of the 
neurons of the spinal cord leading to impairment of neurotrans-
mission and motor functions.31 Neuronal apoptosis was identi-
fied 4 hours postinjury and peaked 8 hours later; in glial cells, it 
peaked 24 hours later; in oligodendrocytes, in the white matter, 
it peaked 8 days later. Microglial apoptosis was the least frequent 
at 24 hours and 5 days after injury but rose quickly and peaked 
at 8 days.32 The bulk of apoptotic cells may cluster near the dam-
aged spinal cord’s center, explaining why the lesion area contin-
uously enlarges.23 Apoptosis is detected in oligodendrocytes with 
Wallerian degeneration in the chronic phase of SCI.33 It involves 
activating components of both downstream and upstream ori-
gin in the executioner caspase-3 mediated apoptotic pathway 
after SCI in rats.34 Following SCI in animals, the Fas DR path-
way was revealed to be significant in microglial, oligodendro-
cydal, and neuronal apoptosis.35

Apoptosis is induced by Fas-mediated cysteine protease acti-
vation, leading to DNA proteolysis and damage by effector cas-
pases.36 The function of long noncoding RNAs (lnc-RNAs) and 
microRNAs (miRNAs) in SCI pathogenesis, including cell death, 
is also being investigated. MiR-137 targets mitogen-activated 
protein kinase 2 to inhibit apoptosis after SCI.37 Using proteomics, 
Liu et al.38 discovered Erp29. This critical protein may influence 
several genes involved in cell death and survival, including Erk 
and caspase, and ameliorate locomotor activity and function in 
the rat spinal cord transection model. Gu et al.39 observed that 
cutting down long coding XIST RNA reduced neuronal death 
after SCI by regulating the PTEN/AKT/mTOR pathway and 
competitively binding miR-494. Another study identified the 
AKT/mTOR/PTEN signaling pathway implicated in neuronal 
death after SCI, perhaps through activating the mitochondrial 
system.40 It was recently discovered that caspase recruitment 
domain family member 6 inhibits Caspase-3 signaling and may 

reduce apoptosis.41 Understanding apoptosis’s cellular and mo-
lecular mechanisms may help identify specific therapeutic tar-
gets. Minocycline, CD95 (Fas) ligand antibody blockage, and 
glycol sphingolipid-induced inducible nitric oxide synthase block-
ing have all been found to reduce neuronal death and boost the 
effectiveness of cell transplantation techniques.42 Zheng et al.43 
observed that miR-142-3p vanquishes apoptosis in rat SCI.

Progranulin deficiency promotes cellular death and neuroin-
flammation, compromising SCI healing.44 Zhang et al.45 discov-
ered that elevated p38 was related to apoptosis and inflamma-
tion in a rat SCI contusion model. He also hypothesized that 
reducing apoptosis and inflammation with the p38 inhibitor 
SB203580 might help secondary SCI. According to previous re-
search, apoptosis causes tissue lysis and damage post-SCI.

A recent study found that metformin increased β-catenin and 
brain-derived neurotrophic factor expression, reduced neuron 
loss and inflammation, and improved functional and motor re-
covery in rats with SCI.46 Finding a way to conquer SCI-induced 
apoptosis has huge therapeutic ramifications. However, the spe-
cific pathways triggering apoptotic death of astrocytes, neurons, 
microglia, and oligodendroglia following SCI are yet unknown.47

2) Anoikis in SCI
Anoikis is a form of apoptotic PCD; it occurs because of the 

detachment of cells from the extracellular matrix (ECM) and is 
extensively observed in the degradation of oligodendrocytes 
and Schwann cells.48

Inappropriate or inadequate interactions between cells and 
the matrix trigger it. The altered cytoskeletal dynamics are be-
lieved to interact with a critical prosurvival effector integrin. It 
leads to impaired ECM remodeling and myelin degeneration 
which worsens the injury and delays recovery.49 Cell anoikis 
impedes recovery by aggravating CNS damage and impairing 
synaptic plasticity and other CNS activities.50 Immunosuppres-
sion and neuroinflammation are 2 significant factors that con-
tribute to anoikis promoting injury progression. To fasten spi-
nal cord regeneration, adult stem cells are generally injected into 
a damaged location with high inflammation and poor vascular-
ization.51,52 

Moreover, the lack/absence of ECM leads to post-traumatic 
cavity formation. Several studies indicate that after transplanta-
tion, the number of surviving stem cells decreases considerably 
in SCI models because of the death of cells by anoikis.53 In the 
injury, enzymes are released, which lead to dysfunction and de-
tachment of the ECM cells leading to anoikis; SCI may trigger 
the neuronal damage by anoikis and enhance the SCI progres-
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sion. Anoikis inhibition might be the effective strategy to pro-
tect the PCD-induced neuronal damages.50 Biomaterials are al-
ready in the research pipeline to prevent this ECM anoikis in 
SCI. Laminins also help to prevent anoikis in SCI.54

2. Programmed Nonapoptotic Cell Death in SCI
1) Vacuole-mediated
(1) Autophagy in SCI

Autophagy is a controlled process that is initiated to remove 
cellular proteins and organelles in significant quantities by trans-
porting them into membrane-bound vesicles to be uptaken by 
lysosomes to form autophagolysosome to initiate autophagic 
breakdown. They are formed when vesicles merge with lyso-
somes, and their contents are destroyed by lysosomal enzymes.55 
Autophagy has been shown to accelerate cellular mortality by 
activating caspase-reliant apoptosis in specific cells.56 The PI3K/
Akt/mTOR signaling pathway is essential in autophagy.57 Re-
cent research suggests that the lysosomal compartment plays a 
protective function in the oxidative stress response.58 Increased 
autophagy has been documented after SCI, and emerging evi-
dence suggests autophagy may help preserve neuronal and as-
trocytic cells from death after SCI, supported by the presence of 
autophagosomes in cultured and wild-type neurons.59 However, 
the influence of autophagy in post-SCI neurodegeneration has 
been hotly contested, with mixed results from earlier SCI inves-
tigations.

Autophagy has been proposed as a potential SCI treatment 
target by specific studies. Metformin has been shown to protect 
against SCI by increasing autophagy.60 He at al.61 cultured CNS 
neurons and increased autophagy that stabilized microtubules 
by degradation of SCG10 (superior cervical ganglion protein 
10) and increasing axon development. Axon retraction was re-
duced, axon regeneration increased, and functional recovery 
improved in SCI. Astrocyte autophagy flux may increase neu-
rological repercussions, neuronal death, and survival. Many re-
searchers have attempted to relate autophagy with apoptosis. 
Inducing autophagy protects against apoptosis in mice with 
acute SCI.62 Autophagy also protects neurons from endoplas-
mic reticulum (ER) stress. Therefore its breakdown during SCI 
may cause ER stress-induced neuronal death.63 Autophagy may 
protect spinal cord neurons against apoptosis, which may help 
SCI neuron survival by incorporating beclin-1.64 A contrasting 
research report found that lowering autophagosome biogenesis 
enhances spontaneous functional recovery by reducing distant 
axonal degeneration in SCI patients.65

Recent research found that LC3+ cells increased considerably 

at the scar site after the rat spinal cord hemisection model, show-
ing that autophagic cell death often occurs in injured neuronal 
tissue after SCI.66 As Purkinje cells die off, phosphorylated MA-
P1B accumulates in their axonal dystrophic swellings and binds 
to LC3 at high levels. Therefore, MAP1B-LC3 interaction may 
contribute to controlling LC3-associated autophagosomes in 
neurons, especially in axons, under physiological and patholog-
ical situations.67 ABT888, a poly (ADP-ribose) polymerase in-
hibitor, has recently been shown to protect against SCI by sup-
pressing autophagy.68 Because of this, autophagy may have both 
protective and harmful features in SCI. Understanding autoph-
agy’s function in SCI may lead to creating a pleiotropic therapy 
that targets several pathways and types during the degenerative 
phase of SCI.69

(2) Paraptosis in SCI
Paraptosis is another form of PCD, where the cell swells and 

develops large bubbles or vehicles with the cellular liquid trapped 
inside and eventually dying off. It occurs because of an imbal-
ance in redox or ion homeostasis.70 Due to cytoplasmic vacuo-
lation, a novel nonapoptotic and caspase-independent PCD is 
characterized by ER and mitochondrial dilatation.71 Previous 
studies demonstrated a paraptotic response targeting the nucle-
us in response to paraptosis.72,73 Some study suggests that cyclo-
heximide and aryl hydrocarbon receptor-interacting protein-1 
(AIP-1) may alter paraptosis.74 Nutlin-3/bortezomib may also 
disrupt proteostasis to induce long-term structural/functional 
changes in the mitochondrial and ER, causing mitochondrial/
ER stress and, ultimately, cell death via paraptosis.75

As a consequence, nothing is known about paraptosis in SCI. 
Increased p44 expression in the CNS is connected to neuronal 
death and insulin-like growth factor 1 receptor activation thr-
ough autophagy and paraptosis.76 Active microglia may lead to 
neuronal death with characteristics like vacuolation after the 
caspase cascade has been halted.77 Studying the activated mi-
croglial role in paraptosis might be an exciting new technique. 
While paraptosis research has advanced, many questions remain. 
Paraptosis has not been widely investigated in connection to 
SCI, indicating that additional study is required.

(3) Other minor vacuole-mediated cell death pathways in SCI
Two other critical vacuole-mediated pathways apart from au-

tophagy and paraptosis may have some link in SCI progression. 
They are entosis and methuosis. Entosis is a novel and interest-
ing nonapoptotic PCD where rather than a cell being swallowed 
after it is dead, one viable cell actively invades or is pushed into 
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a neighboring cell and dies afterwards, making this process uni-
que. The internalized cell resides in some vacuole structure. En-
tosis is not restricted to interactions between just 2 cells but can 
occur between 3 cells or sometimes more.78 Entotic cell engulf-
ment led to damage in ECM like anoikis; however, their func-
tional process is different. Entosis is one of the cell's cannibalis-
tic behaviors, killing the neighbor cells with the help of the E-
cadherin receptor.79 There has been no direct research approach 
to link entosis with SCI. However, entosis have been observed 
when embryonic stem cells have been cultured with mesenchy-
mal stem cells.80 So, it may hamper stem cell-based spinal re-
generation approaches.

Methuosis is nonapoptotic cell death; the mechanism of cell 
death is related to cytoplasmic fluid displacement by large vac-
uoles generated by macropinosomes. Rab5 and Rab7 GTPase 
proteins are involved in the transportation of vacuoles. There is 
currently no evidence to link methuosis with SCI. However, 
methamphetamine leads to the death of the neurons in the cen-
tral nervous system via methuosis.81 Entosis and methuosis are 
the new domain for SCI that researchers can approach to bring 
the novel idea to avoid neuronal damage during SCI.

2) Mitochondria-mediated
(1) Mitoptosis in SCI

Mitochondria is an essential organ to produce energy for cell 
division and homeostasis. Mitoptosis, also known as mitochon-
drial suicide, occurs when the mitochondria divide and fuse, 
cutting off the adenosine triphosphate (ATP) supply and lead-
ing to apoptosis and autophagy.82,83 As a result, they transform 
into autophagosomes or mitoptotic entities and are ejected. Hence, 
mitoptosis is a mitochondrial death mechanism rather than a 
cell death mechanism. However, the high fission or fusion breaks 
mitochondria apart, ultimately leading to cell death.84 When 
BAK/BAX permeabilize the outer mitochondrial membrane 
proteins, they release a protein called deafness-dystonia peptide 
(DDP), also known as translocase of inner mitochondrial mem-
brane 8a (TIMM8a) that attaches to cytoplasmic DRP1 to bring 
DRP1 into the mitochondria to promote mitochondrial fission.85 
A thorough analysis using electron microscopy, as well as the 
imaging of fragmented mitochondria with mitochondria-spe-
cific dyes (MitoTracker Green, Thermo Fisher Scientific Inc., 
Waltham, MA, USA) using fluorescence microscopy, may offer 
information about the existence of mitoptosis. In addition, an-
tibodies targeting TIMM8a/DDP and cytochrome-c are also 
used.85,86 Mitoptosis occurs due to changes in the membrane of 
the mitochondria, membrane condensation with swelling and 

fragmentation in cristae.83

Mitoptosis is observed in SCI triggered by Ca2+ accumulation 
in the cellular matrix by glutamate excitotoxicity.86 To investi-
gate a putative mitochondrial-SCI relationship, Wingrave et 
al.87 produced a 40 g/cm force injury in rats by contusion, and 4 
hours, 1-cm slices of spinal cord tissue were collected for calci-
um green (2-AM) staining, western blot, and immunohisto-
chemistry. The penumbra and lesion tissue sections showed 
free intracellular calcium (Ca2+) levels increased following the 
injury compared to sham-operated (control) rats. After SCI, the 
mitochondria-mediated cell death pathway was activated in the 
penumbra and lesion by elevating Bax: Bcl-2 ratio via western 
blot. Wei et al. observed neural damage attenuation and loco-
motor function improvement in rats.88

(2) Parthanatos in SCI
It is a type of caspase-independent PCD activated upon spe-

cific types of DNA due to the hyperactivation of the DNA re-
pair gene poly ADP-ribose polymerase 1 (PARP1).89 Poly-ADP 
ribose is (PAR) produced by PARP1 that translocates from the 
nucleus to the cytoplasm, interacting with mitochondrial pro-
teins and releasing apoptosis-inducing factors (AIFs). Then it 
couples with the macrophage migration inhibitory factor (MIF). 
This MIF: AIF complex condenses chromatin and breaks DNA 
in the nucleus.90 Unlike apoptosis, intact PARP and its activa-
tion are required to initiate parthonatos instead of PARP break-
down. Parthanatos is also unaffected by broad-spectrum cas-
pase inhibitors.91

Moreover, unlike apoptosis, DNA fragmentation is consider-
able.92 Biomarkers for parthanatos include nuclear AIF, PARP-1 
activation, and PAR accumulation. Mitochondrial depolariza-
tion may be detected using fluorescent probe labelling, proving 
that the method works.93 Yang et al.94 observed by interrupting 
MIF: AIF interaction by knocking down MIF-provided neuro-
protection from oxidative stress-induced parthanatos post-SCI. 
Secondary damage after an initial traumatic or nontraumatic 
injury is the primary concern of parthanatos in SCI.95 In post-
SCI damage, metabolic disruption and glutamine excitotoxicity 
are the 2 frequent biochemical pathways.96 Before the word path-
anatos, glutamine excitotoxicity was widely studied concerning 
cell death.97 In vitro and in vivo glutamine excitotoxicity models 
were developed using kainate, a glutamine analogue. In vitro, 
kainate-induced neuron death was primarily mediated by par-
thanatos than apoptosis.98 The inhibitor of PARP-1, 6-5(H)-phen-
anthridine (PHE), prevented AIF translocation and overactiva-
tion of PARP-1, both of which are associated with parthanatos.99
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PJ34, another PARP-1 inhibitor, reduced kainite excitotoxici-
ty. In kainate-treated mice, PJ34 and PHE had minor impacts 
on locomotor network damage, showing that some areas of the 
spinal cord may be resistant to parthanatos. Parthanatos killed 
most neurons, making them more susceptible to excitotoxicity 
after SCI. However, glial cells were more resistant to excitotox-
icity and perished mainly via apoptosis.100 Oxidative stress con-
tributes to subsequent SCI damage. The inhibition by a poly-
adenosine diphosphate-ribose polymerase-1 (PARP-1) inhibi-
tor 3-amniobenzamide may help.96 Parthanatos has been linked 
to cell death caused by oxidative stress after damage. In the pres-
ence of Mg2+ in a pathological medium simulating metabolic 
disruption after ischemic SCI in vitro, parthanatos was detected 
in spinal white matter and partial portions of spinal grey mat-
ter.101 JNK1 and JNK3 have also been linked to parthanatos pre-
mitochondrial activation.102

3) Iron-mediated
(1) Ferroptosis in SCI

The term “Ferroptosis” was coined in 2012 as a nonapoptotic 
PCD triggered by iron accumulation inside the cell.103 In ferrop-
tosis, the cell maintains a normal-looking morphology and a 
normal-sized nucleus devoid of chromatin condensation. Sys-
tem XC- is an amino acid antiporter that helps move l-glutamate 
inside cells and l-cystine outside cells across the plasma mem-
brane of cells contributing to various human processes.103 A de-
fect in glutathione peroxidase 4 (GPX4) or system XC- causes a 
collapse in glutathione-dependent antioxidant defense. For glu-
tathione production, system XC- carries cystine into the cell 
and converts it to cysteine from the extracellular cystine. To re-
duce cellular lipid peroxidation, GPX4 may directly catalyze 
glutathione-lipid hydroperoxide interactions. Leaky gut and 
GPX4 suppression lead to the accumulation of lipid hydroper-
oxide that reacts with free iron to form lipid reactive oxygen 
species (ROS) leading to the death of the cell.104 It is distinguished 
from apoptosis by morphology, biochemistry, and genetics.105 
In ferroptosis, ROS grows iron-dependently and has a vital role.106 
An upsurge in the number of studies on ferroptosis in SCI has 
occurred in the last few years. Ferroptosis has been related to 
excitotoxicity-induced cell death. GPX4 reduces ferroptosis by 
promoting motor neuron health and survival. So, ferroptosis 
suppression by GPX4 is essential.104 Deferoxamine, a drug of 
iron toxicity, has been shown in previous studies to lower total 
Fe2+ ions, caspase-3, IL-1β, and TNF-α expression levels after 
SCI and inhibit the creation of glial scars and apoptosis from 
increasing function recovery.107 Another study on the effect of 

proanthocyanidins on SCI repair indicated that intraperitoneal 
injections of proanthocyanidins suppressed ferroptosis, which 
improved functional recovery after SCI.108

Ferroptosis may have a substantial role in secondary damage 
after SCI, and inhibiting this process benefits recovery after SCI, 
according to these studies. On the other hand, adequate research 
on the role of ferroptosis in SCI still needs to be done. Research 
is urgently needed to establish the function of ferroptosis, which 
may lead to new therapeutic options for SCI in glial scar forma-
tion and neuronal death.109

Copper can induce cell death, also termed cuproptosis. FDX1-
mediated mitochondrial proteotoxic stress causes cuproptosis. 
FDX1 converts Cu2+ to Cu+, boosting lipoylation and aggrega-
tion of mitochondrial TCA cycle enzymes (particularly DLAT). 
In addition, FDX1 inactivates Fe-S cluster proteins. Cu import-
ers (SLC31A1) and exporters (ATP7B) change intracellular Cu+ 
levels to impact cuproptosis sensitivity.110 Even though it has 
not been linked with SCI, Enge et al.111 found elevated Cu con-
centrations in skeletal muscle and the spinal cord in the pres-
ymptomatic stage, which worsened with disease development 
in the SOD1G93A-mutant mice amyotrophic lateral sclerosis 
model.

4) Immune factors mediated
(1) Pyroptosis in SCI

Pyroptosis is a nonapoptotic PCD that happens in immune 
cells as a response when intracellular pathogens release inflam-
matory signals. Infected macrophages’ inflammatory sensors, 
like NOD-like receptors (NLRs), detect flagellin molecules in 
pathogens and induce the development of multiprotein com-
plex inflammasomes, which then activate caspase1.112 When 
activated, caspase1 causes membrane hole formation by cleav-
ing gasdermin D, causing the cell membrane to tear.113 DNA 
condensation and fragmentation are also seen throughout the 
process. Furthermore, bacterial lipopolysaccharide (LPS) di-
rectly activates caspase11, causing pyroptosis.114 Pyroptosis can 
be determined through gasdermin D cleavage through western 
blot analysis, IL-1 through caspase activation, and visualization 
of membrane integrity loss through fluorescence microscopy 
and the quantification of released cytoplasmic lactate dehydro-
genase.115

Epithelial cells, neurons, and pyroptotic keratinocytes, as well 
as myeloid-derived professional phagocytes such as DCs and 
macrophages, all, have been identified to show pyroptosis. In 
addition, pyroptosis has been linked to antibacterial and inflam-
matory responses during infection.116
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Inflammasomes containing the caspase-1 enzyme have been 
found to inhibit pyroptosis in the amygdala kindling model of 
neurological illness.117 Silencing Nucleotide-binding oligomer-
ization domain-1 (NLRP1) or caspase-1 also decreased pyrop-
tosis in rats.118 Deficient microglial voltage-gated proton chan-
nels may inhibit NLRP3-induced neuronal pyroptosis. Sevoflu-
rane-induced neuronal pyroptosis is connected to the Bach1/
Nrf2/Erk1 signaling pathway.119 Streptococcus pneumoniae can 
cause pyroptosis in murine microglia, requiring the NLRP3 in-
flammasome, which activates caspase-1.120 The function of py-
roptosis in SCI pathogenesis is unknown. Pyroptosis and the 
inflammatory response to SCI should be explored further.

(2) Netosis in SCI
Netosis is a nonapoptotic PCD caused by pathogenic infec-

tions or their components. It is most frequent in immune cells, 
notably neutrophils. It causes the nucleus or mitochondria of 
neutrophils to generate extracellular traps (NETs) composed of 
modified chromatin-coated neutrophil DNA and bactericidal 
proteins from granules and cytoplasm.121 The most common 
type is suicidal netosis, where neutrophils die after releasing 
NETs.122 When neutrophils recognize pathogen-associated mo-
lecular pattern signals from pathogens, that activates the mito-
gen-activated protein kinase complex to produce protein kinase 
(PKC). PKC activates NADPH oxidase, causing ROS genera-
tion. Increased Ca2+ levels in mitochondria cause mitochondrial 
permeability transition pore (mPTP) to open and release mito-
chondrial ROS (mtROS).123 Mitochondrial dynamin like GT-
Pase (OPA1) ensures the production of NAD+, which is even-
tually converted to nicotinamide adenine dinucleotide (NADH) 
through glycolysis. Lastly, NADH transports electrons in the 
mitochondrial electron transport complex, which upon activa-
tion, supplies ATP for NET synthesis.124

ROS with mtROS causes azurosome release by rupturing azu-
rophil granules. Neutrophil elastase (NE) and myeloperoxidase 
(MPO) release and translocates along with a gene named Pepti-
dyl arginine deiminase 4 (PADI4) in the nucleus.125 MPO gen-
erates HOCl- to start secondary injury progression, and NEs 
cleave the Gasdermin D pore at the nuclear membrane to re-
lease NETs.126 PADI4 enters the nucleus and causes chromatin 
decondensation by citrullinating histones (H3, H2A, and H4) 
and inhibiting glutaredoxin 1 to disrupt cytoskeletal dynamics 
of the membrane.127 Another type of netosis, also known as vi-
tal netosis, is where the neutrophil does not die. It is believed to 
occur by the NET formation of mitochondrial DNA rather than 
the nuclear DNA of neutrophils. It occurs by the Activation of 

Toll-like receptor 4 (TLR4) and is regulated by small conduc-
tance calcium-activated potassium (SK3) channels.128 Elevated 
cytosolic Ca2+ increases in SCI pathology promote complex 1 
activity and ATP and ROS generation.129 Tissue damage, Hy-
poxia, oedema, and tissue damage cause the synthesis of the 
first soluble mediator of ROS.130 The role of ROS in developing 
networked systems is significant. Because of this, SCI may in-
duce NETosis. The mitochondrial calcium uniporter also allows 
Ca2+ into the mitochondria. Ca2+ levels inside cells may promote 
membrane permeability. NADPH Oxidase activation or other 
nonoxidative mechanisms connected to mPTP. Thus, NETs de-
velop throughout the SCI process. Neutrophils infiltrate the spi-
nal cord following SCI.131 These cytotoxic elements cause more 
extensive lesions and decrease neurological function. MPO in-
creases neutrophil infiltration, causing secondary injury and 
slowing SCI recovery.132

Swelling oedema in the spinal cord astrocytes may cause poor 
functional recovery and treatment resistance following SCI. Rat 
spinal cord astrocytic oedema was reduced when oxygen-glu-
cose deprivation and reperfusion (OGD/R) were combined with 
the high mobility group box protein 1 (HMGB1) shRNA or eth-
yl-pyruvate treatment. Conversely, when OGD/R was applied 
to spinal cord astrocytes, HMGB1 increased aquaporin-4 (AQP4)  
expression and cell swelling through HMGB1/TLR4/nuclear 
factor-kappa B (NF-κB) signaling. Inhibitors of TLR4 and NF-
κB have also been demonstrated to reduce activation effects.133 
TLR4 induces NETosis and increases damage after cerebral isch-
emia and thrombosis.134 Therefore, NET development may af-
fect SCI damage. However, no proof exists. However, some re-
search suggests neutrophils may benefit tissue regeneration in 
SCI since their inflammatory activity may promote healing.135 
Various unanswered concerns surround neutrophil activity in 
SCI. To get new insights into traumatic brain damage, further 
study of their cellular and molecular pathways is necessary (SCI).

5) Other factors mediated
(1) Necroptosis in SCI

Also known as programmed necrosis, it activates receptor-
interacting protein kinases (RIPKs) by Activation and crosstalk 
through many signaling pathways. RIPKs are triggered by the 
employment of several cell surface receptors to macromolecu-
lar complexes: T-cell receptors, DRs, and TLRs. RIPK1 and RIPK3 
are essential components of the necrosome. RIPK3 phosphory-
lates the downstream molecule mixed lineage kinase domain-
like protein (MLKL), causing MLKL oligomerization. An oligo-
merized MLKL enters the cell membrane and permeabilizes it, 



Cell Death Pathways in SCIGuha L, et al.

https://doi.org/10.14245/ns.2244976.488440 www.e-neurospine.org

causing cell death.136 Furthermore, regulatory factors of DNA-
dependent activators of interferon synthesized after viral infes-
tation, double-stranded viral DNA, and cytosolic DNA sensors 
activate RIP3-dependent necroptosis. It exhibits necrotic mor-
phology, including membrane rupture and organelle loss. An 
increasing amount of research shows that, unlike necrosis, necro-
ptosis is caspase-independent.137 It is relevant and well estab-
lished in ischemic brain damage, viral myocardial infarction, 
and neurodegenerative diseases.138 The most well-studied necro-
ptosis pathway is TNF-R1 binding to TNF.139 Research suggests 
necroptosis is involved in an intracellular signaling cascade in-
volving MLKL and RIP1/3 kinase.136 RIP1 kinase activity is re-
quired for necroptosis activation. Holler et al.140 discovered that 
proteasome subunit beta type-4 controls the RIP3 and MLKL 
pathways using TNF-induced necroptosis cell culture. Wang et 
al.141 discovered necrostatin-1 (NEC-1), a novel small molecule 
suppresses necroptosis by modulation of the formation of pro-
tein complexes of RIPK1 and RIPK3 and by recruiting RIP1/3–
MLKL. After SCI, Nec-1 improved the histopathology and func-
tional impairments, indicating that necroptosis may contribute 
to brain cell death. Thus, Nec-1 may be used to treat SCI.141

Increasing evidence links SCI necroptosis to inflammation. 
The ER of necroptotic microglia/macrophages can modulate 
SCI-induced inflammation.142 Fan et al.143 discovered that M1 
macrophages/microglia might induce necroptosis in reactive 
astrocytes through the MyD88/TLR signaling pathway. Smad 
ubiquitination regulatory factor-1 (Smurf1) may promote neu-
ron necroptosis following LPS-induced neuroinflammation, 
suggesting it might be a therapeutic target.144 After spinal cord 
damage, necroptosis-induced glial and neuronal cell death has 
been reported. Activating necroptosis in the CNS may cause 
cell death and tissue damage. Despite substantial research into 
necroptosis after SCI, our knowledge is limited. Secondary dam-
age can only be addressed if necroptosis is linked to SCI etiolo-
gy.145

(2) Other minor pathways in SCI
Other minor pathways may also lead to SCI progression. Ox-

ieptosis is a novel nonapoptotic PCD that is triggered by the ac-
cumulation of ROS. Kelch-like ECH-associated protein 1 (KEAP1) 
C-terminal cysteines are oxidized by moderate ROS levels, caus-
ing degradation of the KEAP1-NRF2 complex and nuclear trans-
location of NRF2.146 Antioxidant genes are produced by Nrf2 
that help to remove ROS from the nucleus. High amounts of 
intracellular ROS trigger the production of phosphoglycerate 
mutase family member 5 by KEAP1, which dephosphorylates 

apoptosis-inducing factor 1 (AIFM1) at the Ser116 position af-
ter binding to it, ultimately leading to this kind of cell death.147 

ROS significantly affects the primary and secondary injury 
progression for SCI.148 Due to ischemic injury at the primary 
injury site, free ROS gets generated, which links with the dis-
ruption in Nrf2 translocation and decreasing neuronal pH and 
form of mPTP complex.72,149 So even though there is no current 
research linking oxieptosis to SCI, it is a starting point to start 
many cell death pathways relevant to SCI. So, it is a hot topic 
for researchers to explore.

pH has a significant role in the progression of cell death in 
SCI. Alkaliptosis is a new pH-dependent cell death relevant to 
many diseases.150 Tang et al.151 define alkaliptosis as pH-mediat-
ed, N-acetyl cysteine-mediated, drug-induced cell death. Scien-
tists have established that alkalinization of the cellular milieu 
with sodium hydroxide promotes cell death using NF-kB. Un-
like ferroptosis and necrosis, alkaliptosis is a chemical process. 
NF-kB activation may prevent alkaliptosis.152 The Nrf2/HO-1 
signaling pathway may activate proinflammatory and apopto-
sis-inhibitory genes. Over or underexpression of the Nrf2/HO-1 
signaling pathway has antiapoptotic effects that can be utilized 
against this type of cell. Currently, there is no research done to 
link alkaliptosis with SCI. Furlong et al.153 showed that intracel-
lular acidification induces apoptosis by stimulating IL-1β con-
verting enzyme like protease activity. In the isolated spinal cord, 
Jalalvand et al.154 showed that both increased and decreased pH 
reduced the locomotor burst rate, proving a possible link be-
tween alkaliptosis and SCI. Treatment strategies can be built 
around it as it heavily depends upon the NF-kB pathway.155

Autoschizis is another bizarre type of cell death where the cell 
develops cracks. These cracks develop inside the cell organism, 
followed by getting destroyed by proteases that also develop in-
side the cell. The standard cell remains unaffected, but the cracked 
cells die off.156 There is currently no link between autoschizis 
and SCI. However, it is a potent necrosome trigger that may con-
tribute to the necrosis and necroptosis progression in SCI.157

3. Nonprogrammed Nonapoptotic Cell Death
1) Nonprogrammed necrosis in SCI

Necrosis is a nonprogrammed type of cell death triggered by 
toxins, physical injuries, and infections disrupting ionic pumps 
leading to Ca2+ influx, resulting in morphological alterations 
such as cytoplasmic swelling (oncosis), consequential intracel-
lular organelle loss with little to no chromatin condensation, 
and plasma membrane rupture.158 It starts with the acute phase 
comprising a variety of mechanisms, including ionic imbalance 



Cell Death Pathways in SCIGuha L, et al.

https://doi.org/10.14245/ns.2244976.488  www.e-neurospine.org  441

and glutamate excitotoxicity, toxic blood component buildup, 
the release of proinflammatory cytokine by lymphocytes and 
neutrophils, ATP depletion, and free radical production.159 As 
the damage continues, in the subacute phase, surviving axonal 
demyelination, neuronal apoptosis, axonal bulb retraction (die-

back), Wallerian degeneration, glial scar formation surround-
ing the injury site, and matrix remodeling occur. In the chronic 
damage phase, further changes occur, such as maturation of the 
glial scar, increasing axonal retraction bulb (dieback), and cre-
ating a cystic cavity.160 It is common in trauma, ischemia, and 

Table 1. Different cell death Pathways associated with spinal cord injury and their therapeutic interventions

Classification Mode of cell death Relation to pathogenesis in SCI Treatment method targeting pathways References

Programmed 
apoptotic cell 
death

Extrinsic apoptosis
Intrinsic apoptosis

1. Death of astrocytes, neurons, mi-
croglia, and oligodendroglia

2. Promote Wallerian degeneration

1. XIST KO to reduce neuronal death.
2. Targeting CARD6 to block Caspase-3
3. Minocycline to block CD95 [Fas] ligand
4. Glycol to block sphingolipid-induced iNOS
5. Metformin to increase β-catenin and BDNF 

expression

36,38,39,43

Anoikis 1. Impairment of ECM remodeling
2. Promote myelin degeneration

1. Use of MSCs
2. Use of BDNFs

46,47

Programmed  
nonapoptotic 
cell death

Autophagy 1. Stabilization of microtubules by  
degradation of SCG10

2. increase in axon development
3. Protection of neurons from ER stress

1. Metformin to increase autophagy in SCI 
cells

2. SCG10 to promote microtubule stabiliza-
tion and axon recovery

3. ABT888 to suppress autophagy

57,58,65

Paraptosis 1. Increase in p44 expression in the 
CNS to promote neuronal death

Not discovered yet 73

Mitoptosis 1. Cell death in penumbra and lesion 
after SCI by elevation of Bax: Bcl-2 
ratio

Being researched 85

Parthanatos 1. Kainite excitotoxicity
2. Oxidative stress

1. 6-5[H]-phenanthridine to prevent AIF 
translocation and overactivation of PARP-1

2. PJ34 to reduce kainite excitotoxicity

96,97

Ferroptosis 1. Excitotoxicity-induced cell death 1. Deferoxamine to lower Fe2+ levels
2. Proanthocyanidins to suppress ferroptosis 

and promote functional recovery

105

Netosis 1. Promoting Secondary injury by 
HOCl formation.

2. Producing NETs to worsen the injury
3. Cell swelling by HMGB1 induced 

AQP4 activation

Being researched 123,131

Pyroptosis 1. Neuronal death by GSDMD cleavage 
by caspase 1

Being researched 110

Necroptosis 1. TNFR-induced cell death 1. PSMB4 by regulating RIP3w and  
MLKL pathways

2. NEC-1 by recruiting RIP1/3–MLKL

83

Nonprogrammed 
nonapoptotic 
cell death

Nonprogrammed 
necrosis

1. Neurological impairment
2. spinal cord tissue loss
3. Cystic cavitation of the spinal cord
4. NMDA excitotoxicity

Being researched 162,164

SCI, spinal cord injury; XIST, X-inactive specific transcript; CARD6, caspase recruitment domain-containing protein 6; CD95, cluster of dif-
ferentiation 95; iNOS, inducible nitric oxide synthase; BDNF, brain-derived neurotrophic factor; ECM, extra cellular matrix; MSCs, mesenchy-
mal stem cells; SCG10, stathmin-2; ER, endoplasmic reticulum; SCI, spinal cord injury; CNS, central nervous system; Bax, Bcl-2-like protein; 
Bcl-2, B-cell lymphoma; PARP1, poly[ADP-ribose]-polymerase 1; PJ34, PARP inhibitor; HOCl, hypochlorous acid; NETs, neutrophil extracel-
lular traps; HMGB1, high mobility group box 1; AQP4, aquaporin 4; GSDMD, gasdermin D; TNFR, tumor necrosis factor receptors; PSMB4, 
20S proteasome subunit beta-7; RIP3, receptor-interacting serine/threonine kinase 3; MLKL, mixed lineage kinase domain-like pseudokinase; 
Nec1, necrostatin 1; NMDA, N-methyl-D-aspartate.
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potentially certain kinds of neurodegenerative conditions. It is 
typically regarded as a passive process that requires very little 
energy yet does not need de novo macro molecular synthesis.161 
The process of cell death is a continuum of apoptosis and ne-
crosis. Variable levels of crosstalk harmony between coexisting 
apoptotic and necrotic processes might contribute to neuronal 
death along this spectrum.162 The contribution of necrosis in 
SCI pathology has been well established in both in vitro and in 
vivo models of acute and chronic SCI.163 Acute SCI results in 
necrosis, known as progressive hemorrhagic necrosis. It is a poor-
ly understood pathological process marked by necrosis and bleed-
ing that results in severe cystic cavitation of the spinal cord, pro-
found neurological impairment, and spinal cord tissue loss.164 A 
necrosis initiator gene, TNF-α, produces death in oligodendro-
cytes in the spinal and supraspinal region.165 Its antagonist sig-
nificantly reduced oligodendroglial necrosis in SCI.166 Excessive 
N-methyl-D-aspartate receptor activation in neurons during 
glutamate-induced excitotoxicity may result in necrotic cell death 
and progression of secondary injury.167 These secondary pro-
cesses contribute to the evolution of pathological abnormalities 
in severe injuries, from central hemorrhagic necrosis involving 
predominantly grey matter to infarction of both white and grey 
matter proximally and distally at the injury site. Less severe dam-
age changes axons and myelin168 (Table 1).

CONCLUSION AND FUTURE 
PERSPECTIVE

The ensuing cascade of cell death after CNS injury or isch-
emia has long been considered a target for neuroprotective drugs 
to preserve tissue and function. Defects in one or more cell death 
processes are connected to various spinal cord injuries, includ-
ing neurodegenerative conditions involving abnormal cell de-
struction. The regulators and signaling pathways of the various 
cell death mechanisms continue to be appealing therapeutic 
targets that have the potential to serve as the foundation for 
translational research that may result in improvements for pa-
tients afflicted with these disorders. As a concluding statement, 
we can say that a significant amount of additional research, in-
cluding both fundamental works in studies of animal models 
involving clinical trials, is required to acquire a more in-depth 
knowledge of the various processes modulating cell death in 
SCI. Many cell death pathways for axonal/neuronal regenera-
tion and proinflammatory signaling-induced secondary injury 
in SCI are undiscovered. This review thus expands the extent of 
the cell death pathways in the SCI, and knowledge must be used 

to make revolutionary advancements in treating these illnesses.
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