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A previous research study on differentiating gastric cancer (GC) into distinct subtypes or prognostic models was mostly based on
GC tissues, which neglected the role of nontumour tissues in GC subtypes. (e purpose of the research was to identify GC
subtypes on the basis of tumour and adjacent nontumour tissues to assess the prognosis of GC patients. We characterized three
GC subtypes on the basis of the immunologic and hallmark gene sets in GC and adjacent nontumour tissues: among them, the GC
patients with subtype I had the longest survival time compared to patients with other subtypes. (e classification was closely
associated with T stage and pathological stage of GC patients. A prognostic model containing two gene sets was constructed by
LASSO analysis. Kaplan–Meier analysis showed that patients in the high-risk group survived longer than those in the low-risk
group and the two prognostic genes sets in the model were strongly correlated with survival status. (en, GO and KEGG analyses
and PPI network show that nontumour and tumour tissues are influencing the prognosis of GC patients in separate manners. In
summary, we emphasized the prognostic value of nontumour tissue in GC patients and proposed a novel insight that both changes
in tumour and nontumour tissues should be taken into account when selecting a treatment strategy for GC.

1. Introduction

Gastric cancer (GC) is the second commonest cause of tu-
mour death globally, with an estimated annual mortality rate
of over 720,000 cases [1]. Although treatment schemes for GC
have been greatly advanced, including systemic chemother-
apy, radiation therapy, surgery, immunotherapy, and targeted
therapy, the five-year survival rate for GC patients still has not
improved significantly [2, 3]. Moreover, even in patients with
similar clinical characteristics, the prognosis is completely
different after almost the same treatment regimen [4–6].
Consequently, because of the highly invasive mortality and
adverse prognosis of GC, recognition of GC subtypes and
prognostic gene sets can improve patient prognosis through

individualized drug therapy and precise assessment of
prognosis.

Previous research on differentiating GC into distinct
subtypes or prognostic models was mostly based on GC
tissues, which neglected the role of nontumour tissues in
GC subtypes. Distinct subtypes have been established on
the basis of the integration of genes and transcriptional
expression profiles, genetic polyomics genes, and meta-
bolic genes in GC [7–10]. Moreover, research on changes
in GC pathway activity tended to focus on single pathways
or class of molecules instead of systematically analyzing
various pathways in tumour and nontumour samples
[11–13]. Nevertheless, these studies were based on the
tumour tissue itself, and the significant effect of
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nontumour tissue on the prognosis of the tumour was
completely ignored.

First of all, after surgical removal of GC patients, the
residual GC cells might still exist in the neighboring non-
tumour tissues, which may lead to the recurrence of GC.
Moreover, the tumour cells scattered in blood are likely to
pass through the blood vessels and fix again in the residual
stomach, leading to the recurrence of GC. All these cir-
cumstances indicate that immune and molecular changes in
nontumour tissues have a great influence in the prognosis of
GC patients [14, 15].

(is study provides different novel perspectives to
precisely assess the prognosis of GC patients—the immu-
nologic and hallmark gene sets in tumour and adjacent
nontumour tissues, suggesting that variations in tumour and
nontumour tissues should be taken into account when
making a decision about GC treatment approaches.

2. Materials and Methods

2.1. Data Preparation. (e RNA-seq data for tumour and
nontumour tissues and accompanying clinicopathological
information (TCGA and GSE84437) were obtained from
(eCancer GenomeAtlas (TCGA: https://portal.gdc.cancer.
gov) and Gene Expression Omnibus (GEO: https://www.
ncbi.nlm.nih.gov/geo) databases [16]. A collection of 4922
immunologic and hallmark gene sets were downloaded from
the Gene Set Enrichment Analysis (GSEA: https://www.
gsea-msigdb.org/gsea/index.jsp) [17]. (e 318 cases
(TCGA database) and 433 cases (GEO database) were used
for using in model construction and OS analysis.

2.2. Gastric Cancer Subtypes. We applied gene set variance
analysis (GSVA) to evaluate the relative enrichment of gene
sets in the sample population. (en, we selected the features
using Cox regression analysis and divided samples into
different groups by the nonnegative matrix factorization
(NMF) method. Another expression profile dataset with
a distinct platform was employed to verify our classification.
Next, we evaluated the association between GC subtypes and
clinical features using a chi-square test. Finally, we com-
puted the differentiated enrichment scores of gene sets
among the two subtypes, crossed them, and filtered them by
the Cox analysis (p< 0.05).

2.3. Prognostic Gene Sets Model. Prognostic gene sets were
identified and a prognostic risk assessment model was de-
veloped employing the least absolute shrinkage and selection
operator (LASSO) analysis. We used the median risk score to
divide samples into higher and lower groups. (e
Kaplan–Meier analysis was applied to demonstrate survival
differences between high-risk and low-risk groups, and survival
curves were mapped in the model for each prognostic gene set.

2.4. Functional Enrichment. To elucidate the mechanism of
prognostic gene sets, we retrieved the genes included in each
gene set and conducted gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses in tumour and nontumour tissues, separately.

2.5. Protein-Protein Interaction. (e genes in the N and T
gene sets were placed in STRING (https://stringdb.org),
respectively, and the interaction score of the protein-protein
interaction (PPI) network was greater than 0.15 to obtain the
data of gene interactions. (e PPI network data were loaded
into Cytoscape v3.9.1, and the MCODE inserter was applied
to identify the first two clusters and the hub genes in each
cluster.

3. Results

3.1. Identification of GC Different Subtypes. We counted the
enrichment scores of 4922 gene sets by GSVA on the basis of
TCGA in order to elucidate the integrative landscape of
changes in immunologic and hallmark gene sets in GC and
nontumour tissues (Figure 1). On the basis of the results of
NMF, we classified the GC patients into 3 distinct subtypes
with a silhouette width value of 0.87, and the GC patients
with subtype 1 had longer overall survival compared to types
2 and 3 (p< 0.01; Figures 2(a)–2(e)). In the validation set, we
also classified GC patients into 3 different subtypes with
a silhouette width value of 0.80, and the GC patients with
subtype I had the longest survival time compared to patients
with other subtypes (p< 0.001; Figures 3(a)–3(e)). (e
clinical features of each subtype in TCGA are given in
Supplementary Table 1. Overall, the classification was ra-
tional and valid for predicting the prognosis of GC patients
from diverse datasets.

3.2. Assessment of GC Distinct Subtypes. To explore the
relationship between the classifications with clinical
characteristics, a chi-square test indicated that the classi-
fication was closely related to T stage and pathological stage
of GC patients (Figure 4). To recognize prognosis-related
gene sets shared by different subtypes, we identified dif-
ferentiated gene sets between each of the two subgroups,
crossed them (Figure 5(a)), and further filtered for
prognosis-related gene sets using univariate Cox analysis.
(rough the above steps, we finally acquired 152 differ-
entially expressed gene sets (immunologic and hallmark
gene set score from GSVA) and 19 prognosis-related gene
sets existing in different subgroups. Figure 5(b) shows the
expression profile of the 19 prognosis-related gene sets in
each sample and the relationship with clinical
characteristics.

3.3. Construction of the Prognostic Risk Model. A prognostic
model containing two gene sets was constructed by the
LASSO analysis (Figures 6(a) and 6(b)). Among these gene
sets, one was in nontumour tissues (N gene sets:
N_GSE30971_2H_VS_4H_LPS_STIM_MACROPHAGE_
WBP7_HET_DN) and one was in tumour tissues (T gene
sets: T_HALLMARK_ANGIOGENESIS). (e Kaplan–Meier
analysis showed that patients in the high-risk group survived
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Figure 1: Heat map of enrichment scores from immunologic and hallmark gene sets. N, normal; T, tumour.
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Figure 2: Continued.
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Figure 2: Identification of GC subtypes from TCGA. (a) Optimal number of clusters. (b) Visualization of cluster results. (c) NMF clustering
results from GC samples. (d) Silhouette width plots with a value of 0.87. (e) Kaplan–Meier survival analysis.
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Figure 3: Identification of GC subtypes from GSE84437. (a) Optimal number of clusters. (b) Visualization of cluster results. (c) NMF
clustering results from GC samples. (d) Silhouette width plots with a value of 0.80. (e) Kaplan–Meier survival analysis.
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longer than those in the low-risk group (Figure 6(c)), and the
two prognostic gene sets in the model were strongly corre-
lated with survival status (Figure 6(d)).

3.4. Exploration of Functional Enrichment. To investigate the
potential mechanisms of the 2 prognostic gene sets, we
abstracted the genes contained in each gene set separately
and performed GO and KEGG enrichment analyses in tu-
mour and nontumour tissues. In nontumour tissues, the
genes from N gene sets were primarily related to terms of
cytokine activity, receptor activity, and various receptor
binding by GO enrichment analysis and terms of different
tumour-related pathways, inflammatory pathways, and
immune-related disease by KEGG enrichment analysis,
respectively (Figure 7(a)). In tumour tissues, the genes from
T gene sets were primarily related to terms of cell adhesion,
vascular growth, blood coagulation, and receptor activity

and terms of focal adhesion, different tumour-related
pathways, and metabolic disturbance by KEGG enrich-
ment analysis (Figure 7(b)).(e results of the GO and KEGG
enrichment analyses from N and T gene sets are given in
Supplementary Tables 2 and 3.

3.5. Construction of the Protein-Protein Interaction Network.
We structured PPI networks for N and T gene sets from
STRING (Supplementary Figure S1 and Supplementary
Figure S2) and further screened hub genes by the MCODE
plug-in in Cytoscape. For N gene sets, the hub gene from
cluster 1 was GADD45A,mainly related to growth arrest and
DNA damage, and cluster 2 was IL-36G, closely linked to
immune and inflammatory response (Figure 8(a)). For T
gene sets, the hub gene from cluster 1 was POSTN, mainly
related to adhesion and migration, and cluster 2 was APOH,
closely linked to metabolic disturbance (Figure 8(b)).
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Figure 5: Characterization of prognostic gene sets fromGC subtypes. (a) 152 differentially expressed gene sets identified. (b)(e expression
profile of the 19 prognosis-related gene sets in each sample and the relationship with clinical characteristics.
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Figure 6: Construction and verification of a prognostic model. (a) Profiles of LASSO coefficients for 2 prognostic gene sets. (b) Coefficient
profile plot generated against the log sequence. (c)-(d) Kaplan–Meier analysis showing that patients in the high-risk group survived longer
than those in the low-risk group (TCGA and GSE84437). (e) Kaplan–Meier survival curves of 2 prognostic gene sets.
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4. Discussion

Previous studies on GC subtype classification or prognostic
models have been almost exclusively based on GC tissue
itself, which ignores the role of adjacent nontumour tissues
in GC. Li et al. revealed three GC subtypes on the basis of the
immunogenomic profiles and distinguished different mo-
lecular characteristics at the genetic, transcriptomic, and
epigenetic levels [18]. Zhang et al. identified three distinct
advanced GC subtypes by immune signatures, which can
predict the prognosis of advanced GC [19]. Zhu et al. rec-
ognized four GC metabolic subtypes and patients with
cholesterogenic have better prognosis [20]. In the study, we
offer a complete perspective of the changes of immunologic
and hallmark gene sets in GC and neighboring nontumour
tissues, which contributes to advancing the understanding of
the prognostic role of nontumour tissues and emphasizes
that greater attention should be paid to the changes of both
nontumour and tumour tissues, not just tumour tissue itself.

Local recurrence of GC and distant metastasis to other
organs are the major reasons for death of GC patients [21].
For one thing, after a patient with GC undergoes complete
surgical treatment, GC cells may lurk in the adjacent
nontumour tissues, leading to local recurrence of GC. For
another thing, potential GC cells distributed in blood can
reenter and colonize gastric tissues through blood

circulation. Consequently, molecular changes in the
neighboring nontumour tissues should be taken into ac-
count when choosing the treatment for GC and not only the
tumour tissues. In the study, we characterized three GC
subtypes on the basis of the immunologic and hallmark gene
sets in GC and adjacent nontumour tissues; among them, the
GC patients with subtype I had the longest survival time
compared to patients with other subtypes.

(e two prognosis-related gene sets were utilized to
construct the model, one in nontumour tissues (N gene sets:
N_GSE30971_2H_VS_4H_LPS_STIM_MACROPHAGE_
WBP7_HET_DN), and one in tumour tissues (T gene sets:
T_HALLMARK_ANGIOGENESIS). In nontumour tis-
sues, the genes from N gene sets were primarily related to
terms of different tumour-related pathways, inflammatory
pathways, and immune-related disease by the KEGG
enrichment analysis. A study showed that IL-17 promotes
epithelial-mesenchymaltransition-like transformation of
GC cells and demonstrated that STAT3 is its downstream
signaling molecule [22]. A meta-analysis indicated that
single nucleotide polymorphisms in IL-17 were signifi-
cantly related to the risk of GC [23]. In tumour tissues, the
genes from T gene sets were primarily related to terms of
focal adhesion, different tumour-related pathways, and
metabolic disturbance by the KEGG enrichment analysis,
respectively.

Cluster 1

Cluster 2

(a)

Cluster 1

Cluster 2

(b)

Figure 8: Establishment of protein-protein interaction networks. (a)-(b) (e top 2 clusters and hub genes acquired by the MCODE.
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(is study shows that tumour and nontumour tissues
influenced the prognosis of GC patients in separate man-
ners. In nontumour tissues, the genes were primarily related
to terms of cytokine activity, receptor activity, and various
receptor bindings by GO enrichment analysis. In tumour
tissues, the genes were primarily related to terms of cell
adhesion, vascular growth, blood coagulation, and receptor
activity. (e hub genes in nontumour tissues are GADD45A
and IL-36G, while the hub genes in tumour tissues are
POSTN and APOH. GADD45A expression levels have been
correlated with response and overall survival after neo-
adjuvant chemotherapy for GC [23]. A study demonstrated
that POSTN is not only a risk factor for the development of
GC but also promotes metastasis [25]. IL-36G and APOH
have also been associated with different types of tumour
development and progression [26–29].

Our study has several limitations. On the one hand, the
number of tumour samples differed too much from non-
tumour samples. On the other hand, the prognostic gene set
derived from the study was not validated by in vitro, in vivo, or
clinical sample experiments. In future work, we will further
expand the sample size to include more nontumour tissues
and use various experiments to follow-up and validate our
results, which is a very meaningful work. Moreover, it would
be interesting to know whether the immune and hallmark-
related genes were from intramural vs. transitional vs. pe-
ripheral tumour areas as they might have different immune
gene signatures. Unfortunately, such information is not
available as the RNA-seq data were produced from the entire
tissue. Future studies with spatial transcriptomics based on
single-cell RNA sequencing will answer such critical questions.

5. Conclusions

In summary, we emphasized the prognostic value of the
nontumour tissue in GC patients and propose the con-
ception that both changes in tumour and nontumour tissues
should be taken into account when selecting a treatment
strategy for GC.
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