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Abstract

Background: IL-6 plays an important role in the pathogenesis of Graves’ disease and its orbital component, thyroid-
associated ophthalmopathy (TAO). Orbital tissues become inflamed in TAO, a process in which prostanoids have been
implicated. Orbital fibroblasts both generate and respond to PGE2, underlying the inflammatory phenotype of these cells.

Methodology/Principal Findings: Using cultured orbital and dermal fibroblasts, we characterized the effects of PGE2 on IL-6
expression. We found that the prostanoid provokes substantially greater cytokine synthesis in orbital fibroblasts, effects that
are mediated through cell-surface EP2 receptors and increased steady-state IL-6 mRNA levels. The pre-translational up-
regulation of IL-6 results from increased gene promoter activity and can be reproduced with the PKA agonist, Sp-cAMP and
blocked by interrupting the PKA pathway. PGE2-induced production of cAMP in orbital fibroblasts was far greater than that
in dermal fibroblasts, resulting from higher levels of adenylate cyclase. PGE2 provokes CREB phosphorylation, increases the
pCREB/CREB ratio, and initiates nuclear localization of the pCREB/CREB binding protein/p300 complex (CBP) preferentially in
orbital fibroblasts. Transfection with siRNAs targeting either CREB or CBP blunts the induction of IL-6 gene expression. PGE2

promotes the binding of pCREB to its target DNA sequence which is substantially greater in orbital fibroblasts.

Conclusion/Significance: These results identify the mechanism underlying the exaggerated induction of IL-6 in orbital
fibroblasts and tie together two proinflammatory pathways involved in the pathogenesis of TAO. Moreover, they might
therefore define an attractive therapeutic target for the treatment of TAO.
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Introduction

In the autoimmune thyroid syndrome, Graves’ disease, the orbit

becomes inflamed and undergoes extensive tissue remodeling, a

condition known as thyroid-associated ophthalmopathy2 (TAO)

[1,2]. A cardinal feature associated with TAO is the substantial

infiltration of both B and T lymphocytes within orbital connective

tissues [3–5]. Several cytokines, including IL-6, have been

implicated in the pathogenesis of autoimmune diseases [6].

Hiromatsu et al. [7] studied the cytokine profiles of patients with

Graves’ disease and TAO. They found that extra-ocular eye

muscle and orbital fat from these individuals express high levels of

IL-6 mRNA and that orbital volumes correlated positively with

levels of these transcripts. These findings may prove particularly

relevant to antibody-driven autoimmune diseases like Graves’

disease since IL-6 supports B lymphocyte and plasma cell function

and is a recognized cofactor in fat metabolism [8,9].

Orbital fibroblasts exhibit a unique set of phenotypic attributes

when activated by cytokines and bioactive lipids. They can

generate powerful chemoattractants and proinflammatory signals.

These are currently believed to underlie the susceptibility of the

orbit to inflammation such as that occurring in TAO [10]. Orbital

fibroblasts produce extraordinarily high levels of prostaglandin E2

(PGE2) when treated with cytokines [11–13]. At the heart of this

response is an exaggerated induction of prostaglandin endoper-

oxide H synthase-2 (PGHS-2), the rate limiting, inflammatory

cyclooxygenase involved in the production of PGE2 [14]. PGHS-2

has been found over-expressed in orbital tissues from patients with

TAO [15]. Moreover, both B and T cells have substantial capacity

to generate PGE2 through the induction of PGHS-2 which occurs

in their activated states [16–18]. Thus, the capacity of orbital

tissue in TAO to generate PGE2 may be increased dramatically.

PGE2 acts on target cells through one or more EP receptors, some

of which are coupled to G protein through which adenylate

cyclase activation leads to increased intracellular cAMP [19].

A number of factors have been shown to regulate the expression

of IL-6 in a variety of cell-types [20–22]. Transcriptional

regulation of the IL-6 gene is complex and involves the cAMP

response element (CRE)-binding protein (CREB). Phosphorylated

CREB is recruited to the nucleus and complexes with CREB

binding protein/p300 (CBP) [20]. The amplitude of CREB

mediated transcriptional effects is determined at least in part on
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the nature of an interaction between CREB and CBP [23].

Specifically, the two proteins interact following phosphorylation of

the Ser-133 residue on CREB. This phosphorylated protein then

identifies the 94 amino acid Kix domain on CBP [24]. Thus,

transcriptional up-regulation of target genes resulting from cAMP

generation relies on the formation of a CREB/CBP complex.

In an earlier paper, we demonstrated that IL-1b could induce

the production of IL-6 in orbital fibroblasts in an anatomically

selective manner [25]. That effect was mediated through an up-

regulation of IL-6 gene promoter activity and was transient, lasting

for only a few hours. Since that report, several other groups have

detected dramatic over-expression of PGHS-2 in orbital tissues

affected with TAO, especially in the early active phase [15,26],

suggesting a state where PGE2 and potentially other prostanoids

might be generated in vivo. We have described the expression and

highly inducible PGHS-2 and its enzymatic partner, microsomal

PGE2 synthase, in IL-1b, leukoregulin, and CD154-activated

TAO orbital fibroblasts [11–13]. Here, we explore the potential

relationship between PGE2 and IL-6 production in TAO-derived

orbital fibroblasts. The induction by PGE2 of IL-6 is mediated

through cell-surface EP2 receptors, an intermediate generation of

intracellular cAMP, and the obligatory formation of a nuclear

complex comprising CREB and CBP/p300. Knocking down

either CREB or CBP expression dampens the level of IL-6

induction. Our findings for the first time demonstrate the potential

importance of exaggerated PGE2 generated in orbital fibroblasts

as an autocrine regulatory factor.

Results

PGE2 induced IL-6 expression in orbital fibroblasts in an
anatomic site-selective, time- and dose-dependent
manner

IL-6 production in untreated orbital fibroblasts occurred at a

very low level but when PGE2 was added to the culture medium,

levels of the cytokine were increased substantially. As the data in

Fig. 1A demonstrates, even at the lowest concentration of the

prostanoid tested (1 nM), an effect was detectable and reached

statistical significance. The response was near maximal at 0.1 mM,

where it was 4.5-fold above baseline. Increasing the concentration

by 100-fold failed to increase synthesis further. The effects were

rapid and at 6 hr, IL-6 concentrations in the medium had

increased by nearly five-fold (Fig. 1B). They continued to increase

for 16 hr when they were 5.9-fold above untreated levels

(p,0.0001) and they remained elevated for 24 hr, the duration

of the study. The induction was 82% greater in three orbital

fibroblast strains compared to that in three from the skin (Fig. 1C,

p,0.01). The level of cell layer-associated IL-6 achieved in orbital

fibroblasts following PGE2 treatment for 16 hr. was dramatically

greater than that in dermal fibroblasts (.5-fold vs ,10%, Fig. 1D).

Figure 1. IL-6 production in orbital fibroblasts is induced by
PGE2 in a concentration- and time-dependent manner. Conflu-
ent orbital cultures, in this case from a patient with TAO, were treated

A: with escalating concentrations of PGE2 for 16 h. or B: with PGE2

(1 mM) for graded intervals or . C: with or without PGE2 (1 mM) for 16 h
in three different dermal and orbital fibroblast strains, each from a
different donor. Media were collected and subjected to ELISA analysis
as described in Materials and Methods. Data are expressed as the mean
6 SD of triplicate determinations. * denotes P,0.005 compared to PGE2

treatment alone. D: Orbital and dermal cultures were treated with
nothing or with PGE2 (1 mM) for 16 h., and cell layer protein was
collected and analyzed by Western blot for IL-6 protein. Membranes
were then re-probed with anti-b actin antibody as a loading control.
Band densities, corrected for their respective b-actin signals: Dermal
control, 0.132, Dermal PGE2, 0.146; Orbital control, 1.098; Orbital PGE2,
5.132.
doi:10.1371/journal.pone.0015296.g001

PGE2 Regulates IL-6 Expression
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Up-regulation of IL-6 by PGE2 in orbital fibroblasts
involved the induction of its mRNA and gene promoter
activity

The time interval between initiation of the treatment with PGE2

and a detectable increase in IL-6 protein suggested action at the

pre-translational level. This was born out since IL-6 steady-state

mRNA was increased by PGE2 (1 mM). As the real-time RT-PCR

analysis in Fig. 2A indicates, TAO orbital fibroblasts expressed

higher basal levels of IL-6 mRNA than did those from the skin.

Levels in untreated orbital fibroblasts were 3.4-fold above those in

dermal cultures (p,0.001 vs. dermal) and increased after 16 hr of

treatment with PGE2. The magnitude of the increase was 1.75-fold

in the orbital fibroblasts (p,0.01 vs. basal). In contrast, PGE2

failed to increase IL-6 mRNA levels significantly in the dermal

cultures.

To determine whether PGE2 was acting to enhanced IL-6 gene

transcription, a fragment of the IL-6 gene promoter was cloned

and fused to a luciferase reporter gene, and transiently transfected

into orbital and dermal fibroblasts. .After 1 hr, the reporter gene

activity was significantly higher in PGE2-treated TAO orbital

fibroblasts than that found in identically treated dermal fibroblasts

(Fig. 2B). The prostanoid increased promoter activity by 2.8-fold

in orbital fibroblasts while increasing the activity by only 80% in

dermal cells (p,0.0001 and p,0.005, respectively).

PGE2-induced IL-6 production was mediated through
cAMP generation and PKA

PGE2 can exert its actions through one of several signaling

pathways, depending on the receptor subtype through which the

cellular response was mediated. With regard to the induction of

IL-6 by the prostanoid, the JAK2 inhibitor, AG490 (10 mM), PI3

kinase inhibitor, LY294002 (10 mM), JNK inhibitor, II 420119

(10 mM), and protein kinase C inhibitor, Calphostin C (100 nM)

all failed to inhibit the PGE2-induced IL-6 production (data not

shown). In contrast, H89 (10 mM), a specific PKA inhibitor,

dramatically reduced the effects of PGE2 on IL-6 while Sp-cAMP

(1 mM), a cAMP analog, mimicked PGE2-induced IL-6 synthesis

(Fig. 3).

PGE2-mediated IL-6 synthesis involved phosphorylation
of CREB in fibroblasts

PGE2 treatment resulted in rapid CREB phosphorylation in

orbital fibroblasts, peaking at 5–15 min (Fig. 4A). The pCREB/

CREB ratio remained constant in dermal fibroblasts but increased

significantly in those from the orbit after 15 min of treatment. H89

abolished PGE2-induced CREB phosphorylation, suggesting that

it was mediated through an increased intracellular cAMP

Figure 2. PGE2 upregulates IL-6 mRNA and IL-6 gene promoter
activity. A: Divergent levels of IL-6 protein induced by PGE2 in orbital
and dermal fibroblasts are reflected in the abundance of IL-6 mRNA.
Fibroblasts were treated with nothing or PGE2 (1 mM) for 16 h. Ct values
were normalized to GAPDH and expressed as fold-change. Data are
expressed as the mean 6 SD of triplicate independent determinations
from one dermal and one orbital fibroblast cell. In 3 different strains of
each, basal IL-6 mRNA levels were 3.2 fold greater in orbital fibroblasts.
Following PGE2 (1 mM) for 16 h, levels were 3.7-fold higher in orbital
versus dermal fibroblasts. B: PGE2 upregulated IL-6 gene promoter
activity in orbital and dermal fibroblasts transiently transfected with
empty luciferase vector or that construct fused to an 1171-nt fragment
spanning 21168 to +3 nt of the human IL-6 gene promoter. Cultures
were then treated with nothing (control) or PGE2 (1 mM) for 1 h. Data
are expressed as the mean 6 SD of triplicate independent determina-
tions. * denotes statistical difference between groups. In another study,
3 different orbital fibroblast strains demonstrated 2.6 fold greater IL-6
promoter activity compared to dermal fibroblasts following 1 h
treatment with PGE2 (1 mM).
doi:10.1371/journal.pone.0015296.g002

Figure 3. PGE2-induced IL-6 production can be attenuated by
inhibitors of PKA. Confluent orbital fibroblasts, in this case from a
patient with TAO, were treated with PGE2 (1 mM) or Sp-cAMP (1 mM) in
the absence or presence of H89 (10 mM). Media were collected and
analyzed for IL-6 content after 16 hr incubations. Data are presented as
the mean 6 SD of triplicate independent determinations from a single
orbital fibroblast strain. . This result was confirmed in two other orbital
fibroblast strains where IL-6 production was reduced 5.6 fold by H89.
* denotes P,0.005 compared to PGE2 treatment alone; ** denotes
P,0.005 compared to no treatment.
doi:10.1371/journal.pone.0015296.g003

PGE2 Regulates IL-6 Expression
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concentration (Fig. 4B). To test this possibility, cAMP was

measured and basal levels were comparable in untreated orbital

and dermal fibroblasts (Fig. 5A). PGE2 (1 mM) increased cAMP

generation by 12.6-fold in orbital while only 2.3-fold in dermal

cells (Fig. 5A). This suggested that the orbital fibroblasts had a

substantially greater capacity for generating cAMP. Generation of

the cyclic nucleotide was then compared in three orbital and three

dermal strains. cAMP levels were consistently higher in the orbital

fibroblasts, especially following treatment with PGE2 (Fig. 5B).

Levels of adenylate cyclase were then determined by Western blot

analysis. The analysis disclosed substantially higher levels of

enzyme expression in orbital fibroblasts (orbital 65610 vs dermal

3169 AU, p,0.005) (Fig. 5C). Thus, divergent levels of adenylate

cyclase might represent the basis for the greater cAMP generation

in response to PGE2.

EP2 receptor mediated the action of PGE2 in TAO orbital
fibroblasts

Several receptors displayed on the cell surface can mediate

the actions of PGE2 [29]. Moreover, the EP2 subtype receptor

displayed on orbital fibroblasts mediates other actions of

endogenous and exogenous PGE2 [30,31]. We next set out to

determine whether the higher level of cAMP generation and IL-

6 production in orbital fibroblasts was, at least in part, a

consequence of greater EP receptor display. The EP2–selective

agonist, Butaprost, could induce IL-6 synthesis as did authentic

PGE2 (Fig. 6A). Dermal fibroblasts failed to respond (not

shown). Moreover, the EP2 antagonist, AH6809 (10 mM),

reduced appreciably the PGE2-induced IL-6 production in

orbital fibroblasts. The EP4 antagonist GW627368X (10 mM)

failed to influence PGE2-stimulated IL-6 production, strongly

suggesting that EP4 is not involved in these actions of PGE2. We

next assessed levels of the EP2 receptor by flow cytometry. As

the flow plots shown in Fig. 6B demonstrate, the abundance of

EP2 appeared equivalent on dermal and orbital fibroblasts

despite differences in the magnitude of IL-6 induction and

cAMP generation provoked by PGE2. Both the fraction of EP2
+

cells and the receptor densities were similar in the two

populations of fibroblasts. Thus, the divergent magnitude of

IL-6 induction could not be attributed to differences in EP2

receptor levels.

Figure 4. PGE2 provokes the phosphorylation of CREB in orbital fibroblasts, an effect blocked with H89. A: Confluent cultures were
treated with PGE2 (1 mM) for different intervals. Cellular proteins were subjected to Western blot analysis of CREB and pCREB. Densitometric analysis
of pCREB protein concentrations are expressed as the ratio to total CREB protein as a percent of the value at ‘‘0’’ min. Data are expressed as the mean
6 SD of triplicate independent determinations. (* denotes statistical significance between treatment groups). B: H89 (10 mM) inhibits PGE2-provoked
CREB phosphorylation in orbital fibroblasts. The inhibitor was added for 6 hrs, followed by addition of PGE2 (1 mM) for 15 min. Cellular proteins were
subjected to Western blot analysis of pCREB protein using b-actin as a loading control.
doi:10.1371/journal.pone.0015296.g004

PGE2 Regulates IL-6 Expression
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PGE2 promotes the formation of nuclear CREB/CBP
complexes in orbital fibroblasts

Given the strong suggestion from the preceding findings, it

appeared that CREB phosphorylation might play an important

role in mediating the induction by PGE2 of IL-6.

The impact of knocking down CREB with a specific siRNA on

IL-6 induction in orbital fibroblasts was then determined. As

Fig. 7A demonstrates, treating orbital fibroblasts with CREB

siRNA could efficiently interrupt CREB protein expression, under

basal and PGE2-treated conditions. The importance of CREB to

the induction of IL-6 by PGE2 was then demonstrated by the

attenuation of cytokine production following transfection with

CREB siRNA (Fig. 7B). Optimal transcriptional activation of

certain gene promoters containing CRE requires an association

between pCREB and CBP [32]. We attempted to determine

whether PGE2 influenced CREB binding to CBP. The immuno-

precipitation of CBP could bring pCREB out of solution in lysates

derived from orbital fibroblasts following treatment with PGE2 for

15–20 min. (Fig. 8A). Alternatively, subjecting these lysates to

antibodies directed against pCREB resulted in immunoprecipita-

tion of CBP complexed with pCREB from these same nuclear

extracts (Fig. 8B). As the study clearly demonstrated, there was no

detectable complex precipitation in nuclear lysates from similarly

treated dermal fibroblasts. This result indicates that the basis for

divergent IL-6 induction by PGE2 in orbital fibroblasts concerns,

at least in part, the cell-type specific interaction between pCREB

and CBP following treatment with the prostanoid. Fig. 8C

demonstrates that CBP siRNA reduced the yield of pCREB co-

immunoprecipitated with anti-CBP. Analogous to the findings

Figure 5. PGE2 induces more robust cAMP generation in orbital
compared to dermal fibroblasts resulting from higher levels of
adenylate cyclase. A: Confluent cultures were serum starved for 20 h
and then treated with PGE2 (1 mM) for 16 hrs. Cells were then lysed with
0.1 N HCl and cAMP was measured by cAMP immunoassay. Data are
presented as the mean 6 SD of three independent determinations.
(* indicates statistical differences between groups). B: cAMP levels in
three different dermal and orbital fibroblast strains treated with nothing
or PGE2 (1 mM) for 16 hrs. Data are presented as the mean 6 SD of
three independent determinations. The level of cAMP produced in
orbital fibroblasts is 3 fold (p,0.05) greater than in dermal fibroblasts,
C: Orbital fibroblasts express higher adenylate cyclase levels when
compared to dermal fibroblasts. Data derived from Western blot
analysis of three separate dermal and orbital fibroblast strains. These
were normalized to their respective b-actin levels. They are expressed as
the mean 6 SD, p,0.005, n = 3.
doi:10.1371/journal.pone.0015296.g005

Figure 6. EP2 mediates the actions of PGE2 on IL-6 expression
in orbital fibroblasts. A: Confluent cultures were treated with
nothing, Butaprost (10 mM) or PGE2 (1 mM) in presence or absence of
EP2 inhibitor AH6809 (10 mM), EP4 inhibitor GW627368X (10 mM) for
16 h. Media were subjected to IL-6 ELISA. Data are expressed as mean
6 SD of three independent determinations. * denotes P,0.005
compared to PGE2 alone, ** denotes P,0.005 compared to no
treatment. B: Comparison of surface EP2 receptor display by orbital
and dermal fibroblasts as determined by flow cytometry. L6 cells serve
as the positive control. Inset histograms represent the levels of shift
when compared with isotype.
doi:10.1371/journal.pone.0015296.g006

PGE2 Regulates IL-6 Expression
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following interruption of CREB expression (Fig. 7B), CBP siRNA

could also significantly attenuate the induction of IL-6 (Fig. 8D).

Thus both components of the CREB/CBP/p300 complex are

necessary for an optimal induction by PGE2 of IL-6. PGE2

treatment results in a substantial enhancement of pCREB binding

to target DNA (Fig. 9). The effects on DNA binding are

substantially greater in orbital fibroblasts than those found in

dermal cultures.

Discussion

IL-6 exerts diverse influence on adipose tissues such as those

present in the human orbit. Moreover, the cytokine has been

implicated in the pathogenesis of obesity where it may determine

the pattern of fat accumulation throughout the body [33–35]. A

limited number of studies have examined PGE2 effects on IL-6

expression in other cell types. For instance, PGE2 upregulates

cAMP levels in the rat intestinal epithelial cell line, IEC-6, and in

so doing enhances endotoxin-induced IL-6 production [36]. In the

human early leukemia T cell line, HSB.2, misoprostol, an EP4/

EP2/EP3 selective agonist, induces IL-6 mRNA and increases IL-6

secretion, effects related to the activities of PKA but not PKC [37].

In tissue-infiltrating macrophages, the upregulation by PGE2 of

IL-6 is mediated through EP4 receptors and PKC signaling [38].

None of these earlier studies examined the mechanisms involved in

the transcriptional regulation of the IL-6 gene by the prostanoid.

The results presented here tie together two potentially

important aspects of the divergent phenotype displayed by orbital

fibroblasts. The cellular attributes peculiar to orbital fibroblasts

may underlie, at least in part, their roles in the pathogenesis of

TAO. In particular, they produce substantial levels of PGE2 when

activated and can also respond to the prostanoid in a cell-specific

manner [30,31]. These responses to PGE2 are unusually robust

and can result in dramatic morphological changes that are driven

by cAMP generation. The current study sheds new insight into the

mechanism underlying the high capacity for the generation of

cAMP in orbital fibroblasts because we report the substantially

higher levels of adenylate cyclase they express (Fig. 5B). It may

have direct relevance to thyrotropin receptor function, especially

in the context of Graves’ disease. That receptor utilizes a G

protein-coupled mechanism for cAMP generation as a principal

signaling pathway in the thyroid [39]. IL-1b, leukoregulin, and

CD154 promote PGE2 generation in these fibroblasts through a

mechanism that involves the de novo synthesis of PGHS-2, the rate

limiting synthetic enzyme in the production of PGE2 [12–14]. IL-

1b and CD154 also induce IL-6 in orbital fibroblasts, unlike

several other primary human fibroblasts [25,40]. PGE2 exerts its

own positive effects by up-regulating IL-6 gene transcription.

Thus, our current findings suggest that PGE2 functions as a

positive regulator of IL-6 production in orbital connective tissues,

accounting for at least in part the high levels thought to be

achieved in TAO [7].

The actions of PGE2 on IL-6 are mediated through the

activation of EP2 receptors, generation of cAMP, and the

recruitment of CREB/CBP/p300 complex to the orbital fibroblast

nucleus. While levels of EP2 receptor appear similar in dermal and

orbital fibroblasts, those of cAMP generated as a consequence of

PGE2 exposure are dramatically different in the two cell types

(Fig. 5A, 5B). Moreover, the magnitude of IL-6 induction was

similarly divergent suggesting that the levels of cAMP generated

may determine, at least in part, the magnitude of cytokine

production. This appears to result from the higher levels of

adenylate cyclase in orbital fibroblasts. CBP/p300 was initially

implicated the transcriptional activation imposed by phosphory-

lated CREB [41]. It functions in a dual role within the nucleus,

serving as both a histone acetyltransferase and as a transcriptional

adaptor molecule [42]. The phosphorylation of CREB at Ser 133

can be mediated through the Akt pathway, results in the

recruitment of CBP, and may help explain the role of CREB/

CBP/p300 in enhanced cell survival [43]. CBP/p300 recruitment

is mediated through changes in nuclear calcium and calcium/

clamodulin-dependent protein kinase IV activity, but complex

recruitment apparently does not necessarily result in CREB/CBP/

p300-dependent transcriptional activation [44]. It would appear

that the actions of PGE2 described here are mediated through the

formation of the CREB/CBP/p300 complex (Figs. 7 and 8).

Interruption of either component with the respective siRNAs

results in an attenuation of IL-6 expression. pCREB/CREB levels

increase selectively in orbital but not in dermal fibroblasts

following exposure to PGE2 (Fig. 4A). This phosphorylation can

be blocked with a PKA inhibitor (Fig. 4B). The point of divergence

between responses in dermal and orbital fibroblasts appears to

reside upstream from CREB/CBP/p300 and concerns the

relatively higher levels of cAMP generated in response to PGE2.

Figure 7. Knockdown of CREB with siRNA attenuates PGE2-
induced IL-6 protein expression in orbital fibroblasts. A: siRNA
specific to CREB (CREB si) or scrambled siRNA (Control si) was
transfected into 80% confluent cultures. Representative Western blot
analysis demonstrates the impact of the knockdown of CREB protein. B:
Media were subjected to IL-6 ELISA. Data are expressed as the mean 6
SD of three independent determinations These results were represen-
tative of those in two other orbital fibroblast strains.
doi:10.1371/journal.pone.0015296.g007

PGE2 Regulates IL-6 Expression

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e15296



Future studies will examine a number of other cellular responses

that are more brisk in orbital cultures and might be explained by a

greater capacity for these fibroblasts to generate cAMP.

IL-6 has been insinuated in the pathogenesis of several

autoimmune diseases previously [7]. For instance, in synovial

fibroblasts derived from patients with rheumatoid arthritis, IL-6

signaling can cross-talk with that of IL-1 [45]. IL-1 suppresses IL-

6-dependent Janus kinase-STAT activity and can block the

induction by IL-6 of tissue inhibitor of metalloproteinase 1. With

regard to Graves’ disease, elevated IL-6 levels have been described

in TAO and hyperthyroidism [46]. The relatively high levels of IL-

6 provoked by PGE2 in orbital fibroblasts may, at least in part,

underlie the susceptibility of the orbit to inflammation in TAO.

The cytokine could enhance lymphocyte differentiation and

promote T cell trafficking to orbital tissues, an action promoted

through MAPK, PI3K, and the Jak/STAT pathways [47]. IL-6

promotes the synthesis of antibodies and is necessary for the

development of normal plasma cells [9]. Thus localized produc-

tion of auto-antibodies could result from the high levels of IL-6

within the orbit, potentially driving their targeting of orbital

antigens in TAO. It enhances monocyte differentiation into

macrophages at the expense of dendritic cell development [48].

IL-4 synthesis is upregulated by IL-6 at the transcriptional level

through a mechanism involving the activation of NFAT. On the

other hand, IL-6 abrogates the signaling activities of interferon-c
by up-regulating suppressor of cytokine signaling-1. STAT3

activation is required for the suppression by IL-6 of LPS-

dependent cell maturation. IL-6 also induces through STAT3

the Ifi202 gene and p202 protein in mouse splenocytes [49]. These

Figure 9. PGE2 enhances DNA binding of pCREB preferentially
in orbital fibroblasts. Eighty percent confluent cultures were serum
starved for 20 h and then treated with PGE2 (1 mM) for 16 h. Nuclear
extracts (5 mg) were subjected to the TransAM ELISA for detecting
pCREB/DNA complexes as determined at 450 nm. Data are expressed as
the mean 6 SD of triplicate independent determinations from a single
orbital and dermal fibroblast strain. They were representative of results
from 3 strains of each which demonstrated 2.1 fold greater pCREB
binding in orbital versus dermal strains.
doi:10.1371/journal.pone.0015296.g009

Figure 8. Divergent CBP/pCREB complex formation and its
importance to PGE2-dependent IL-6 expression in orbital
fibroblasts. A: Pull-down studies demonstrating CBP/pCREB protein-
protein interactions provoked by PGE2. Representative Western blot
demonstrates pCREB protein (arrow) in nuclear extracts from one
dermal and one orbital fibroblasts (input), or following immunoprecip-
itation with either anti-CBP antibody (IP-CBP) or a control antibody
(control). B: Western blot demonstrating CBP protein (arrow) in nuclear
extract (input) or following immunoprecipitation with anti-pCREB
antibody (IP-pCREB) or a control antibody (control). C: CBP knocked
down by siRNA results in diminished nuclear pCREB recruitment. pCREB
protein (arrow) in orbital fibroblast nuclear extracts (input) or following
immunoprecipitation with anti-CBP antibody (IP-CBP) in fibroblasts
transfected with CBP siRNA for 72 hr. and treated with nothing or PGE2

for 20 min. Note the absence of detectable pCREB in the immunopre-
cipitate. D: CBP knockdown reduced PGE2-induced IL-6 protein.
Cultures were transfected with either CBP siRNA or control siRNA and
treated with nothing or PGE2 (1 mM) for 16 h. Media were collected and

subjected to ELISA for IL-6. Data are expressed as the mean 6 SD of
three independent determinations. These results were confirmed in two
other orbital fibroblast strains where IL-6 production was reduced 1.2
fold by CBP siRNA.
doi:10.1371/journal.pone.0015296.g008

PGE2 Regulates IL-6 Expression
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findings are proximately relevant to those reported here regarding

TAO because Ifi202 represents a candidate susceptibility gene for

other autoimmune diseases such as lupus erythematosus. High-

level IL-6 expression in orbital fibroblasts suggests that it might

influence inflammatory responses relevant to autoimmune disease

affecting the tissues surrounding the eye. Thus, PGE2-dependent

IL-6 production in TAO might prove an important therapeutic

target.

Materials and Methods

Synthetic oligonucleotides were produced by Retrogen (Carls-

bad, CA). PGE2, 8-bromo-Sp-cAMP, LY 294002, JNK inhibitor

II, H89, and the cAMP immunoassay kit were obtained from

Calbiochem/EMD Biosciences (Gibbstown, NJ). Butaprost,

AH6809, and GW627368X came from Cayman Chemical (Ann

Arbor, MI). Anti-phospho CREB Abs were from Millipore

(Temecula, CA), and those against CREB and EP2 came from

Cell Signaling (Boston, MA) and Abcam (Cambridge, MA),

respectively. CBP siRNA was from Santa Cruz (Santa Cruz, CA)

and CREB siRNA was from Dharmacon (Lafayette, CO). An

ELISA kit for human IL-6 was from R & D Systems (Minneapolis,

MN).

Cell culture
Orbital fibroblast cultures were initiated as previously described

[27] from tissue explants obtained during decompression surgery

for severe TAO or from normal orbital tissues. Dermal fibroblasts

were obtained from normal appearing skin or were purchased

from the American Type Tissue Collection. These activities have

been approved by the Institutional Review Board of the University

of Michigan Medical Center. Fibroblasts were grown at 37uC with

95% air, 5% CO2 in poly-L-lysine-coated culture flasks and

maintained in Dulbecco’s modified Eagle’s medium supplemented

with 2 mM glutamine, sodium pyruvate (110 mg/ml), penicillin

(100 units/ml), streptomycin (100 units/ml), 4.5% glucose and

10% fetal bovine serum (FBS). Cultures were utilized between the

fifth and seventh passage from culture initiation. Medium was

changed every three to four days.

cAMP and PGE2 assays
cAMP levels were determined in triplicate from the cell lysates

with a cAMP direct immunoassay kit (Calbiochem , San Diego,

CA) following the manufacturer’s protocol,. The sensitivity of the

assay was 0.39 pmol/ml. Cells stimulated with adenosine 39,59-

cyclic AMP, 8-Bromo-, and Sp-Isomer (Sp-cAMP), a membrane-

permeable analogue served as a positive control. For PGE2

measurements, medium was decanted and the monolayers covered

with phosphate-buffered saline in the presence of IL-1b for the

final 30 min of the incubation. PBS was collected, clarified by

centrifugation, and subjected to PGE2 EIA kit (Cayman, Ann

Arbor, MI).

Quantification of IL-6 mRNA
Total cellular RNA was isolated from cells using the RNeasy

lipid tissue mini kit (Qiagen, Valencia, CA) following manufac-

turer’s protocol. 2 units of Dnase I was treated per ,10 mg of

RNA in a 25-100 mL reaction. cDNAs were generated by reverse

transcription of RNA using oligo(dT) and SuperScript III reverse

transcriptase (Invitrogen Inc., Carlsbad, CA). Real-time RT-PCR

was performed using cDNA preparations as templates and iQ

SYBR Green Supermix (Bio-Rad, Hercules, CA) containing real-

time PCR buffer, (iTaq DNA polymerase, dNTPs, SYBRGreen I,

fluorescein). Primers used amplified a 645 bp DNA fragment

were: forward, 5’-CAGGAGCCCAGTATAACT-3’; reverse, 5’-

GAATGCCCATGCTACATTT-3’ of the human IL-6 gene

sequence (GenBank no. NG_011640). Quantitative RT-PCR

was performed in triplicate with glyceraldehyde-3-phosphate

dehydrogenase serving as the internal control on the CFX96

Real-Time PCR system (Bio-Rad). Amplification conditions

consisted of initial 12-min activation at 95uC followed by 40

cycles of denaturation at 95uC for 30 s, annealing at 58uC for 30 s

and extension at 72uC for 30 s. Relative quantification of the PCR

amplification products was performed using the comparative

critical threshold (CT) method. The Ct value from GAPDH served

as an internal control for normalization.

Transient transfections and reporter activity assays
An 1171 bp fragment, spanning –1168 to +3 nt of the human

IL-6 gene promoter was described previously [25] (GenBank

no. NG_011640) and cloned into pGL2-basic (Promega Inc.

Madison, WI). Transient transfection of this and control constructs

into fibroblasts was achieved using Effectene reagent (Qiagen,

Valencia, CA) according to the manufacturer’s protocol. Briefly,

2 mg of IL-6-luciferase DNA construct was transfected. Luciferase

activity was measured after 48 h by the dual assay system

(Promega Inc., Madison, WI). To assess transfection efficiency,

0.25 mg of pRL-TK plasmid DNA thymidine kinase promoter-

driven Renilla luciferase (Promega, Madison, WI) was co-

transfected with the constructs. Following cell lysis, luciferase

reporter activity was assessed in 20 ml of cell extract which was

mixed with 100 ml of the luciferase assay reagent, and firefly

luciferase activity measured as light output (10 s) in a luminometer

(Berthold Detection Systems, Huntsville, Al). The IL-6 promoter-

driven luciferase enzyme activity was expressed as a ratio to the

corresponding pRL-TK activity per unit of cellular protein.

To knock-down CREB, siRNA targeting human CREB and a

control scrambled siRNA (-ve siRNA) obtained from Dharmacon

(Lafayette, CO) at a concentration of 100 nM using RNAi as the

transfection reagent (Qiagen, Valencia, CA). Following incuba-

tions, cell lysates (15 mg protein) were subjected to Western blot

analysis. Transfection efficiency was monitored by Western blot

analysis.

Western blot analysis
Cellular proteins were solubilized in ice-cold harvest buffer

containing 0.5% Nonidet P-40, 50 mM Tris-HCl (pH 8.0), and

10 mM PMSF following the treatments indicated. Cell lysates were

taken up in Laemmli buffer and subjected to SDS-PAGE, and

separated proteins were transferred to Immobilon membrane

(Millipore). These were incubated with primary mAbs overnight at

4uC, washed and re-incubated with secondary peroxidase-labeled

Abs. The ECL (Amersham Biosciences) chemiluminescence

system was used to generate signals. Densitometric analysis of

digitized images was performed with Image J software (NIH,

Bethesda, Maryland) and band intensity normalized to that of the

corresponding b-actin band.

Quantification of IL-6 production
Confluent fibroblast monolayers in 24-well plates were shifted to

medium without or with PGE2 (unless stated otherwise, at a

concentration of 1 mM) or IL-1b (10 ng/ml) alone or in

combination with other test compounds. In some studies, cells

were serum-starved for 20 hrs and were then treated with H89

(10 mM), SB203580 (10 mM), PD98059 (10 mM), or Sp-cAMP

(1 mM) for 16 hrs. Following incubations, aliquots of medium

were collected and subjected to a specific ELISA for IL-6. Samples

were assayed in triplicate using a standard curve.
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Flow cytometry
Techniques used in these studies have been published previously

[28]. Briefly, 16106 cells were placed in 12675-mm polypropyl-

ene tubes and fluorochrome-conjugated mAbs were added (1 mg/

106 cells). These were then incubated in the dark for 20 min at

room temperature. Cells were washed twice with staining buffer,

re-suspended in Cytofix (BD Biosciences), and kept in the dark at

4uC. Within 24 h, analysis was performed on a FACSCalibur flow

cytometer (BD Biosciences). Mean fluorescent intensity (MFI) was

calculated as a ratio of mean fluorescence sample/isotype

fluorescence. To quantify binding sites represented by fluorescence

signals, 50 ml of Quantum Simply Cellular Microbeads (Sigma-

Aldrich) were incubated with 10 ml of anti-EP2 or isotype Ab for

30 min at room temperature. The bead standards consisted of four

populations of microbeads coated with anti-rabbit Ab. Each binds

a different number of mouse IgG mAb molecules (4,063, 14,354,

54,401, and 203,303 molecule-binding capacity). After Ab

addition, beads were washed three times with staining buffer.

Flow cytometric analysis was performed using the same settings as

for cell analysis. A histogram of green fluorescence (FL1) was

produced for the beads and the mean fluorescence channel

number for each peak was taken. A best-fit curve was drawn to

relate linear channel number to logarithmic binding capacity

(molecules) from which values for the EP2 and isotype controls

could be read. These were corrected for auto-fluorescence and

nonspecific binding (QuickCal; QSC calibration software). To

calibrate the fluorescence scale of the flow cytometer, we

determined the Ab-binding capacity (ABC) which represents the

number of Ab molecules bound on each cell or microbead.

Co-immunoprecipitation of nuclear proteins
Nuclear proteins were isolated using the NE-PER extraction kit

(Pierce Biotechnology, Rockford, IL). 100 mg of nuclear protein

was pre-cleared with 40 ml of 50% Protein A-agarose slurry (1:1

dilution) (Pierce) in lysis buffer containing 25 mM Tris (pH 8.0),

100 mM NaCl, 10% glycerol, Nonidet P-40, 1.5 mM MgCl2,

1 mM DTT, 1 mM PMSF, 20 mg/ml leupeptin, and 1 mg/ml

pepstatin A. All procedures were carried out on ice unless stated

otherwise. Samples were centrifuged and 10 ml of anti-CBP

antibody was incubated overnight with gentle agitation. Fifty ml

of the protein A-agarose slurry (1:1 dilution) was added and

incubated for 2 h. Protein A-agarose beads were washed in lysis

buffer and then boiled in SDS sample buffer with 100 mM DTT.

Proteins were separated on 4–15% SDS/PAGE gels and

processed for Western blotting. Membranes were probed with

1:1000 dilution of the appropriate antibodies.

Nuclear pCREB binding to DNA
Nuclear proteins from dermal and Graves’ orbital fibroblasts

were isolated using the NE-PER extraction kit (Pierce Biotech-

nology, Rockford, IL). 10 mg of nuclear extracts were used in

TransAM pCREB ELISA kit to assess the DNA-bindability of

pCREB that are present in the nuclear extracts using protein

binding CRE consensus DNA sequence and antibody targeted at

pCREB. Specificity of the DNA-bindability was validated by using

mutant DNA sequence. The TransAMTM transcription assay kit

(Active Motif, Carlsbad,CA) was used following the manufactur-

er’s protocol.

Data Analysis
All data are presented as mean 6 S.D. Differences between two

groups were determined by the Student’s t test and significance

was achieved at p,0.05.
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