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Abstract

Gene Ontology (GO) classification of statistically significantly differentially expressed genes

is commonly used to interpret transcriptomics data as a part of functional genomic analysis.

In this approach, all significantly expressed genes contribute equally to the final GO classifi-

cation regardless of their actual expression levels. Gene expression levels can significantly

affect protein production and hence should be reflected in GO term enrichment. Genes with

low expression levels can also participate in GO term enrichment through cumulative

effects. In this report, we have introduced a new GO enrichment method that is suitable for

multiple samples and time series experiments that uses a statistical outlier test to detect GO

categories with special patterns of variation that can potentially identify candidate biological

mechanisms. To demonstrate the value of our approach, we have performed two case stud-

ies. Whole transcriptome expression profiles of Salmonella enteritidis and Alzheimer’s dis-

ease (AD) were analysed in order to determine GO term enrichment across the entire

transcriptome instead of a subset of differentially expressed genes used in traditional GO

analysis. Our result highlights the key role of inflammation related functional groups in AD

pathology as granulocyte colony-stimulating factor receptor binding, neuromedin U binding,

and interleukin were remarkably upregulated in AD brain when all using all of the gene

expression data in the transcriptome. Mitochondrial components and the molybdopterin

synthase complex were identified as potential key cellular components involved in AD

pathology.
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Introduction

Classifying genes into distinct functional groups through Gene Ontology (GO) is a commonly

used and powerful tool for understanding functional genomics and the underlying molecular

pathways. The functional genomic changes in bacterial pathogens during disease progression

or in emerging highly pathogenic strains are poorly understood.

GO analysis commonly begins with enrichment carried out on a short list of genes with sta-

tistically significant differential expression [1–3]. In this method, GO term frequencies in the

differentially expressed list of genes are compared to a background control, either GO term

frequencies of the whole genome, or another list of genes.

This comparison is usually performed using a one sided Fisher-Exact test or a Hypergeo-

metric distribution. This method is called over-representation analysis (ORA) and is imple-

mented nearly in all current GO analysis tools [3–6].

Using routine GO analysis considers all selected genes contribute equally in the final GO

classification. The major limitation to the approach is that the original levels of gene expression

can significantly affect protein production and consequently actual GO term enrichment. In

addition, genes with low or non-differentially expressed values can participate in final GO

enrichment through cumulative effects.

The second limitation of traditional ORA analysis is that it can compare just two samples at

a time, but in many situations we need to compare GO enrichments of more than two samples.

For example, comparing multiple treatment samples to a control sample, comparing time

series of samples from the same tissue and the same species. All of these multi-sample compar-

isons can help us to better understand causative and conserved biological pathways.

To be able to compare GO enrichments of multiple samples we need a robust statistical

framework. To our knowledge, Gene Set Enrichment Analysis (GSEA) [7] is the only well

described enrichment method that can be applied to multiple samples. This method and its

derivatives has been implemented and tested extensively [7–9]. In this method, expression

dataset D with N genes and K samples and their phenotype values/classes are given as input

data. Given a set of genes S defined as prior biological knowledge, this method can detect if

gene set S is significantly enriched by the input data. In this method, first correlation between

each gene and phenotype classes is estimated, then genes are sorted based on the absolute val-

ues of the correlations. A cumulative statistic similar to Kolmogorov-Smirnov is calculated for

gene set S as the enrichment score. If the enrichment score is higher than a given threshold,

gene set S can then be considered as belonging to a significant pathway. The method can be

useful for some applications, but it has some limitations in comparative analysis.

The first limitation is that the method depends on a measurable phenotypic value for each

sample in order to better estimate correlations and sort the genes. In many applications, the

expression profiles of multiple samples have no measurable phenotype, similar to the case

studies we described in this study.

Furthermore, GSEA merges expression profiles of K samples into one single sorted gene

list. Merging samples eliminate the ability to account for the dynamics and variation pattern of

expression profiles across samples. As a result, changing the order of the samples produces the

same final sorted gene list. But in many biological studies, especially in time series studies,

changing the order of samples can result in different biological interpretations, hence merging

is problematic. Availability of Gene Set databases provided by Molecular Signature Database

(MSigDB) for all species is another limitation for GSEA analysis. To date, MSigDB only con-

tains gene sets for Danio rerio, Homo sapiens, Macac mulatta, Mus muculus and Rattus
norvegicus.

Application of global transcriptome data in Gene Ontology enrichment
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In order to overcome the limitations of GSEA, we developed an approach to estimate and

visualise multiple samples’ GO enrichments using their mRNA levels. Our method uses a met-

ric that can identify the most significant biological process(es) or molecular function(s) in a

multi sample experiment. We have also developed flexible reports to visualise variation of GO

terms across multiple samples.

In this study we show for the first time how mRNA expression levels in bacteria and human

can be used to better estimate GO term enrichments. By using mRNA expression levels as

coefficients, we are able to consider the impact of low expression level and non-differentially

expressed genes such as transcription factors in GO enrichment which are normally discarded

in analysis. Furthermore, our approach provides the opportunity to enrich GO terms from the

entire transcriptome genome (instead of samples of a short list of genes) and enables us to

compare GO enrichments of entire transcriptomes across multiple biological samples.

We implemented the new enrichment method and visual reports on a web server accessible

at http://www.comparativego.com. We have used the latest web and database technology

(PHP and PostgreSQL) to implement the methods. We are committed to updating the web

server database every 12 months. The web server has been tested extensively by different

groups from University of Adelaide and worldwide. We recently added support for GO infor-

mation related to selected eukaryotes including human, zebra fish and yeast.

Bacteria are attractive organisms for GO analysis since they have less post-transcriptional

gene silencing compared to animals and plants [10] with mRNA expression levels moderately

correlated with protein levels [11]. As the first case study, we applied the new enrichment

method to whole transcriptome expression profiling to compare low and high pathogenic

strains of one important bacterial pathogen, Salmonella enteritidis [12]. The analysis revealed a

high level of bacterial-type flagellum-dependent cell motility in the highly pathogenic strain.

This mechanism has been well described in E. coli, but was not reported in the original work

on S. enteritidis [12].

As a eukaryotic case study, we employed whole transcriptome GO analysis to profile Alz-

heimer’s Disease (AD) pathology. AD, as the leading cause of dementia, is a major concern

worldwide with more than 35 million people affected [13]. There is still no effective treatment

available and all therapeutic drugs have failed to show efficacy at the clinical level for individu-

als with AD symptoms [13]. Whole transcriptome GO analysis that takes into account gene

expression levels helped us to develop a novel hypothesis for the molecular mechanisms of

AD. We also performed GSEA analysis on this case study dataset and compared its result to

our method.

Materials and methods

Incorporation of mRNA expression levels into GO enrichment

Given N genes (g1. . .gn) in K samples, we estimate the enrichment score (ES) of a GO term t in

sample s ESt,s, when expression levels are given as RPKM (Reads per Kilo base per Million

Reads)/FPKM (Fragments per Kilo base per Million Reads):

ESt;s ¼
Xn

i¼1

log
2
½eði; sÞ þ 1� � Iði; tÞ ð1:1Þ

or as microarray log fold change:

ESt;s ¼
Xn

i¼1

log
2
ð2eði;sÞ þ 1Þ ð1:2Þ
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Where e(i,s) is the expression level of gene gi in sample s and I(i,t) is:

Iði; tÞ ¼ f
1; if gi annotated by GO term ðtÞ

0; otherwise

We then define an intermediate value for fold change (F) of GO term t from sample s to

sample s+1 (Ft,s):

ESt;sþ1=ESt;s ð2Þ

Finally, the average fold change of GO term t across all samples is defined as:

Ft ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yk� 1

s¼1
Ft;s

k� 1

r

ð3:1Þ

or log transformed as:

Ft ¼
1

k � 1

Xk� 1

s¼1

log
2
Ft;s ð3:2Þ

In general, the most significant GO term associated with an observed expression profile is the

one with significantly higher/lower average fold change. It can be identified by an outlier test

such as the Grubbs outlier test [14].

GO enrichment is initially estimated at the last (most detailed) level of the GO tree. If there

is no significant GO term detected at this level, higher levels (more general levels) of the GO

tree are recursively searched until either a significantly represented GO term is found or the

highest level of the tree is reached.

Average fold change Ft is sensitive to the order of samples. For example, if we reorder two

samples different intermediate fold change values will occur (eq 2). Consequently, the average

fold change Ft will change (eq 3).

We also report specific patterns such as GO terms with consistently increasing or decreas-

ing enrichment score between every two consecutive samples:

8s 2 ½1::kÞ; ESt;s � ESt;sþ1

GO enrichment proportions versus GO enrichment scores

In sample s, the ratio of the enrichment score of GO term t to the total of enrichment scores of

all GO terms (t1. . ..tm) can be considered as the GO enrichment proportion (EP) of the GO

term:

EPt;s ¼
ESt;s

Xm

i¼1

ESti ;s

)
Xm

i¼1

EPti ;s
¼ 1

GO enrichment proportions are displayed as pie charts on our webserver.

Hypothesis testing tool

Although average fold change and other patterns described in the previous section can detect

some patterns in individual GO terms, they cannot tell us whether overall GO term enrich-

ment has significantly changed between two samples. We therefore implemented an integrated
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tool on the web server to test the hypothesis of a significant difference between 2 genome/sam-

ple GO term enrichment distributions. Specifically, we implemented a Chi-Square test for 2

samples in R [15] and we compared it with the Kolmogorov–Smirnov test [16] for 2 samples.

Both tests are non-parametric and are suitable for comparing 2 lists of paired numbers like

GO term enrichment scores/proportions between 2 samples.

In order to use these tests, samples were binned based on GO terms (one GO term was

treated as one bin), and for each bin, the enrichment score of related GO terms were consid-

ered as the count for that bin.

Web application

Methods and algorithms were implemented in our web application [17] using PHP 5 and a

PostgreSQL database, running on an Apache webserver in a Linux Fedora environment.

Case study data sets

To demonstrate the biological application of these new methods in global transcriptome GO

analysis, expression profiles from two published experiments were used.

The first case study [12] was RNA-Seq global transcriptome data from six strains of Salmo-
nella enteritidis, where 3 highly pathogenic strains and 3 low pathogenic strains were com-

pared. The average whole genome expression (RPKM) of 4402 genes of the 3 low pathogenic

strains and 3 highly pathogenic strains are presented in S1 File.

For the second case study, whole transcriptome (RNA-Seq) data of AD and normal brains

were obtained from Twine et al., 2011 [18]. The RNA was obtained from post-mortem total

brains of human normal and AD brains (ID at DNA Data Bank of Japan: SRP004879). The

RNA-Seq data was analysed using CLC Genomics workbench (QIAGEN, Finland). Mapping

was performed using the following parameter values: mismatch cost: 2, insertion cost: 3, dele-

tion cost: 3, length fraction: 0.8, and similarity fraction: 0.8. RPKM, as expression value, was

calculated for 57,773 genes based on the Homo sapiens (hg19) reference genome in AD and

normal brains. In AD brain samples, 14,720,798 short reads were analysed; 99.98% of the reads

were mapped to the reference genome (68.88% to exons and 31.12% to introns). In normal

samples, 13,440,858 reads were analysed; 100% of reads were mapped to reference genome

(79.27% to exons and 20.73% to introns). Results are presented in S2 File.

To compare the result of our method to GSEA, we used Broad Institute Java application

(http://www.broadinstitute.org/gsea). Different parameter sets were tried and following

parameters achieved the best result: Permutation Type: Gene Set; Enrichment Statistics; Clas-

sic, Metric for Ranking Genes; Ratio of Classes.

Results

Introduction of mRNA expression levels into GO analysis

Combining expression profile data with GO term enrichment provided the opportunity to (a)

quantify more accurate GO enrichments, (b) extend analysis coverage from sample-wide to

genome-wide, and (c) compare GO enrichments of the same list of genes in multiple biological

conditions. By considering the influences of all expressed genes in functional genomics, even

those with low levels of expression, we increased the accuracy of GO term analysis.

We have also demonstrated that through the use of an outlier test, we can detect GO terms

with extreme variation patterns between samples, indicating possible association with the

underlying pathway.

Application of global transcriptome data in Gene Ontology enrichment
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Web application enhancement

Because of the additional computational expense associated with the analysis of the GO distri-

bution of all expressed genes within a genome (global transcriptomics), significant memory

and processing resources were required by the Apache web server. To enhance performance

and husband system resources we implemented file based caching technology to cache the

whole genome GO graphs. When a GO graph is built for the first time, subsequent references

to that GO graph, even by other users, are instantaneous. For a better user experience in web

applications where long running tasks were performed, we used Ajax technology to implement

real time progress bars.

Case studies

Case study 1: Comparison of whole transcriptome based GO enrichment between mini-

mally and highly pathogenic Salmonella enteritidis. We used RNA-Seq data for six Salmo-
nella enteritidis [12] strains. For each gene in both groups of strains the RPKM counts were

averaged.

After submission of both gene lists to the web server, whole transcriptome GO enrichment

analysis followed by outlier test was performed (enrichment values and outlier test result is

shown in Fig 1). In both Biological Process (BP) and Cellular Component (CC), GOs related

to bacterial-type flagellum-dependent cell motility (governed by genes such as flgB and flgC)

were the major differentiating functions between high and low pathogenicity S. enteritidis.
Flagellated bacteria such as Salmonella and E. coli are more mobile and can swim faster. The

reversible rotary motor, powered by an ion flux [19], is a significant advantage for bacteria as it

provides a tool to rapidly respond to environmental signals and escaping harsh conditions and

antibiotics. Interestingly, the GO of “regulation of bacterial-type flagellum-dependent cell

motility by regulation of motor speed” (GO ID: 71945, governed by ycgR gene) was up-regu-

lated 5.5 fold.

Chemotaxis is another biological process associated with highly pathogenic S. enteritidis
that was upregulated by more than 5 fold. Genes such as cheA, cheB, cheW, and cheZ are cen-

tral in chemotaxis.

In terms of molecular function, highly pathogenic S. enteritidis increase protein-glutamate

methylesterase by 8 fold. Protein-glutamate methylesterase is a molecular function in a two-

component regulatory system and is regulated by CheA and CheB. It has been reported that

upregulation of protein-glutamate methylesterase and CheB significantly contribute in increas-

ing swimming motility and flagella synthesis in E. coli [20]. Genetic elements involved in

motility are associated with pathogenicity [21]. In addition, it has been demonstrated that

these mobile genetic elements (transposons, integrons) increase virulence in animal models as

well as colonisation success [21].

Case study 2: Comparison of whole transcriptome based GO enrichment between AD

and normal human brain. The results of whole transcriptome GO classification followed by

outlier testing in AD and normal brains in Biological Process, Molecular Function and Cellular

Component are presented in Fig 2. The most significant functions in AD were inflammation

and fatty acid related functions including granulocyte colony-stimulating factor receptor bind-

ing, interleukin-1, alcohol dehydrogenase, neuromedin U receptor activity, and norepineph-

rine transmembrane transporter activity.

Log2 fold change upregulation of granulocyte colony-stimulating factor receptor binding of

AD compared to normal condition is 3.59 (in Molecular Function term). CSF3 (Colony-stimu-

lating factor-3) is the key member of this functional group. Interleukin-1, Type I receptor

Application of global transcriptome data in Gene Ontology enrichment
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Fig 1. Webserver screenshot from outlier test performed on whole transcriptome of low and high

pathogenicity of Salmonella enteritidis. (A) Biological Process (B) Molecular Function (C) Cellular

Component.

doi:10.1371/journal.pone.0170486.g001

Application of global transcriptome data in Gene Ontology enrichment

PLOS ONE | DOI:10.1371/journal.pone.0170486 February 15, 2017 7 / 14



Fig 2. Webserver screenshot from outlier test performed on whole transcriptome of normal and

Alzheimer’s disease of human samples. (A) Biological Process (B) Molecular Function (C) Cellular

Component.

doi:10.1371/journal.pone.0170486.g002
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binding was another inflammation upregulated function which is highly enriched in AD brain

(log2 fold change = 2.59, central gene = IL1RN).

Cellular components such as the IgA immunoglobulin complex (IGHA1, IGHA2, and IGJ)
endoplasmic reticulum membrane (DHRS7C, RHO), vesicle lumen (APOB), and mitochon-

drial segments (mainly governed by Bcl3) were clearly upregulated in AD which highlight the

involvement of mitochondria, endoplasmic reticulum, and vesicle formation in AD. Com-

plexes such as Bcl3/NF-kappaB2 complex (governed by BCL3 and NFKB2), vacuolar lumen

(governed by CLN5), IPAF inflammasome complex (CASP1, CASP4, NLRC4) help to under-

stand the involvement of inflammation and vascular disorder in AD.

GSEA analysis was performed for whole genome of normal and AD samples using tools

and parameter set explained in Material and Method. Significant Molecular Functions and

Biological Process in AD phenotype are shown in Figs 3 and 4 respectively.

Full result of GSEA is available in S3 File.

Interestingly, molecular functions related to olfactory and sensory receptors stood out in

GSEA analysis. There are numerous publications that identified olfactory deficit as early

marker of AD at clinical level [22, 23]. At pathological level, several studies [24, 25] have also

shown abnormal cellular pattern of the entorhinal cortex and olfactory neurons that disrupt

memory function.

Discussion

In this study we showed for the first time how mRNA expression levels in bacteria and human

could be used to estimate GO term enrichments. By using mRNA expression levels as coeffi-

cients, we were able to include the impact of non-significantly expressed genes in GO enrich-

ment. Furthermore, our approach provided the opportunity to enrich GO terms at the entire

transcriptome level (rather than a subset of genes) across multiple biological conditions. The

outlier test also detected significant patterns in the data.

Fig 3. Snapshot of GSEA enrichment result related to molecular function detected in AD.

doi:10.1371/journal.pone.0170486.g003
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Unlike a previous GSEA method [7], our method is independent of phenotypic data and

also reflects the order of samples and is potentially more appropriate for time series experi-

ments such as human degenerative disease or bacterial pathogenesis progress where the condi-

tion of a patient/host changes over time. In addition, availability of our method for a much

wider range of organisms is another advantage to GSEA that is just available for limited model

organisms.

In contrast to other web servers [3, 5], our web server provides interactive visual navigation

along the hierarchical structure of GO graphs at all levels of the graph. Furthermore, our web

server provides dynamic visual reports (using AJAX technology) including pie charts (to visu-

alize GO enrichment proportions) and bar charts (to visualize over-representation analysis),

whereas other web servers present this information in text format or rely on visualization

capacity provided by other websites including The European Bioinformatics Institute at http://

www.ebi.ac.uk/.

The most significant analytical advantage provided by our web server is the ability to enrich

and compare GO terms between multiple gene samples from multiple biological conditions.

At present, other web servers [3, 5] can only compare one sample against a control sample.

Comparative GO analysis is important as a means to identify underlying biological pathways

involved in response to different biological conditions. This is essential if one wishes to identify

candidate genes for perturbation experiments.

From a technical point of view, special caching, connection pooling and database query

planning and optimization techniques were employed to make the webserver capable of

accepting very large lists of genes such as the entire human transcriptome.

We demonstrated the efficiency of our proposed method in prokaryote and eukaryote case

studies.

Fig 4. Snapshot of GSEA enrichment result related to biological process detected in AD.

doi:10.1371/journal.pone.0170486.g004
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In the case of AD samples, the outlier test revealed upregulation of inflammation related

function in AD brain such as granulocyte colony-stimulating factor receptor binding (gov-

erned by CSF3). CSF genes are pro-inflammatory cytokines which are expressed in brain

and nervous system disorders and are involved in immunity and inflammation by regulating

survival and proliferation. CSF proteins can pass through the blood–brain barrier and influ-

ence nervous system activities such as axonal regeneration [26, 27]. CSF3 can transit between

blood and brain and it shows a remarkable increase of its function in AD brain, so we

hypothesise that CSF3 might be tested as a blood based marker of AD in future studies.

Another upregulated functional group was Interleukin-1 (IL-1), a pro-inflammatory cyto-

kine that activates many inflammatory processes with important functions in brain neu-

roimmune responses. IL-1 has been evaluated as a target for therapeutic strategies using

Interleukin-1 receptor antagonists in stroke and neural disorders [28–30]. It has also been

reported that soluble interleukin-1 receptor increases in the cerebrospinal fluid of AD

patients [31]. Interleukin-1 expression in brain can activate caspase-1 and apoptosis. The

brain specific mechanisms of action of Interleukin-1 are not yet fully characterised, but may

affect glia, endothelia, and neurons [28–30]. Whole transcriptome Gene Ontology based

analysis in this study reinforces the hypothesis that inflammatory process are part of the

neuropathology in AD. Overall, in comparison to GSEA analysis results that only

highlighted already described secondary sensory effects, our method had the ability to intro-

duce new mechanism and new target genes for AD.

Whole transriptome GO comparison of highly pathogenic Salmonella enteritidis compared

to low pathogenic S. enteritidis highlighted the key roles of bacterial-type flagellum-dependent

cell motility and chemotaxis in highly pathogenic Salmonella. Chemotaxis is biological process

dependent on signal transduction and phosphorylation. We speculate that up regulating GO

“Signal transduction by phosphorylation” may allow Salmonella enteritidis to more rapidly

sense environmental changes and activate more genes through increased phosphorylation

activity. It has been documented that chemotaxis is central for virulence and competitive fit-

ness of Ralstonia solanacearum [32]. Ralstonia solanacearum has a remarkable capability for

invading host plant roots from the soil to get amino acids and organic acids [32].

Motility has been identified as key virulence factor in bacteria as many bacteria use fla-

gella to move and cause diseases in humans, animals and plants [33]. In line with our find-

ing on the key roles of flagellum and motility in S. enteritidis pathogenicity, it has been

demonstrated in E. coli that mobile genetic elements and flagellum motility are molecular

mechanisms which contribute in increasing E. coli pathogenicity to generate a highly

adapted pathogen capable of causing a range of diseases in the central nervous system, the

gastrointestinal tract, the urinary tract, and blood [34]. Regarding the key roles of flagellum

filaments and flagellum-dependent cell motility in bacterial pathogenicity, bacterial genes

encoding filament components have been used for vaccine development and therapeutic

interventions [35]. Fli genes in S. typhimurium, Bacillus subtils and E. coli are the major loci

in flagellum biogenesis [36]. Flagellum and motility are also central for invasion of fish

hosts by Vibrio anguillarum as disruption of the flagellum and loss of motility decreased vir-

ulence by 500-fold [37].

We have used our method with mRNA values, but it can also be used with protein values.

Using protein abundance would yield even more accurate GO enrichment scores.

The new global transcriptomics, multi-sample GO enrichment methods presented in this

report and implemented in the Comparative GO Web application [17] can significantly help

to develop new hypotheses for further experiments. The method has the potential to improve

bacterial regulatory mechanisms and eukaryotic functional genomics.
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Supporting information

S1 File. Whole transcriptome expression levels (RPKM) of low and high pathogenic Salmo-
nella enteritidis.

(XLSX)

S2 File. Whole transcriptome expression levels (RPKM) of normal and Alzheimer’s disease

of human samples.

(XLSX)

S3 File. GSEA analysis result on Alzheimer’s disease of human samples.

(XLSX)
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