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Background: The purpose of our study was to assess the accuracy of a commercially available wearable
sensor in replicating pelvic tilt movement in both the sitting and standing position in patients before
total hip arthroplasty.
Methods: This prospective study evaluated patients undergoing a primary unilateral total hip arthro-
plasty by a single surgeon. Patients were excluded if they had a body mass index (BMI) greater than 40
kg/m?. Two sensors were adhered directly to patients’ skin at S2 and T12. The S2 angle was recorded on
the sensor at maximum flexion and extension angles and compared with pelvic tilt measurements on
both sitting and standing radiographs. The primary outcomes recorded were patients’ pelvic tilts
measured using radiographs (PT-RAD) and sensors (PT-SEN), with Pearson correlation coefficients and
intraclass correlation coefficients (ICCs) calculated.
Results: Sixty-one patients (35 males and 26 females) with an average age of 61.5 + 8.5 years and BMI of
26.9 + 4.1 kg/m? were analyzed. The mean prestanding PT-RAD and PT-SEN were 1.5 + 8.3 and 1.0 + 8.1,
respectively, with an ICC of 0.98 (95% confidence interval, 0.96-0.99). The mean presitting PT-RAD and
PT-SEN were -21.9 + 12.5 and -20.9 + 11.7, respectively, with an ICC of 0.97 (95% confidence interval,
0.95-0.98). The multiple R? was 0.95 for the prestanding and presitting comparisons. The R? for all
comparisons between PT-RAD and PT-SEN was >0.85, regardless of BMI or sex.
Conclusions: Although the use of wearable technology may have limitations, based on our results, a
wearable sensor is accurate in replicating pelvic tilt movement.
© 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction this coordinated motion as a result of spinopelvic stiffness have

implications on functional acetabular cup positioning [8-11].

Abnormal spinopelvic mobility is increasingly being recognized
as a contributing factor to postoperative complications such as
impingement and dislocation after total hip arthroplasty (THA).
Recent studies have demonstrated the significance of the hip-spine
relationship and how it affects the dynamic spine-pelvic-hip
kinetic chain during movement [1-7]. Pathologic alterations to
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Traditionally, the Lewinnek safe zone (LSZ) of 40 + 10 degrees of
inclination and 15 + 10 degrees of anteversion has been described
as a safe target for acetabular cup positioning, based on supine
anteroposterior radiographs [12]. However, this safe zone is a static
safe zone and does not account for changes in cup position that
occur with pelvic motion during functional activity. Additionally,
with mounting evidence that the majority of THA dislocations
occur within the LSZ, greater emphasis is now being placed on
identifying functional cup positioning that accounts for patient-
specific spinopelvic mobility [13,14]. Functional inclination and
anteversion of the acetabular component are dynamic parameters
that vary according to pelvic tilt and motion, and understanding
pelvic tilt in patients undergoing THA is crucial to component
positioning and stability of the hip implants.
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Assessing pelvic tilt changes with static based radiographs is
important for determining optimized acetabular component posi-
tioning and orientation [15-18]. Posterior pelvic tilt with standing
as occuring with sagittal spinal imbalance, for instance, increases
functional inclination and anteversion of a cup relative to the
supine position, and a posterior rotation that is large enough would
take a well-positioned cup out of the LSZ [1-4,19]. Conversely, an
anterior pelvic tilt when standing will decrease functional incli-
nation and anteversion of a cup relative to supine [1-4,19]. Such
functional cup malorientation has been theorized to initiate a
cascade of events including subluxation, edge-loading, and
impingement, leading to accelerated wear, aseptic loosening, and
dislocation ultimately resulting in the need for revision THA.

To prevent such component malorientation, meticulous and
dynamic preoperative analysis of patients is warranted. In the
current standard of care, 2 radiographs are taken: one in the
standing lateral position and one in the sitting lateral position.
These radiographs, however, represent 2 static snapshots in time
and thus may not fully characterize changes in pelvic tilt between
the sitting and standing positions owing to spinal deformity and
stiffness, which are parameters better evaluated with a dynamic
assessment [1,2,7,17]. Unfortunately, such dynamic analysis has
traditionally necessitated costly and time-consuming imaging
studies as well as exposing the patient to additional radiation. In
lieu of this equipment, wearable devices can be considered for use
in the preoperative setting as well as for postoperative evaluation of
patients. Recent literature has demonstrated that the utilization of
such technology has been exponentially expanding in orthopedic
surgery as well as all areas of medicine [20-30]. Continued inno-
vation in this sector has allowed for a variety of uses in providing
both patients and surgeons with data to optimize treatment, and
orthopedic surgeons may be able to capitalize on these clinical tools
to facilitate simpler and more cost-efficient methods to obtaining
vital patient information. This study evaluates the use of one such
wearable device, a commercially available sensor, that can be uti-
lized to track pelvic tilt. The purpose of this study was to assess the
accuracy of a commercially available wearable sensor in replicating
pelvic tilt movement in both the sitting and standing position in
patients before THA.

Patients and methods

We prospectively enrolled patients who were undergoing a
primary unilateral THA by a single surgeon. Patients were excluded
if they had a body mass index (BMI) greater than 40 kg/m?. Two
sensors (dorsaVi Ltd) were placed, one at S2 and the other at T12,
using a standardized measurement guide to ensure proper location,
with sticky pads adhered directly to patients’ skin (Fig. 1). The
sensors were reusable and sticky pads replaced before placement
on each patient. After calibration of the sensors, patients under-
went a full-body biplanar standing and sitting radiograph (EOS
Imaging, Paris, France). The S2 angle was recorded on the sensor
with the patient standing and sitting and compared with pelvic tilt
measurements on the radiographs in both standing and sitting
(Fig. 2). There were 80 patients enrolled in this study. Nineteen
patients were excluded for the following reasons: sensor adhesive
issues (7), sensor movement (3), connectivity (7), and calibration
issues (2). The primary outcomes recorded were patients’ pelvic
tilts measured using radiographs (PT-RAD) and the sensors
(PT-SEN).

Statistical analysis

Baseline characteristics were assessed using means and per-
centages. Patients were categorized into BMI (kg/m?) according to
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Figure 1. Two sensors were placed, one at S2 and the other at T12, with sticky pads
adhered directly to patients’ skin.

CDC guidelines as follows: underweight (<18.5), normal weight
(>18.5 to <25), overweight (>25 to <30), class 1 obesity (>30 to
<35), and class 2 obesity (>35 to <40). Linear relationships be-
tween PT-RAD and PT-SEN were assessed with the smoothing
method for linear models and 95% confidence intervals (Cls).
Pearson correlation coefficients and intraclass correlation
coefficients (ICCs) were calculated to measure association and
agreement, respectively, for prestanding and presitting measures. A
high correlation between modalities indicates reproducibility and
internal consistency between the sensor technology and radio-
graph measurement of pelvic tilt [31]. ICC is an appropriate test for
studying repeatability of 2 sets of pelvic tilt data, obtained using 2
different modalities. Criteria for ICC conventionally used in the
literature are as follows: values >0.75, excellent reproducibility;
values 0.4-0.74, adequate reproducibility; and values < 0.40, poor
reproducibility [31-35].

In addition to analyses of the full cohort, measures of correlation
and agreement were also used to assess each of the BMI groups. All
analyses were performed in R, version 4.0 (R Foundation for
Statistical Computing, Vienna, Austria).

Results

From July 2019 to December 2019, a total of 61 patients un-
dergoing unilateral primary THA were prospectively enrolled. Of
the 61 patients, 35 (57.4%) were male. The mean age of patients was
615 + 8.4 years, and the mean BMI was 27.0 + 4.1 kg/m?. The
majority (n = 57, 93.4%) of patients had degenerative joint disease
of the hip. Three patients had avascular necrosis, and one patient
had severe erosion of the acetabulum due to rheumatoid arthritis.
Thirty-three patients underwent a THA of the left hip, and 28
patients underwent a THA of the right hip.

The mean prestanding PT-RAD was 1.5 + 8.3, and the mean
prestanding PT-SEN was 1.0 + 8.1. The ICC comparing the 2 mea-
sures was 0.98 (95% CI, 0.96-0.99), indicating excellent internal
consistency and repeatability between the wearable sensors and
radiograph evaluation of pelvic tilt measurement. The mean pre-
sitting PT-RAD was -21.9 + 12.5 and the mean presitting SPT-SEN
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Figure 2. Pelvic tilt measurements on (a) standing and (b) sitting biplanar EOS images.

was -20.9 + 11.7, with an ICC of 0.97 (95% (I, 0.95-0.98). PT-SEN was
significantly different from presitting to prestanding (P < .001). The
multiple R> was 0.95 for both the prestanding and presitting
comparisons (Figs. 3-6).

There was little evidence to suggest that the correlation of
PT-RAD with PT-SEN changed by either BMI or sex (R? for all
comparisons >0.85) in patients with BMI <40 kg/m?. For pre-
standing pelvic tilt, the R? value was 0.96 for patients with a normal
BMI and was 0.92 for patients with class 1 obesity. For presitting
pelvic tilt, the R? value was 0.93 for patients with a normal BMI and
0.88 for those with class 1 obesity.

Discussion

Increasing use of wearable technology in orthopedic surgery
results in a rapid improvement of sensor technology that can be
utilized for preoperative evaluation of patients as well as intra-
operative guidance and postoperative monitoring and follow-up
[20,23-28]. The use of wearable sensors is a safe, rapid, and effi-
cient way to detect pelvic mobility in patients, including those with
low back pain or those requiring spinopelvic evaluation [36-38].
Given the importance of spinopelvic motion on THA stability and
survival, appropriate evaluation of the functional dynamic between
the spine, pelvis, and hip in the preoperative setting is necessary to
determine patient-specific acetabular cup position and orientation
as a function of pelvic orientation [1,2,7,17]. In this study, an eval-
uation of patients’ functional pelvic position in the standing and
seated positions was performed using wearable sensors. The PT-
SEN recorded using the sensors was compared with the conven-
tional PT-RAD, determined from biplanar radiographs, to assess
pelvic tilt measurement efficacy and consistency between the 2
modalities. Based on the results of this study, the wearable sensors
were accurate in measuring pelvic tilt movement with an ICC
comparing the measures of 0.98 for standing pelvic tilt and 0.97 for
seated pelvic tilt, suggesting excellent consistency between mea-
surement modalities. Additionally, the sensors are capable of
detecting changes in pelvic tilt in both the standing and seated
positions, with results indicating significantly different PT-SEN
measurements between the 2 positions and consistency with

PT-RAD in both cases. These findings suggest that the wearable
sensors could be reliably utilized while assessing for spinopelvic
pathology during preoperative evaluation of patients before THA.
Patient data on changes in pelvic tilt when transitioning from the
standing to seated position as well as functional pelvic plane
information in the standing position could be recorded with the
sensors and used as part of a hip-spine workup and risk determi-
nation protocol.

With an increased interest in noninvasive wearable technology
for research and clinical use, there remains a need to validate and
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Figure 3. Correlation of prestanding sensor pelvic tilt with prestanding radiographic
pelvic tilt stratified by body mass index. Equation: AA = 0.95 *Y -0.37; R-squared: 0.95.
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Figure 4. Correlation of prestanding sensor pelvic tilt with prestanding radiographic
pelvic tilt stratified by sex. Equation: AA = 0.95 *Y -0.37; R-squared: 0.95.

determine the most effective, efficient, and accurate devices [29].
Not only can wearable technology be utilized during the preoper-
ative evaluation process to help guide surgical decision-making,
but such devices can be used for direct monitoring of post-
operative outcomes and follow-up as well as for evaluation of
functional biomechanics [20,23-28]. Studies in the literature
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Figure 5. Correlation of presitting sensor pelvic tilt with presitting radiographic pelvic
tilt stratified by body mass index. Equation: AB = 0.91*Z-1.00; R-squared: 0.95.
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Figure 6. Correlation of presitting sensor pelvic tilt with presitting radiographic pelvic
tilt stratified by sex. Equation: AB = 0.91*Z-1.00; R-squared: 0.95.

evaluating wearable technology for spinopelvic motion analysis
report promising results. Chhikara et al. evaluated the use of a
wearable device in tracking lumbar spine and pelvic dynamic
motion during daily activities, with a mean average orientation
error ranging from 0.1 + 2.3 degrees to 4.2 + 2.6 degrees indicating
high levels of consistency between the sensor technology and
validated optical tracking [36]. Similarly, Zhang et al. report on a
nanomaterial-based electronic skin-wearable sensor for lumbar-
pelvic movement monitoring in patients with lower back pain,
demonstrating repeatability in the measurements and suggesting
an improved method of real-time monitoring and evaluation of
movement for patients with lower back pain [37]. Another study
reports strong correlation (r = 0.60-0.72) between a wearable sheet
sensor and an optical motion capture system in tracking lumbar
movement, concluding that the wearable system demonstrated
significant promise in monitoring lower back motion [38].

Cost savings is another potential advantage with wearable de-
vices, whether for investigative or clinical purposes. Further
research is needed to demonstrate cost-effectiveness or neutrality
in consideration of overall clinical outcomes with the use of
wearable technology, although the theoretical benefits of less im-
aging requirements and in-person visits, for instance, suggest the
potential for cost reduction while maintaining or improving patient
outcomes [29]. The development of this technology from the in-
dustry standpoint and adoption of this technology from the pro-
vider standpoint, however, is not without significant cost [39].
Nevertheless, the idea that a short- and intermediate-term cost
increase lending to a long-term decrease in utilization and
outcomes-related costs driven by improvements in patient satis-
faction and outcomes is a decision that must be weighed by
healthcare providers and hospital systems [39,40].

Additionally, despite existing safety measures in place, concerns
about data monitoring, security, and patient privacy with mobile
technology are valid, as information security issues associated with
various mobile devices can theoretically occur [41]. Patients need to
be fully aware of the information being tracked and evaluated by
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their providers, and full transparency is important to ensure pa-
tients are in agreeance before the initiation of data monitoring [41].

Our study has some notable limitations. Despite having a
smaller sample size, the data from the sensor and radiograph
measurements were examined for each subject and demonstrated
high internal validity and a strong correlation across measurement
modalities. Future studies will evaluate this technology on a larger
scale. Additionally, 19 patients were excluded for the following
reasons: sensor adhesive issues (7), sensor movement (3), con-
nectivity (7), and calibration issues (2). These are preventable,
sensor-related issues that led to a higher-than-anticipated patient
exclusion rate and will be troubleshooted with the development
team before clinical deployment. Further analysis into BMI re-
strictions will be performed, and the design of sensors will
continue to be optimized to ensure adequate adhesive capability,
particularly for patients with greater amounts of body hair, and
sensitivity on patient skin. In addition, even though there is a
preponderance of evidence suggesting that the spinopelvic rela-
tionship affects implant positioning and stability, there is no uni-
versal agreement on how pelvic orientation should be managed.
Wearable sensors are evaluated for use in the preoperative setting
in this study, but future investigations should examine the intra-
operative benefit of such technology in helping guide component
positioning. Despite these limitations, the promising results and
radiographic validation of the sensors’ specificity in detecting pel-
vic mobility and tilt in the patients that were studied warrant
future investigation.

Conclusions

This study evaluates the use of wearable sensors on the pelvis
and lumbar spine to ascertain whether this technology could be
utilized as a convenient and accessible tool during the systematic
evaluation of pelvic tilt in patients undergoing THA. The ability to
detect pelvic mobility during the transition from the standing to
seated positions was validated with radiographic measurement,
with the results showing a strong correlation between the sensor
and radiographic modalities. Additionally, the wearable sensors are
sensitive and reliable in detecting changes in pelvic tilt between the
standing and seated positions. This promising outcome suggests
the validity of sensor technology as a tool to add to the surgeon’s
armamentarium during preoperative examination of pelvic tilt and
mobility in patients before THA. Further work evaluating the effi-
cacy of this sensor technology in functional pelvic positions such as
a forward flexion position (ie, bending down to tie shoelaces or
rising out of a deep chair) and a step-up position (ie, climbing a
flight of stairs) needs to be performed to validate this technology on
a broader scale.
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