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Abstract

The killer immunoglobulin-like receptors (KIRs), found predominantly on the surface of natu-

ral killer (NK) cells and some T-cells, are a collection of highly polymorphic activating and

inhibitory receptors with variable specificity for class I human leukocyte antigen (HLA)

ligands. Fifteen KIR genes are inherited in haplotypes of diverse gene content across the

human population, and the repertoire of independently inherited KIR and HLA alleles is

known to alter risk for immune-mediated and infectious disease by shifting the threshold of

lymphocyte activation. We have conducted the largest disease-association study of KIR-

HLA epistasis to date, enabled by the imputation of KIR gene and HLA allele dosages from

genotype data for 12,214 healthy controls and 8,107 individuals with the HLA-B*27-associ-

ated immune-mediated arthritis, ankylosing spondylitis (AS). We identified epistatic interac-

tions between KIR genes and their ligands (at both HLA subtype and allele resolution) that

increase risk of disease, replicating analyses in a semi-independent cohort of 3,497 cases

and 14,844 controls. We further confirmed that the strong AS-association with a pathogenic

variant in the endoplasmic reticulum aminopeptidase gene ERAP1, known to alter the HLA-

B*27 presented peptidome, is not modified by carriage of the canonical HLA-B receptor

KIR3DL1/S1. Overall, our data suggests that AS risk is modified by the complement of KIRs

and HLA ligands inherited, beyond the influence of HLA-B*27 alone, which collectively alter

the proinflammatory capacity of KIR-expressing lymphocytes to contribute to disease

immunopathogenesis.
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Author summary

Cells of the immune system utilise various cell-surface receptors to differentiate between

healthy and infected or malignant cells, enabling targeted inflammatory responses while

minimising damage to self-tissue. In instances where the immune system fails to correctly

differentiate healthy from diseased tissue, or inflammatory activity is poorly regulated,

autoimmune or autoinflammatory conditions can develop. Here we have investigated a

possible role for a class of immune-cell activating and inhibitory receptors in the patho-

genesis of ankylosing spondylitis (AS), a common but poorly understood inflammatory

arthritis in which the immune system causes severe damage to the joints of the pelvis and

spine. Using genetic information from 12,214 healthy controls and 8,107 individuals with

AS we were able to identify combinations of independently inherited immune cell recep-

tors and their ligands that increase or decrease an individual’s risk of disease. This

research provides new insight into the nature of co-inherited genetic factors that may col-

lectively alter the proinflammatory capacity of immune cells, contributing to the immuno-

pathogenesis of immune-mediated diseases.

Introduction

Ankylosing spondylitis (AS) is an immune-mediated arthritis in which inflammation targeting

particularly the pelvis and spine contributes to joint erosion and reactive bone deposition. The

disease is strongly associated with inheritance of the human leukocyte antigen (HLA) class I

allele HLA-B�27 (carried by >80% of patients) [1, 2], as well as polymorphisms in the endo-

plasmic reticulum aminopeptidases (ERAP1 and ERAP2) [3–5] involved in trimming endoge-

nous peptides for HLA class I presentation. Despite a thoroughly characterised genetic

architecture, implicating >100 loci in disease pathogenesis [3–9], the immunological mecha-

nisms underlying AS are not fully understood. Of interest is the potential role of killer immu-

noglobulin-like receptors (KIRs) in disease, a diverse collection of paired signalling receptors

expressed predominantly on natural killer (NK) cells (and some T-cell subpopulations) that

exhibit variable specificity for class I HLA ligands [10–12]. Opposing inhibitory and activating

signals transduced through surface KIRs buffer the threshold of activation of KIR-expressing

cells, particularly NK cells, serving to quench or promote innate killing activity as required to

maintain immune homeostasis and control inflammatory responses. The hypervariable nature

of KIRs and their HLA ligands bestows upon the human population a large spectrum of profi-

ciencies in lymphocyte responses to activating stimuli and self-tolerance. Accordingly,

KIR-HLA co-inheritance has been associated with various immune-related phenotypes,

including infection outcome [13–15], and susceptibility to autoimmunity [16–18] and cancer

[19, 20].

Fifteen KIR genes have been identified in humans, all of which share significant sequence

homology (85–99% similarity) attributed to the duplication and progressive evolution of a

common ancestral gene [21, 22]. The KIR locus (chromosome 19q13.4) exhibits extreme copy

number variation, with genes inherited in haplotypes of diverse content that often carry dupli-

cation, deletion and hybridisation events [22, 23]. Classically, KIR haplotypes have been cate-

gorised into two groups; group A haplotypes containing the single activating receptor gene

KIR2DS4 among six inhibitory receptors, and B haplotypes carrying a variable number of both

activating and inhibitory receptor genes [24]. Stochastic expression of inherited KIRs is largely

controlled by variable promoter methylation, with the vertical transmission of methylation
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patterns enabling clonal populations of NK cells to maintain established KIR expression pat-

terns over cell divisions [25, 26]. Immense allelic polymorphism further magnifies interindi-

vidual KIR diversity, with functional consequences for receptor expression, signalling strength

and ligand affinity [27–31]. Considering both allelic and gene content diversity at the KIR
locus, it is improbable that any two unrelated individuals carry an identical complement of

KIR alleles.

Inhibitory KIRs recognise constitutively expressed HLA class I ligands on host cells. Under

homeostatic conditions, persistent suppressive signalling transduced through phosphorylation

of immunoreceptor tyrosine-based inhibitory (ITIM) motifs within the receptor cytoplasmic

domain quench innate NK cytotoxic activity, safeguarding against unchecked autoimmunity

[32]. Conversely, HLA downregulation on target cells (during viral infection or transformation

of tumour cells) facilitates NK killing in the absence of co-stimulation [33]. Despite a con-

served mode of ligand recognition [12], different inhibitory KIRs engage HLA class I subtypes

with varying affinities and exclusions, and exhibit a degree of specificity for the bound peptide

[34–37]. KIR3DL1 recognises approximately one third of HLA-B and 20% of HLA-A mole-

cules carrying the Bw4 motif (defined by amino-acids at positions 77–83 in the α1 domain)

[38, 39], the strongest inhibition conferred by HLA-Bw4 ligands with a position 80 isoleucine

(Bw4I80) [40]. KIR3DL2 recognises HLA-A�03 and A�11 [36]. KIR2DL2 and KIR2DL3 recog-

nise HLA-C molecules of the HLA-C1 subclass expressing asparagine at position 80 (Asn80),

and KIR2DL1 those of the HLA-C2 subclass (Lys80), though some KIR2LD2 cross reactivity

with HLA-C2 has been reported [41]. Conversely, the ligands for activating KIRs are poorly

defined, with these receptors exhibiting a far weaker affinity for HLA than their inhibitory

homologues [37, 42, 43]. Evidence for engagement of ligands upregulated on cancer cell lines

independent of HLA expression [44], non-classical HLA molecules expressed by proliferating

lymphoid and monocytic cells under inflammatory conditions [45, 46], and HLA-restricted

viral epitopes [47], suggests that activating KIR signalling may be most productive in instances

of cellular stress and infection. Known HLA ligands for activating and inhibitory KIRs, and

HLA subclass groupings, are listed in Table 1.

Studies across ethnic groups have reported differential KIR inheritance in AS cohorts [57–

66], for the most part consolidating disease-associations with KIR3DL1, encoding the only

known inhibitory receptor for HLA-Bw4 subclass ligands (including AS-risk subtypes

HLA-B�27:01,:02,:03,:04,:05 and: 07,), and its activating homologue and alternate allele

KIR3DS1. Underrepresentation of KIR3DL1 has been reported in HLA-B�27+ patients relative

to HLA-B�27+ controls [57, 58, 61, 64], whereas carriage of KIR3DS1 and KIR3DL1|KIR3DS1
heterozygosity has been associated with increased disease risk [57–59, 61, 64], implying a dom-

inant role for KIR3DS1 as a genetic risk factor. However, these studies have all had modest

sample sizes, the strongest associations have been suggestive only, and no study reported to

date has controlled for population stratification. These findings have also not been uniformly

replicated, with a large study of ~600 AS patients and controls from the United Kingdom

reporting no KIR associations with disease [60], and others reporting varying KIR-HLA-C co-

associations [63, 65, 66]. Disparate results may be attributed to inconsistencies in study con-

duct, sample size or ethnic background. Furthermore, KIR3DL1 is among the most polymor-

phic KIRs [67], encoding allotypes with drastically varied expression profiles (null, low and

high) [68] and strength of ligand binding [27, 29, 56] that have largely been overlooked by

genetic studies of KIR-associations with AS to date.

Beyond association studies, there is presently no functional evidence that the primary role

of canonical HLA-B�27 in AS can be ascribed to molecular interactions with activating or

inhibitory KIRs. However, non-canonical HLA-B�27 homodimers (B272) and monomeric free

HLA-B�27 heavy chains (FHCs) have been found to interact with KIR3DL1 and KIR3DL2 [69,
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70], with the KIR3DL2 receptor upregulated on CD4+ T-cell populations in spondyloarthritis

patients and shown to prompt differentiation in to pathogenic Th17 cells upon B272 ligation

[71]. Intriguingly, loss of HLA-B�27:05 recognition by KIR3DL1+ NK cells drives target cell

killing in peptide-specific contexts [34], posing the hypothesis that features of a disease-specific

peptidome may disrupt canonical inhibitory KIR interactions. In support of this, disease-asso-

ciated polymorphisms in ERAP1 alter class I peptide production and destruction and exhibit

strong genetic epistasis with HLA-B�27 [4]. Alternatively, it is plausible that the complement

of coinherited KIR and HLA alleles collectively modifies AS risk by shifting the activation

threshold of lymphocyte populations, exacerbating autoinflammation.

Understanding of the genetic contribution of KIRs to variability in immunological pheno-

types has lagged substantially behind the major histocompatibility complex. Statistical meth-

ods to accurately impute HLA alleles from single nucleotide polymorphisms (SNPs) have

revolutionised the accessibility of this locus for large scale disease-association studies. More

recently, the development of the KIR imputation technique, KIR�IMP, has enabled phased

KIR gene content haplotypes to be inferred from genotyping data alone, providing a means to

assess variable KIR inheritance in powerful study cohorts [72]. Here, we have imputed KIR
haplotypes from Immunochip genotype data available for 8,107 AS cases and 12,214 healthy

controls from the International Genetics of Ankylosing Spondylitis (IGAS) consortium [5],

Table 1. Known ligands for activating and inhibitory KIRs and subclass classification of HLA alleles.

KIR HLA Ligand Ref

INHIBITORY KIR2DL1 HLA-C2 (Lys80) [42]

KIR2DL2/3 HLA-C1 (Asn80), HLA-B�46:01, HLA-B�73:01 and some HLA-C2 (low affinity) [43, 48]

KIR2DL4a HLA-G [49]

KIR2DL5 Unknown

KIR3DL1 HLA-Bw4B (I80 > T80) including some HLA-Bw4A (A�23, A�24, A�25 and A�32) [40]

KIR3DL2 HLA-A�03, HLA-A�11 and HLA-B�27 homodimers [50–52]

KIR3DL3 Unknown

ACTIVATING KIR2DS1 HLA-C2 (Lys80) [42]

KIR2DS2 HLA-A�11, HLA-C1 (Asn80) (low affinity) [53, 54]

KIR2DS3 Unknown

KIR2DS4 HLA-A�11 and some HLA-C (C�01, C�02, C�04, C�05, C�14, C�16) [55]

KIR2DS5 Unknown

KIR3DS1 Possibly HLA-Bw4 (low affinity, peptide dependent) [47, 56]

HLA subclass Alleles

HLA-C1 HLA-C�01, C�03, C�07, C�08, C�12, C�13, C�14, C�16 and HLA-B�46:01, B�73:01

(Asparagine at position 80 in the alpha-helix; HLA-C Asn80.)

HLA-C2 HLA-C�02, C�04, C�05, C�06, C�15, C�17, C�16:02, C�18

(Lysine at position 80 in the alpha-helix; HLA-C Lys80.)

HLA-Bw4I80 HLA-B�15:13, 15:16, B�15:17, B�15:23, B�15:24, B�27:02, B�38:01, B�49, B�51, B�52, B�53, B�57, B�58, B�59,

HLA-A�23, A�24, A�25, A�32

(Bw4 is defined by an epitope at position 77–83 in the alpha1-helix)

HLA-Bw4T80 HLA-B�13, B�27:01, B�27:03, B�27:04, B�27:05, B�27:07, B�37, B�38:02, B�44, B�47

(Bw4 is defined by an epitope at position 77–83 in the alpha1-helix)

HLA-Bw6 HLA-B�07, B�08, B�14, B�15:01, B�15:02, B�15:03, B�15:05, B�15:08, B�15:09, B�15:10, B�15:14, B�15:15, B�15:18,

B�15:25, B�15:29, B�18, B�22, B�27:08, B�35, B�39, B�40, B�41, B�42, B�45, B�46, B�48, B�50, B�54, B�55, B�56,

B�60, B�61, B�62, B�64, B�65, B�67, B�70, B�71, B�72, B�73, B�75, B�76, B�78, B�81, B�82.

N.B. Some HLA alleles differ in their Bw4I80/T80/Bw6 classification at four-digit resolution.

a KIR2DL4 is expressed on endosomes and despite having a long cytoplasmic tail containing an ITIM inhibitory signalling motif it transduces activating signals upon

coupling with accessory protein FcRγ.

https://doi.org/10.1371/journal.pgen.1008906.t001
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enabling the largest KIR disease-association study conducted to date. Pairing HLA allele and

KIR dosage information we have identified disease-associated epistatic interactions between

KIR genes and their ligands (at both HLA subtype and allele resolution), replicating analyses

in a semi-independent cohort of 3,497 cases and 14,844 controls, and tested for evidence of a

three-way interaction between KIR3DL1/S1, ERAP1 and HLA-B�27 in disease. Additionally,

we have employed a PCR approach [73] in a subset of samples to distinguish six function

groups of KIR3DL1 allotypes that differ in surface expression and strength of HLA-Bw4 bind-

ing, addressing a possible role for KIR3DL1 variants in HLA-B�27+ AS.

Materials and methods

Ethics and sample acquisition

The IGAS test cohort comprised 8,107 AS cases and 12,214 healthy controls of Caucasian

decent, originally recruited by the IGAS Consortium as reported in Cortes et al. 2013 [5].

Written informed consent was obtained from all participants with research ethics approval

granted by the relevant ethics committee at each participating centre [5]. All cases had an AS

diagnosis as defined by the modified New York criteria [74]. A semi-independent replication

cohort comprised 14,844 controls sourced from the UK Biobank (UKB) public resource (proj-

ect 21024), and the subset of 3,497 IGAS AS cases recruited from the UK, also included in the

test cohort. UKB controls, aged between 40–69 years, were selected through exclusion of indi-

viduals coding as having one of the following disease states: ankylosing spondylitis (code

1313), inflammatory bowel disease (code 1461), Crohn’s disease (code 1462), ulcerative colitis

(code 1463), psoriasis (code 1453) or spine arthritis/spondylitis (code 1311); a kinship coeffi-

cient> = 0.0442 and non-Caucasian ancestry, with 20,000 of the remaining identifiers selected

by random number generation for study inclusion prior to quality control filtering as

described below and in Fig 1.

Genotyping

IGAS test cohort samples were genotyped using the Illumina Immunochip array on the Illu-

mina Infinium platform as previously described [5]. UKB replication cohort controls were

genotyped on the UKB Affymetrix Axiom array. Identity by decent was calculated using the—

genome command in PLINK [75], with exclusion of one individual from each pair with a

PI_HAT score>0.05. Principal components (PCs) for ethnicity confirmation and population

stratification correction were calculated for test and replication cohorts independently based on

20,783 and 12,485 autosomal SNPs respectively outside of long-range LD regions [76]. Homo-

geneity of ethnic background was confirmed by visualisation of the first two PCs with exclusion

of individuals falling beyond plus or minus three standard deviations from the mean of the

European sample cluster. PCs were recalculated for the filtered European test and replication

cohorts (S1 Fig shows stratification of the European cluster along the first two principal compo-

nents) and the first ten principal components fitted as covariates in all regression models.

KIR imputation

The KIR�IMP software [72] utilises 301 phased Immunochip SNP genotypes across the KIR
locus (Chr19: 59,793,991–60,190,556, Hg18) to impute gene dosages across 14 KIR loci

(KIR2DP1, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 3DP1, 3DL1,

3DS1) against a UK reference panel of 479 KIR haplotypes. Framework genes KIR3DL2 and

3DL3 are present in all common haplotypes and thus were not imputed or tested for disease

associations in this study. KIR3DL1 and KIR3DS1 (KIR3DL1/S1), and KIR2DL2 and KIR2DL3
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(KIR2DL2/3) are largely considered alleles of the same gene. Prior to imputation, for the IGAS

test cohort only, genotype clustering across all 301 KIR locus SNPs was manually checked and

adjusted (if necessary) using raw bead intensity files read into the Illumina GenomeStudio

software. SNP genotypes that could not be unambiguously clustered were excluded, with 271/

301 available SNPs remaining. Individuals with a call rate below 95% across the retained SNP

set were removed. SNPs positions were converted to Hg19 build and genotypes phased using

SHAPEIT [77]. Phased haplotype and sample files were passed to the online KIR�IMP server

[72] for imputation, returning gene dosage calls (in the form of 0 or 1 count per chromosome,

2 in the case of gene duplication) and posterior probabilities for dosage calls. Raw bead inten-

sity files were not available for reclustering of UKB replication cohort control samples and

only 220 of the 301 KIR locus SNPs typed by the Immunochip were also accurately genotyped

by the Affymetrix Axiom array. To increase SNP overlap with the KIR�IMP UK reference

panel, the Sanger Imputation Server [78] was used to impute KIR locus genotypes for UKB

controls against the Haplotype Reference Consortium (HRC) reference panel [78], increasing

Fig 1. Diagrammatic representation of study cohort inclusion and exclusion criteria. 10,619 AS cases and 15,145 controls genotyped on the

Illumina Immunochip and 20,000 UKB controls genotyped on the Affymetrix UKB Axiom array comprised the initial data set. KIR�IMP accepts

genotypes across 301 KIR locus SNPs incorporated into the Immunochip array as a ‘gold standard’ SNP set; UKB Axiom Array data was SNP

imputed in an attempt to increase SNP overlap with the reference set. A subset of 4,174 British IGAS AS cases from the test cohort were

incorporated into the semi-independent replication cohort. To minimise bias attributed to KIR imputation on disparate SNP sets, these

individuals had KIR dosages re-imputed using the reduced set of 250 SNPs available for UKB controls. Principal component analysis (PCA) was

used to exclude ethnic outliers and calculate PCs to correct for population stratification in statistical tests. The final test cohort comprised 8,107 AS

cases and 12,214, controls and the replication cohort 3,497 cases and 14,488 controls. AS: ankylosing spondylitis, IBD: inflammatory bowel

disease, CD: Crohn’s disease, UC: ulcerative colitis.

https://doi.org/10.1371/journal.pgen.1008906.g001
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available genotypes to 250/301 SNPs (INFO score > = 0.8) prior to KIR�IMP KIR dosage

imputation as above. To reduce potential bias attributed to imputing KIR dosages with two dif-

fering SNP sets, the IGAS UK AS cases paired with the UKB controls in the semi-independent

replication dataset were re-imputed on the reduced set of 250 KIR locus SNPs.

For both cohorts, individuals with an imputed ‘KIRhaplotype’ posterior probability score

<0.4 were excluded, largely removing those haplotypes with poor imputation of genes

KIR2DP1, KIR2DL1, KIR2DL5 or KIR2DS3, which were the least well typed from available

genotype data by the KIR�IMP algorithm. Each phased gene content haplotype was annotated

as according to Jiang et al. (2012) [23] as an ‘A’ or ‘B’ group haplotype (see S1 Table for defini-

tions of gene content haplotypes), assuming presence of framework genes KIR3DL3 and

KIR3DL2 in all haplotypes. Novel gene content haplotypes were specified with the prefix ‘N’.

KIR3DL1 isoforms with variable splicing of exons 4 and 9 were distinguished by KIR3DL1ex4
and KIR3DL1ex9 imputed exon dosages respectively, however due to poor representation of

rare KIR3DL1 isoforms in the study cohorts only gene level KIR3DL1 dosages were included

in this analysis. The presence of a 22pb deletion in KIR2DS4 was specified by the software as

KIR2DS4DEL, with KIR2DS4TOTAL denoting the total dosage of the gene (i.e. KIR2DS4DEL
+ KIR2DS4WT; wildtype). KIR�IMP posterior probability scores for gene dosage imputation

accuracy in the test and replication cohort are depicted in S2 Fig. A comparison of KIR gene

frequencies and population prevalence taken from imputed test and replication cohorts, and

frequencies reported for European populations in the Allele Frequency Net Database [79], is

presented in S3 Fig. A comparison of KIR haplotype frequencies taken from imputed test and

replication cohorts and those published in Jiang et al. (2012) [23] is presented in S2 Table.

HLA imputation

HLA class I alleles were imputed at four-digit subtype resolution using HLA�IMP:03 [80].

Prior to allele imputation, genotypes were converted to Hg19 positions and Illumina plus

strand orientation and the Michigan Imputation Server [81] was used to SNP impute HLA
locus genotypes (Chr6: 20Mb-40Mb, Hg19) against the 1000 Genomes Phase 3v5 reference

panel, with phasing using SHAPEIT [77]. The returned imputed SNP haplotype and sample

files were passed to HLA�IMP:03 for HLA imputation, which outputs the presence or absence

of each allele in each individual with a corresponding posterior probability of imputation accu-

racy. The HLA subclass of each allele (i.e. HLA-Bw4, Bw6, C1 or C2) was assigned based on

known allele classifications (Table 1). The number of HLA alleles satisfying the following clas-

ses were summed per individual for use in statistical analyses: HLA-Bw4, HLA-Bw4A,

HLA-Bw4B, HLA-Bw4B(I80), HLA-Bw4B(T80), HLA-C1 and HLA-C2.

KIR3DL1/S1 functional group typing

DNA previously extracted from whole blood or saliva was available for 236 HLA-B�27+ AS

patients and 99 HLA-B�27+ control individuals from the test cohort. DNA concentrations

were checked via Qubit fluorometric quantitation and normalised to 10ng/μL in UltraPure

H2O. Five separate PCR reactions designed to segregate KIR3DL1 alleles into six distinct func-

tional groups were performed on each sample as per the protocol published by Boudreau et al.
[73]. In brief an array of primers were designed to target polymorphic sites within three exons

of the KIR3DL1 gene (exon 3, 4 and 7), combinations of which stratify alleles into two highly

expressed (High-1 and High-2), two lowly expressed (Low-1 and Low-2), null and activating

(KIR3DS1) groups (S3 Table). 50ng of input genomic DNA was amplified across each 25uL

PCR reaction with reagent concentrations and cycling temperatures as described [73]. PCR

products were run on a 1.5% agarose gel with 0.025μL/mL ethidium bromide at 125V for 40
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minutes and visualised under UV light. Individuals were assigned a dosage between 0 and 2

for each of the six KIR3DL1/S1 allele groups. Nine individuals who typed positive for three

KIR3DL1 alleles, likely due to locus duplication, were excluded from further analysis.

Statistical analysis

All statistical analyses were conducted using custom scripts in R [82]. LD across the KIR locus

was calculated using the ‘LD’ function from the package genetics [83] based on test cohort

imputed haplotypes. A generalised linear model (GLM) with logarithmic link (logistic regres-

sion) was used to test for an association between imputed haplotype calls or KIR gene dosages

and disease status, with inclusion of the first 10 principal components calculated per cohort for

population stratification correction. When testing for an interaction between KIR and HLA
subclasses or alleles an interaction term was included in the model. KIR dosage was assessed

under a dominant (0 = gene absent, 1 = one or more gene copy) and recessive (0 = dosage less

than two, 1 = homozygosity at locus) inheritance model. Given that some KIR genes harbour

alternate alleles that differ in their activating or inhibitory classification, and genes are strongly

linked in both positive and negative LD, dominant and recessive inheritance models were con-

sidered the most relevant when assessing the biological consequences of differing KIR dosages.

HLA status was treated as dominant. All analyses were conducted in both test and replication

cohorts, however replication cohort results are shown only for the top gene associations and

epistatic interactions returned from the test cohort. Where applied, correction for multiple

testing was performed using the Bonferroni method with statistical significance defined as

analyses achieving P<0.05. For interaction P-values, multiple testing correction was applied

across all tested KIR-HLA interactions, for KIR association P-values, multiple testing correc-

tion was applied across all tested KIRs within the specified HLA subtype or allele group. It is

acknowledged that there is presently no established convention for a standard of evidence

when reporting genetic interactions (whereas the genome-wide significance threshold is used

for single-variant associations). We have thus used the conventional P-value threshold of

P<0.05 following multiple testing correction (which controls the family-wise type 1 error rate)

to highlight genetic epistatic interactions with greater evidence of disease association.

The association of ERAP1 SNP rs30187 with disease risk was assessed under an additive

model using a logistic regression in KIR3DL1+ or–and KIR3DS1+ or–cohorts, defined based

on genotype at the top KIR3DL1/S1 tag SNP rs592645 [72] (A allele = KIR3DL1 present, T

allele = KIR3DL1 absent). An additional 26,607 HLA-B�27+ and 299,267 HLA-B�27- Cauca-

sian controls from the UKB were added to the test cohort to boost sample size. Disease associa-

tions with KIR3DL1 functional groups were assessed using a GLM as previously, under both

dominant and recessive modes of inheritance.

Results

Study cohorts

Immunochip genotyping array data for 10,619 AS cases and 15,145 controls of mixed ethnicity

from the IGAS Consortium, and UK Biobank (UKB) Axiom chip genotyping array data for

20,000 unrelated UKB controls of Caucasian ancestry without AS or associated inflammatory

disease, were available prior to sample filtering and imputation quality control (Fig 1). We

identified and excluded samples with cryptic relatedness, non-Caucasian ancestry, poor KIR
locus SNP clustering or poor KIR�IMP imputed KIR haplotype posterior probability scores.

This left 8,107 AS cases and 12,214 healthy controls in the IGAS test cohort, and 3,497 IGAS

AS cases and 14,844 UKB controls in the replication cohort. As the 3,497 AS cases in the repli-

cation cohort were selected from the British AS cases in the IGAS test cohort, to match the
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ethnicity of the UKB controls, the replication dataset is considered only semi-independent.

KIR haplotypes for these individuals were re-imputed using the reduced SNP set available for

the UKB control samples (Fig 1). KIR gene and haplotype frequencies taken from imputed test

and replication cohorts were largely in accordance with those reported for published European

populations with dosages typed by laboratory-based methods. However, implementation of

imputation quality control led to a slight bias in both cases and controls toward A group haplo-

types, due to their lower copy-number variability and higher imputation accuracy relative to B

group haplotypes (S2 Table, S3 Fig). A direct comparison of KIR dosages for 32 Centre

d’Etude du Polymorphisme Humain (CEPH) and 20 control samples for which both imputed

data and laboratory KIR typing was available revealed >90% concordance across loci with a

per gene imputation posterior probability threshold of> = 0.4, and 100% at a threshold of> =

0.6 (S4 Table). All sample data, including disease status, imputed KIR gene and HLA allele

dosages, HLA subtype counts and principal components are included in S5 Table and S6

Table for test and replication cohorts respectively.

KIR gene associations with HLA-B�27+ AS

KIR gene associations with AS were assessed under a dominant and recessive mode of inheri-

tance in the HLA-B�27+ cases and controls. In the test cohort, there was some evidence of a

disease-risk association with the dominant inheritance of KIR2DS1, KIR2DL5, KIR3DS1 and

KIR2DS5 (P<0.05) prior to multiple testing correction (Table 2). KIR2DS1, KIR3DS1 and

KIR2DS5 show strong positive linkage disequilibrium (LD; R2>0.7, S4 Fig) and are inherited

together with KIR2DL5B as part of the telomeric tB01 motif in a number of common B haplo-

types (B3, B7 and B8, S1 Table). Under a recessive inheritance model, homozygosity for

KIR3DL1 and KIR2DS4TOTAL (R2 = 1) was nominally associated with disease protection, and

homozygosity for KIR2DS5 with disease risk (Table 2). Haplotypes B3 and B11 were seen at

increased frequency in HLA-B�27+ AS cases (Table 2). Multiple testing correction ablated

KIR gene and haplotype associations in the test cohort and associations were not evident in

the replication cohort.

Table 2. KIR genes associations with HLA-B�27+ AS.

TEST COHORT REPLICATION COHORT

Gene AS Prop. (Count) CO Prop. (Count) OR P AS Prop. (Count) CO Prop. (Count) OR P

2DL5+ 0.437 (3041/6952) 0.400 (427/1067) 1.16 0.03 0.381 (1134/2974) 0.398 (487/1225) 0.93 0.29

2DS1+ 0.327 (2272/6952) 0.293 (313/1067) 1.17 0.03 0.326 (970/2974) 0.330 (404/1225) 0.98 0.73

2DS5+ 0.256 (1780/6952) 0.227 (242/1067) 1.18 0.03 0.258 (766/2974) 0.268 (328/1225) 0.95 0.49

3DS1+ 0.325 (2260/6952) 0.292 (312/1067) 1.17 0.03 0.324 (963/2974) 0.328 (402/1225) 0.97 0.70

2DS4T++ 0.673 (4678/6952) 0.707 (754/1067) 0.85 0.03 0.674 (2004/2974) 0.669 (820/1225) 1.03 0.69

2DS5++ 0.022 (153/6952) 0.012 (13/1067) 1.82 0.04 0.020 (58/2974) 0.024 (30/1225) 0.79 0.30

3DL1++ 0.673 (4680/6952) 0.707 (754/1067) 0.85 0.03 0.674 (2004/2974) 0.670 (821/1225) 1.02 0.73

Haplotype AS Prop. (Count) CTRL Prop. (Count) OR P AS % (Prop.) CTRL % (Prop.) OR P

B3a 0.107 (1487/13904) 0.093 (199/2134) 1.17 0.04 0.109 (648/5948) 0.120 (293/2450) 0.89 0.13

B11b 0.011 (147/13904) 0.005 (11/2134) 2 0.03 0.010 (61/5948) 0.009 (23/2450) 1.05 0.86

a B3: 3DL3 – 2DL3 – 2DP1 – 2DL1 – 3DP1 – 2DL4 – 3DS1 – 2DL5A – 2DS5 – 2DS1 – 3DL2
b B11: 3DL3 – 2DL3 – 2DP1 – 2DL1 – 3DP1 – 2DL4 – 3DS1 – 2DL5A – 2DS3 – 2DS1 – 3DL2
+ = dominant inheritance

++ = recessive inheritance (homozygosity); Haplotype frequencies are calculated across all haplotypes (2n); AS = ankylosing spondylitis, CO = control,

KIR2DS4T = KIR2DS4 TOTAL (sum of wild-type and deletion alleles), OR = odds ratio, SE = standard error, P = P-value (bold = significant at P<0.05 prior to multiple

testing correction), NS = not significant.

https://doi.org/10.1371/journal.pgen.1008906.t002
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KIR interactions with HLA subclass ligands

The association of co-inherited KIRs and HLA subclass ligands with AS risk was assessed using an

interaction term in a generalised linear model. A significant KIR-HLA interaction term indicates

that the association of a given KIR with disease risk is seen particularly in the context of a specific

HLA subclass. HLA subclass ligand count was treated as dominant and KIRs assessed under both

dominant and recessive modes of inheritance. Only interactions between KIRs and HLA subclass

ligands known to biologically interact, and showing evidence of a disease association, are reported

in Table 3, full results (showing KIRs in LD with reported genes and interactions between recep-

tors and ligands without present functional evidence) are reported in S7 Table.

There was evidence for a statistical interaction between KIR3DL1 and HLA-Bw4A (HLA-A

alleles with the Bw4 motif) in both test and replication cohorts. Carriage of KIR3DL1 in those

who had inherited at least one HLA-Bw4A subclass allele was associated with increased disease

risk, whereas no association was observed in HLA-Bw4A negative subjects (Table 3). Nominal

interactions were also observed between KIR3DL1 and HLA-Bw4B(I80), whereby in the

absence of an HLA-Bw4B(I80) ligand KIR3DL1 homozygosity was associated with increased

disease risk (Table 3). There was no evidence of an interaction between KIR3DL1 and

HLA-Bw4B(T80) group ligands, of which the most common AS-associated allele in European

populations, HLA-B�27:05, is a member. There was also evidence of an interaction between

the activating receptor gene KIR2DS1 and alleles of the HLA-C2 subclass, encoding canonical

KIR2DS1 ligands. Carriage of KIR2DS1 in the absence of an HLA-C2 allele (i.e. HLA-C1
homozygosity) was associated with reduced disease risk in the test cohort only (Table 3).

KIR interactions with HLA class I alleles

Several KIR-HLA subclass interactions appeared to be driven by specific HLA class I alleles

(Table 4). KIR3DL1 exhibited a statistical interaction with the HLA-Bw4A allele HLA-A�32,

with odds of disease increased >3 fold in those co-inheriting both the receptor and ligand.

Table 3. Interactions between KIR genes and HLA class I subclasses.

TEST COHORT REPLICATION COHORT

KIR HLA

subclass

AS Prop.

(Count)

CO Prop.

(Count)

OR P P (Adj) Int.P Int.P

(Adj)

AS Prop.

(Count)

CO Prop. (Count) OR P Int.P

3DL1+ Bw4A+ 0.975 (2302/

2360)

0.958 (3324/

3471)

1.77 0.0003� 0.002 0.0002� 0.009 0.979 (947/967) 0.965 (3903/4044) 1.71 0.03 0.02

Bw4A- 0.961 (5525/

5747)

0.965 (8438/

8743)

0.91 0.27 0.51 0.962 (2433/

2530)

0.965 (10418/

10800)

0.92 0.46

2DS1+ C2+ 0.330 (1790/

5427)

0.333 (2392/

7193)

0.98 0.66 0.99 0.04 0.26 0.322 (737/

2291)

0.333 (2861/8600) 0.95 0.30 0.71

C2- 0.319 (855/

2680)

0.351 (1763/

5021)

0.86 0.004� 0.02 0.323 (390/

1206)

0.329 (2052/6244) 0.98 0.74

3DL1+
+

Bw4B(I80)+ 0.654 (880/

1345)

0.667 (1879/

2815)

0.9 0.42 0.77 0.05 0.34 0.633 (305/482) 0.670 (2145/3202) 0.86 0.14 0.04

Bw4B(I80)- 0.678 (4582/

6762)

0.658 (6186/

9399)

1.1 0.006� 0.02 0.685 (2065/

3015)

0.669 (7791/

11642)

1.07 0.11

P = P-value denoting statistical significance of the KIR association with AS when assessed in the specified HLA subclass, Int.P = P-value for the KIR-HLA subclass

interaction term, Adj = adjusted P-value

� = P-values that remain significant (P<0.05) after multiple testing correction

+ = dominant inheritance

++ = recessive inheritance (homozygosity), AS = ankylosing spondylitis, CTRL = control, OR = odds ratio, SE = standard error. Proportions are the proportion of

individuals with the specified KIR genotype in cohorts split by HLA subclass carriage.

https://doi.org/10.1371/journal.pgen.1008906.t003
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The association of KIR3DL1 in HLA-A�32+ individuals remained evident following multiple

testing correction in the test cohort and was independently detected in the replication cohort.

The absence of HLA-C�05 (HLA-C2) specifically was associated with disease protection in

KIR2DS1 carriers. Alternatively, in the HLA-C�05+ cohort, carrying the deletion isoform of

KIR2DS4 (KIR2DS4D) was also associated with disease protection, although evidence was lost

with multiple testing correction. KIR2DS1/4-HLA-C�05 interactions were not evident in the

replication cohort. KIR2DS2/L2/L3 (KIR2DS2 and KIR2DL2 are in strong LD, R2 = 1

S4 Fig, and KIR2DL2 and KIR2DL3 are alternate alleles of the same gene) showed evidence of

an interaction with the HLA-C1 alleles HLA-C�12, HLA-C�07 and HLA-C�08 in the test cohort,

though it was not possible to determine which of the tightly linked KIRs were driving the interac-

tion effect. Interactions with HLA-C�12 were the strongest observed and of the nature that

HLA-C�12+ individuals homozygous for KIR2DS2 and KIR2DL2 were at a two times increased

risk of disease, whereas those carrying at least one copy of KIR2DL3 were protected (Table 4).

KIR associations tested in HLA-C�12+ individuals remained significant at P<0.05 upon multiple

testing correction in the test cohort however trends were less evident in the smaller replication

Table 4. Interactions between KIR genes and HLA class I alleles.

TEST COHORT REPLICATION COHORT

KIR HLA AS Prop.

(Count)

CO Prop. (Count) OR P P (Adj) Int.P AS Prop.

(Count)

CO Prop. (Count) OR P Int.P

2DS2++ HLA-C�12+ (C1) 0.118 (52/441) 0.061 (61/1000) 2.05 0.0004� 0.003 0.0005 0.076 (11/144) 0.063 (65/1029) 1.22 0.56 0.58

HLA-C�12- (C1) 0.070 (533/7666) 0.070 (780/11214) 0.99 0.90 0.96 0.066 (221/3353) 0.066 (916/13815) 0.99 0.89

2DL2++ HLA-C�12+ (C1) 0.118 (52/441) 0.061 (61/1000) 2.05 0.0004� 0.003 0.0006 0.076 (11/144) 0.063 (65/1029) 1.22 0.56 0.63

HLA-C�12- (C1) 0.070 (535/7666) 0.070 (780/11214) 1.00 0.96 0.96 0.067 (225/3353) 0.066 (910/13815) 1.02 0.85

2DL3+ HLA-C�12+ (C1) 0.882 (389/441) 0.939 (939/1000) 0.49 0.0004� 0.006 0.0006 0.924 (133/144) 0.937 (964/1029) 0.82 0.56 0.62

HLA-C�12- (C1) 0.930 (7131/

7666)

0.930 (10434/

11214)

1.00 0.96 0.96 0.933 (3129/

3353)

0.934 (12904/

13815)

0.99 0.91

2DS4D+ HLA-C�12+ (C1) 0.864 (381/441) 0.812 (812/1000) 1.47 0.02 0.24 0.02 0.833 (120/144) 0.835 (859/1029) 1.00 0.99 0.71

HLA-C�12- (C1) 0.835 (6402/

7666)

0.833 (9338/

11214)

1.02 0.64 0.73 0.828 (2777/

3353)

0.818 (11301/

13815)

1.07 0.17

3DL1+ HLA-A�32+ (Bw4A) 0.986 (775/786) 0.961 (832/866) 3.10 0.001� 0.006 0.003 0.992 (360/363) 0.965 (989/1025) 4.28 0.02 0.02

HLA-A�32- (Bw4A) 0.963 (7052/

7321)

0.963 (10930/

11348)

1.01 0.91 0.97 0.964 (3020/

3134)

0.965 (13332/

13819)

0.97 0.76

2DS1+ HLA-C�05+ (C2) 0.363 (358/985) 0.330 (833/2525) 1.16 0.06 0.37 0.003 0.363 (182/501) 0.335 (1067/3181) 1.13 0.22 0.09

HLA-C�05- (C2) 0.321 (2287/

7122)

0.343 (3322/9689) 0.90 0.002� 0.02 0.315 (945/2996) 0.330 (3846/

11663)

0.94 0.14

2DS4D+ HLA-C�05+ (C2) 0.813 (801/985) 0.843 (2129/2525) 0.81 0.03 0.37 0.005 0.828 (415/501) 0.817 (2598/3181) 1.09 0.52 0.88

HLA-C�05- (C2) 0.84 (5982/7122) 0.828 (8021/9689) 1.09 0.03 0.13 0.828 (2482/

2996)

0.820 (9562/

11663)

1.06 0.28

3DL1++ HLA-B�27+
(Bw4BT80)

0.673 (4680/

6952)

0.707 (754/1067) 0.85 0.03 0.12 0.01 0.674 (2004/

2974)

0.670 (821/1225) 1.02 0.73 0.33

HLA-B�27-
(Bw4BT80)

0.677 (782/1155) 0.656 (7311/

11147)

1.10 0.14 0.36 0.700 (366/523) 0.669 (9115/

13619)

1.15 0.14

2DL3++ HLA-C�07+ (C1) 0.569 (1578/

2774)

0.538 (3661/6810) 1.14 0.003� 0.01 0.02 0.585 (767/1312) 0.554 (4735/8553) 1.14 0.03 0.05

HLA-C�07- (C1) 0.535 (2851/

5333)

0.537 (2900/5404) 0.99 0.79 0.84 0.553 (1208/

2185)

0.559 (3514/6291) 0.98 0.65

2DL2+ HLA-C�07+ (C1) 0.432 (1197/

2774)

0.462 (3149/6810) 0.88 0.004� 0.01 0.02 0.416 (546/1312) 0.445 (3809/8553) 0.89 0.04 0.07

HLA-C�07- (C1) 0.466 (2484/

5333)

0.464 (2505/5404) 1.01 0.78 0.93 0.446 (975/2185) 0.441 (2776/6291) 1.02 0.69

(Continued)
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cohort. There was a modest interaction observed between KIR3DL1 homozygosity and

HLA-B�27 carriage in the test cohort alone, through statistical significance was lost with multiple

testing correction. HLA-B�27+ individuals who were homozygous for KIR3DL1 showed protec-

tion from disease, whereas there was no evidence of a protective association in the HLA-B�27-

cohort. Interactions between receptors and HLA alleles of the canonical ligand subclass are

reported in Table 4, with full results (showing KIRs in LD with reported genes and interactions

between receptors and ligands without present functional evidence) reported in S8 Table.

KIR interactions with ERAP polymorphisms in HLA-B�27+ AS

Given that the HLA-B�27-bound peptide can disrupt the affinity of KIR3DL1 for HLA-B�27

ligands, the lead AS associated SNP in ERAP1 (rs30187), known to alter peptide trimming by

Table 4. (Continued)

TEST COHORT REPLICATION COHORT

KIR HLA AS Prop.

(Count)

CO Prop. (Count) OR P P (Adj) Int.P AS Prop.

(Count)

CO Prop. (Count) OR P Int.P

2DS2+ HLA-C�07+ (C1) 0.432 (1197/

2774)

0.462 (3149/6810) 0.88 0.004� 0.01 0.02 0.415 (545/1312) 0.447 (3819/8553) 0.88 0.03 0.05

HLA-C�07- (C1) 0.465 (2482/

5333)

0.464 (2505/5404) 1.01 0.81 0.93 0.448 (978/2185) 0.441 (2777/6291) 1.02 0.63

2DS4D+ HLA-C�01+ (C1) 0.826 (2692/

3258)

0.848 (690/814) 0.85 0.15 0.42 0.02 0.819 (1141/

1393)

0.827 (794/960) 0.95 0.67 0.21

HLA-C�01- (C1) 0.844 (4091/

4849)

0.830 (9460/

11400)

1.11 0.02 0.09 0.835 (1756/

2104)

0.819 (11366/

13884)

1.12 0.08

2DS4D+
+

HLA-C�01+ (C1) 0.362 (1178/

3258)

0.382 (311/814) 0.92 0.32 0.46 0.04 0.341 (475/1393) 0.369 (354/960) 0.89 0.20 0.03

HLA-C�01- (C1) 0.374 (1814/

4849)

0.352 (4012/

11400)

1.10 0.006� 0.05 0.370 (779/2104) 0.346 (4809/

13884)

1.11 0.03

3DL1+ HLA-A�24+ (BwA4) 0.971 (1266/

1304)

0.955 (1849/1936) 1.56 0.03 0.08 0.04 0.972 (494/508) 0.967 (2096/2167) 1.21 0.52 0.63

HLA-A�24- (Bw4A) 0.964 (6561/

6803)

0.964 (9913/

10278)

1.01 0.94 0.98 0.966 (2886/

2989)

0.964 (12225/

12677)

1.03 0.77

2DS4W+ HLA-A�11+ 0.342 (360/1052) 0.397 (577/1453) 0.79 0.007 0.11 0.02 0.367 (169/460) 0.421 (757/1797) 0.79 0.03 0.05

HLA-A�11- 0.390 (2752/

7055)

0.394 (4235/

10761)

0.99 0.69 0.74 0.409 (1241/

3037)

0.409 (5341/

13047)

1.00 0.93

3DL1++ HLA-B�51+
(Bw4BI80)

0.651 (322/495) 0.691 (700/1013) 0.82 0.10 0.39 0.03 0.625 (125/200) 0.663 (751/1132) 0.84 0.29 0.20

HLA-B�51-
(Bw4BI80)

0.675 (5140/

7612)

0.658 (7365/

11201)

1.09 0.007� 0.03 0.681 (2245/

3297)

0.670 (9185/

13712)

1.05 0.23

2DL3+ HLA-C�08+ (C1) 0.946 (385/407) 0.920 (894/972) 1.67 0.04 0.22 0.04 0.931 (161/173) 0.940 (989/1052) 0.81 0.53 0.68

HLA-C�08- (C1) 0.927 (7135/

7700)

0.932 (10479/

11242)

0.92 0.16 0.49 0.933 (3101/

3324)

0.934 (12879/

13792)

0.99 0.91

2DS2++ HLA-C�08+ (C1) 0.054 (22/407) 0.080 (78/972) 0.60 0.04 0.47 0.04 0.069 (12/173) 0.060 (63/1052) 1.23 0.53 0.64

HLA-C�08- (C1) 0.073 (563/7700) 0.068 (763/11242) 1.08 0.18 0.34 0.066 (220/3324) 0.067 (918/13792) 0.99 0.88

P = P-value denoting statistical significance of the KIR association with AS when assessed in the specified HLA allele group, Int.P = P-value for the KIR-HLA allele

interaction term

� = P-values that remain significant (P<0.05) after multiple testing correction, Adj = adjusted P-value

+ = dominant inheritance

++ = recessive inheritance (homozygosity), AS = ankylosing spondylitis, CTRL = control, OR = odds ratio, SE = standard error, KIR2DS4D = KIR2DS4 deletion allele,

KIR2DS4W = KIR2DS4 wild-type. Proportions are the proportion of individuals with the specified KIR genotype in cohorts split by HLA allele carriage.

https://doi.org/10.1371/journal.pgen.1008906.t004
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the aminopeptidase, was tested in a three-way interaction with KIR3DL1/S1 in the HLA-B�27+

test cohort. The rs30187 association with HLA-B�27+ AS was assessed in KIR3DL1+,

KIR3DL1-, KIR3DS1+ and KIR3DS1- cohorts, tagging KIR3DL1/S1 dosage using the SNP

rs592645 to enable inclusion of an additional 26,607 HLA-B�27+ and 299,267 HLA-B�27-
European controls from the UKB to boost sample size. There was substantial evidence of the

rs30187 association with HLA-B�27+ AS irrespective of KIR3DL1/S1 dosage (KIR3DS1+

P = 1.0x10-41, KIR3DS1- P = 1.3x10-28, KIR3DL1+ P = 2.0x10-66 and KIR3DL1- P = 0.007;

Fig 2), providing no support for a three-way interaction between AS-associated ERAP1
genetic variation, KIR3DL1/S1 and HLA-B�27 influencing AS susceptibility. The reduction in

the significance of the rs30187 association in the HLA-B�27+ KIR3DL1- cohort can likely be

ascribed to the low number of AS cases in this group. As reported previously, there was no

Fig 2. Association of ERAP1 SNP rs30187 with AS in HLA-B�27+ and HLA-B�27- cohorts, split by carriage of KIR3DL1 or KIR3DS1. Points denote the OR of disease

attributed to each successive increase in rs30187 risk allele [T] count in HLA-B�27+ (A) and HLA-B�27- (B) individuals split by presence/absence of KIR3DL1 (left) or

KIR3DS1 (right) defined using the KIR3DL1/S1 locus tag SNP rs592645. P-values are derived from the logistic regression of genotype (additive) against disease status, ORs

are derived from the exponentiated beta coefficient for each genotype class, treating the protective genotype rs30187 [CC] as baseline (OR = 1). The number of individuals

in each KIR-HLA-ERAP genotype split group is indicated in the form n = total number (number of cases, number of controls). ORs are enumerated below points. Bars

indicate 95% confidence interval.

https://doi.org/10.1371/journal.pgen.1008906.g002
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disease-association of rs30187 in HLA-B�27- individuals, irrespective of KIR3DL1/S1 dosage

(Fig 2).

KIR3DL1/S1 allele group associations with HLA-B�27+ AS

The PCR protocol designed by Boudreau et al. (2014) was used to segregate KIR3DL1 alleles

from 236 HLA-B�27+ AS patients and 99 HLA-B�27+ controls into six distinct functional

groups (Null, High-1, High-2, Low-1, Low-2 and KIR3DS1) based on a combination of poly-

morphic sites that segregate with surface expression phenotype [73]. High and low frequency

alleles captured within each functional group are listed in S3 Table. Functional group frequen-

cies in the control cohort were in accordance with those reported in the published method (S3

Table). When assessed under a dominant or recessive mode of inheritance, there was no sig-

nificance difference in the frequency of functional cell-surface expressed (KIR3DL1�f: High-1,

High-2, Low-1 and Low-2 alleles) or unexpressed (KIR3DL1�n: Null) KIR3DL1 alleles between

HLA-B�27+ve AS patients and controls. Similarly, there was no statistically significant differ-

ence in allele group frequency between patients and controls (Table 5). All data, including dis-

ease status and KIR3DL1/S1 functional group typing is included in S9 Table.

Discussion

Assessing the contribution of KIR and HLA co-inheritance to an immune-related phenotype is

inherently challenging, with immense genomic diversity at both loci converging to influence

the dynamics of an individual’s lymphocyte responses. Very large cohorts are required to iden-

tify KIR associations with human disease amid the genetic ‘noise’ ascribed to copy-number

variable haplotypes, and account for the modifying effect of independently inherited HLA

ligands on KIR signalling. Here we have used imputation methods to type HLA class 1 alleles

[80] and gene dosage level KIR haplotypes [72] from SNP genotype data in order to perform

Table 5. Genotypic frequency of functional and non-functional KIR3DL1 alleles and KIR3DL1 functional groups

in HLA-B�27+ AS patient and controls.

Functional group AS Prop. (Count) CO Prop. (Count) OR P

3DL1�f+ 0.839 (198/236) 0.869 (86/99) 0.79 0.49

3DL1�f++ 0.458 (108/236) 0.414 (41/99) 1.19 0.47

3DL1�n+ 0.288 (68/236) 0.303 (30/99) 0.93 0.79

3DL1�n++ 0.038 (9/236) 0.020 (2/99) 1.92 0.41

Functional group AS Prop. (Count) CO Prop. (Count) OR P

3DL1 High-1+ 0.305 (72/236) 0.384 (38/99) 0.71 0.16

3DL1 High-1++ 0.021 (5/236) 0.051 (5/99) 0.41 0.16

3DL1 High-2+ 0.470 (111/236) 0.424 (42/99) 1.21 0.44

3DL1 High-2++ 0.106 (25/236) 0.071 (7/99) 1.56 0.32

3DL1 Low-1+ 0.305 (72/236) 0.253 (25/99) 1.30 0.33

3DL1 Low-1++ 0.038 (9/236) 0.030 (3/99) 1.27 0.73

3DL1 Low-2+ 0.051 (12/236) 0.071 (7/99) 0.70 0.48

3DL1 Low-2++ 0.000 (0/236) 0.000 (0/99) NA NA

3DS1+ 0.331 (78/236) 0.354 (30/99) 0.90 0.68

3DS1++ 0.047 (11/236) 0.040 (4/99) 1.16 0.80

+ = dominant inheritance

++ = recessive inheritance (homozygosity), �f = functional, �n = null, AS = ankylosing spondylitis, CO = control,

OR = odds ratio, P = P-value, NA = not applicable.

https://doi.org/10.1371/journal.pgen.1008906.t005
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the largest KIR-HLA association study reported to date. Encouragingly, paired comparison of

52 KIR typed and imputed Immunochip genotyped samples revealed>95% concordance at all

but two loci (KIR2DP1 and KIR2DL1). Prior to any quality filtering, the imputation of study

cohorts returned comparable KIR haplotype and gene frequencies to directly typed European

populations [23, 79]. However, removal of haplotypes with low (<0.4) posterior probability of

imputation accuracy largely excluded individuals with poorly imputed rare gene content B

group haplotypes. This led to a slight A group haplotype bias in both test and replication

cohorts, hindering the ability to dissect genetic associations attributed to closely linked genes

by conditional analysis (which are more likely to be found in rare arrangements on uncom-

mon B group haplotypes). Albeit, given our sizeable dataset of high-confidence imputed haplo-

types, we were able to detect suggestive interactions between KIR genes and HLA ligands at

both subclass and allele resolution showing association with AS risk. It is possible that such

interactions modify the activation threshold of lymphocyte populations in a disease setting,

contributing to or sustaining a damaging autoinflammatory environment.

The profound association of the HLA-Bw4 allele HLA-B�27 with AS has encouraged investi-

gation into a role for KIR3DL1/S1 in disease; the inhibitory KIR3DL1 receptor being the only

KIR known to engage canonical HLA-Bw4 ligands [40]. Its activating allele, KIR3DS1, has

been demonstrated to mediate NK killing of HLA-B�57 (HLA-Bw4) target cells in vitro in a

peptide dependent fashion [47], of potential additional interest in AS given the modest protec-

tive association of HLA-B�57:01 with the disease [7], and may recognise other HLA-Bw4

ligands with similar peptide specificity. We identified a modest increase in the frequency of

KIR3DS1 in patients (29.2% in controls, 32.5% in AS) and genes KIR2DL5, KIR2DS5 and

KIR2DS1 in the HLA-B�27+ test cohort, all of which occur together on the telomeric half of

haplotype B3 [23], which also showed a modest association with disease risk. Association of

KIR3DS1 with HLA-B�27+ AS has been detected in numerous studies [57–59, 61, 64], with

some studies reporting large KIR3DS1 frequency differences between AS cases and healthy

controls (e.g. 26.6% in controls and 64.3% in AS in a HLA-B�27+ Chinese cohort of 72 individ-

uals [58], and 40.4% in controls and 59.2% in AS in a HLA-B�27+ Spanish cohort of 705 indi-

viduals [61]). Despite studying a much larger case-control dataset, we did not find a markedly

increased frequency of KIR3DS1 in AS patients in either the test or replication cohorts.

Although differences in ethnic background may account for disparate results across studies,

our data suggests that any association of KIR3DS1 with AS must have quite a small overall

effect size.

Conversely, homozygosity for KIR3DL1 was nominally associated with disease protection

in the HLA-B�27+ test cohort, replicating previous studies demonstrating that the recessive

genotype reduces disease risk [57, 58, 61, 64]. Despite being an HLA-Bw4T80 ligand with

weak KIR3DL1 binding affinity relative to HLA-Bw4I80 alleles, the high surface density of

HLA-B�27:05 (the predominant subtype in European HLA-B27 carriers) makes it a strong

inhibitor of KIR3DL1+ NK cytotoxicity [27]. It could be hypothesised that the increased pro-

portion of KIR3DL1+ NK cells in KIR3DL1 homozygotes minimises the risk of undue lympho-

cyte activation and autoreactivity in healthy HLA-B�27 carriers. No KIR3DL1 association was

seen with HLA-B�27- disease, resulting in a detectable epistatic interaction between the two

genetic factors in the test cohort, however the interaction was weaker than that seen between a

number of other KIR-HLA pairs and significance was ablated with multiple testing correction.

It is possible that a protective effect of KIR3DL1 in HLA-B�27+ AS is confined to a specific

allelic variant of the gene (for instance, engagement of HLA-B�27:05 inhibits NK cytotoxicity

through KIR3DL1�002 but not KIR3DL1�007 [29], and a point mutation in KIR3DL1�004 dis-

rupts protein folding and abolishes cell surface expression of this allotype altogether [84]),

which would be obscured in gene-dosage resolution analyses. To assess this, we used a PCR
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approach in a subset of the HLA-B�27+ test cohort to type and stratify KIR3DL1 allotypes into

six independent functional groups differing in surface expression and binding affinity [73].

We observed no disease-association with KIR3DL1 genotype irrespective of whether functional

(cell surface expressed) KIR3DL1�f or non-functional (KIR3DL1�004) KIR3DL1 alleles were

carried. Such finding differs from data presented by Zvyagin et al. (2010), showing disease pro-

tection afforded by carriage of the KIR3DL1�f allele and the KIR3DL1�f homozygous genotype,

but no association with KIR3DL1�004 in a HLA-B�27+ Caucasian cohort of 83 patients and

107 controls [64]. We also observed no significant disease-association with any specific

KIR3DL1 functional group, noting the power limitations given the modest sample size of this

component of the study. This and previous studies have been underpowered to deconvolute

KIR3DL1 allelic associations at this locus [61], largely given the hyperpolymorphic nature of

the receptor (for which 147 independent alleles are currently known [67]). Evidently, high-

throughput KIR typing and allele imputation approaches need to advance in line with those

available for the HLA locus if appropriately powered, high-resolution allotype association tests

are to be feasible.

Additional to both the KIR allele and HLA subtype present [85], the outcome of KIR3DL1

signalling upon recognition of an HLA-B�27 ligand is known to be modified by the HLA

bound peptide [34]. There is substantial genetic and functional evidence supporting a role for

altered peptide processing in AS, particularly given a non-synonymous coding variant in

ERAP1, rs30187, is uniquely associated with HLA-B�27+ disease [4, 5] and modifies the

HLA-B�27 peptidome [86, 87]. We tested the hypothesis that the rs30187 risk-association with

HLA-B�27+ disease is dependent on the KIR3DL1/S1 background, with altered peptides either

perturbing inhibitory signalling through KIR3DL1 or promoting NK activation through

KIR3DS1 to enhance pathogenic lymphocyte responses. Disproving this, the rs30187 associa-

tion with HLA-B�27+ AS was clearly detectable in both KIR3DL1- and KIR3DS1- individuals.

Although it cannot be disregarded that the altered HLA-B�27 peptidome shaped by disease-

associated ERAP1 alleles may influence KIR3DL1/S1 signalling dynamics and subsequently

lymphocyte activity, this does not appear to be the immunological mechanism by which the

strong ERAP1-HLA-B�27 epistasis in AS arises.

Dissecting genetic interactions between inherited KIRs and HLA class I alleles beyond

HLA-B�27 requires a large enough cohort to retain a degree of statistical power when stratify-

ing by both KIR and HLA carriage (some combinations of which are found at low frequency in

the population). This study presents the first attempt to test for associations of KIR-HLA epis-

tasis with an immune-mediated disease across all represented gene-gene combinations.

Despite the substantial sample size of our test cohort, lack of an equally well powered replica-

tion cohort of independent AS patients made validation of findings difficult. Further, given

strong LD across both the HLA and KIR locus, members of a statistically interacting receptor-

ligand pair may not biologically interact but rather tag closely linked genes for proteins that do

engage to alter immune cell function. Rare KIR haplotypes, in which unique gene combina-

tions are observed, were likely overrepresented in those discarded during imputation quality

filtering, hindering our ability dissect strong LD structures within this data. Here, only those

interactions that can be interpreted in terms of experimentally validated KIR-HLA engage-

ments are discussed, though to ascertain the relevance of these findings to AS pathogenesis on

a functional level will require further experimentation. For the most part, this data supports a

model whereby the contribution of many co-inherited KIR and HLA pairs shifts an individu-

al’s predisposition to AS, as is likely the case with many immune-mediated diseases, some

combinations imparting more dominant effects than others.

In both test and replication cohorts, carriage of KIR3DL1 in the presence of an HLA-Bw4A
allele was associated with increased disease risk, the association remaining statistically
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significant upon multiple testing correction in the former. At an allelic level, the KIR3DL1
interaction could be detected most strongly with HLA-A�32, encoding a HLA-Bw4 ligand

shown to protect target cells from lysis by KIR3DL1+ NK cells [88]. Why coinheritance of an

inhibitory receptor-ligand pair may be associated with risk of, not protection from, a condition

associated with chronic inflammation is unclear; HLA-A�32:01 binds with stronger affinity to

some KIR3DL1 alleles than most HLA-Bw4B molecules [27, 28]. Increased inhibitory

KIR-HLA binding strength has been shown to positively correlate with NK cytotoxicity against

HLA-negative target cell lines in vitro [27], and this may exacerbate autoreactivity in instances

that HLA expression is downregulated or altered peptides subvert binding in an inflamma-

tory-disease setting. Numerous inflammatory diseases, including AS, have been associated

with endoplasmic reticulum stress [89], which contributes to interrupted assembly and surface

expression of appropriately folded HLA glycoproteins and increases target cell susceptibility to

NK cell lysis [90].

In agreement with previous studies [57, 65], coinheritance of KIR3DL1 and HLA-B ligands

of the I80 subtype was decreased in AS patients, KIR3DL1 homozygotes lacking an inhibitory

HLA-Bw4B(I80) ligand significantly more often than controls in the test cohort. We did not

detect a specific allele of the HLA-Bw4B(I80) subclass that appeared to drive this interaction.

Strong KIR3DL1 binding to a number of HLA-Bw4B(I80) ligands [27, 28] may assist in reduc-

ing the activation threshold of NK and T-cell populations under homeostatic conditions in

those who inherit both genetic factors. Absence of an HLA-C2 ligand in individuals who had

inherited the activating receptor KIR2DS1 was also associated with disease protection in the

test cohort. Unlike other activating receptors for which true ligands are unknown, KIR2DS1

recognition of HLA-C2 has been previously shown to activate KIR2DS1+ NK cells (with sig-

nalling sufficient to override KIR2DL1 inhibition on KIR2DL1+KIR2DS1+ cells), inducing

IFNγ secretion and degranulation in a peptide dependent fashion [37, 91, 92]. Disease risk

attributed to co-inheritance of KIR2DS1 and HLA-C2 has been previously observed in two

independent AS cohorts [59, 65], as well as in psoriasis vulgaris [93, 94] and psoriatic arthritis

[18], whereas it is associated with protection from Hodgkin’s lymphoma [95] and the anti-leu-

kemic activity of alloreactive NK cells in a HLA-C2 context [96]. Evidently this is a proinflam-

matory combination of factors. The KIR2DS1-HLA-C2 interaction appeared to be driven most

strongly by HLA-C�05 in this study, perhaps suggesting that this ligand is a particularly potent

activator of KIR2DS1+ NK or T-cells. Finally, we detected a number of KIR2D/-HLA-C1 allele

interactions associated with AS risk that are yet to be reported, however tight positive and neg-

ative LD between receptor genes KIR2DS2, KIR2DL2 and KIR2DL3 make it difficult to discern

which receptor may be driving the biological effect. Strong disease-associations with activating

and inhibitory KIR2D genes in HLA-C�12 and HLA-C�07 carriers in the test cohort, and sug-

gestive associations in HLA-C�01 and HLA-C�08 carriers, emphasises that the HLA back-

ground likely imparts an array of modifying effects on disease risk beyond those ascribed to

HLA-B�27 alone.

In silico prediction of KIR dosages from genotype data has opened avenues for KIR associa-

tion testing in cohorts too large for conventional laboratory-based typing methods. Albeit, pre-

diction algorithms inherently operate with some degree of error, and the findings of

computational studies should be validated with laboratory methods where possible. Although

KIR locus imputation is presently erroneous for rare gene content haplotypes, as large human

reference datasets begin to capture the genomic diversity of the KIR locus these approaches

will likely gain accuracy in both gene dosage and allelic discrimination. The targeted coverage

of the KIR locus by the Illumina Immunochip has enabled us to impute high-confidence KIR
dosages in a large test cohort of AS cases and controls for disease-association testing. We have

endeavoured to replicate findings in a semi-independent cohort, incorporating UKB controls,
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however the lower imputation accuracy (ascribed to reduced SNP coverage) and reduced size

of this sample set has hindered this somewhat. Further replication of the results presented here

are required to ensure accuracy and their biological interpretation will inevitably require func-

tional investigation.

In conclusion, here we report the largest analysis of KIR and KIR-HLA co-associations with

any immunological phenotype to date, addressing the contribution of these complex receptors

to AS immunopathogenesis. We identified multiple nominally significant epistatic interactions

between the genes encoding KIRs and their HLA ligands on both the subtype and allele level,

suggesting that AS risk, as likely the case for many immune-mediated diseases, is modified by

a mosaic of genetic effects that converge to influence the proinflammatory capacity of KIR

expressing lymphocytes. Notably, although we replicated the direction of effect for previously

reported KIR3DL1/S1 associations with HLA-B�27+ disease, we demonstrated that the KIR3D
background does not modify the profound HLA-B�27-ERAP1 epistasis observed in AS. Thus a

three-way interaction between these factors is unlikely to be the primary driver of pathogene-

sis. As the resolution and throughput of KIR typing improves, more studies of this nature will

assist in defining patterns in KIR-HLA coinheritance that contribute to complex immune phe-

notypes, improving understanding of the dynamic role of these receptors in health and

disease.
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cohort controls and those averaged from a Serbian (n = 134) and Irish (n = 200) cohort

reported in the Allele Frequency Net Database. Bar charts show gene frequency comparisons

for the test (A) and replication (B) cohorts with values enumerated in (C). KIR2DL5, KIR3DS3
and KIR2DS5 genes are duplicated on some B haplotypes and can occur on both the
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centromeric and telomeric halves of the haplotype. At present KIR�IMP is unable to distin-

guish centromeric from telomeric copies of these genes so they have been grouped together as

a single locus. The database did not include frequencies for wild type and deletion variants of

KIR2DS4.

(TIF)

S4 Fig. Pairwise LD between KIR genes calculated using KIR�IMP imputed haplotypes

from test cohort controls. Strength of LD is coloured according to R2, with gene pairs in per-

fect positive or negative linkage (always or never occurring together in a haplotype) coloured

red with an R2 value of 1. Genes are ordered according to genomic position from KIR2DS2
(centromeric) to KIR2DS4 (telomeric), with exclusion of framework genes KIR3DL3,

KIR3DP1, KIR2DL4 and KIR3DL2. Distinction could not be made between centromeric and

telomeric copies of KIR2DS3/5 or KIR2DL5.

(TIF)
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