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A B S T R A C T

Background and purpose: Proton Online Adaptive RadioTherapy (ProtOnART) harnesses the dosimetric advantage 
of protons and immediately acts upon anatomical changes. Here, we simulate the clinical application of delin-
eation and planning within a ProtOnART-workflow for esophageal cancer. We aim to identify the most appro-
priate technique for autodelineation and evaluate full automation by replanning on autodelineated contours.
Materials and methods: We evaluated 15 patients who started treatment between 11-2022 and 01-2024, under-
going baseline and three repeat computed tomography (CT) scans in treatment position. Quantitative and 
qualitative evaluations compared different autodelineation methods. For Organs-at-risk (OAR) deep learning 
segmentation (DLS), rigid and deformable propagation from baseline to repeat CT-scans were considered. For the 
clinical target volume (CTV), rigid and three deformable propagation methods (default, heart as controlling 
structure and with focus region) were evaluated. Adaptive treatment plans with 7 mm (ATP7mm) and 3 mm 
(ATP3mm) setup robustness were generated using best-performing autodelineated contours. Clinical acceptance 
of ATPs was evaluated using goals encompassing ground-truth CTV-coverage and OAR-dose.
Results: Deformation was preferred for autodelineation of heart, lungs and spinal cord. DLS was preferred for all 
other OARs. For CTV, deformation with focus region was the preferred method although the difference with 
other deformation methods was small. Nominal ATPs passed evaluation goals for 87 % of ATP7mm and 67 % of 
ATP3mm. This dropped to respectively 2 % and 29 % after robust evaluation. Insufficient CTV-coverage was the 
main reason for ATP-rejection.
Conclusion: Autodelineation aids a ProtOnART-workflow for esophageal cancer. Currently available tools regu-
larly require manual annotations to generate clinically acceptable ATPs.

1. Introduction

Esophageal cancer (EC) is commonly treated with radiation therapy 
(RT), either as part of neoadjuvant or definitive treatment. The former is 
the treatment of choice in locally advanced EC, as part of trimodality 
treatment comprising of neo-adjuvant chemoradiotherapy followed by 
surgery [1]. Unfortunately RT also poses risks of side effects, impacting 
quality of life and increasing morbidity and mortality risks. Herein, dose 
to neighbouring organs-at-risk (OAR), i.e. heart and lungs, is thought to 
play a major role [2,3]. Proton therapy (PT), may reduce these risks 

compared to regular photon-based radiotherapy (XT), due to its bene-
ficial dose distribution [4–6]. Phase II trial data already support this, 
while phase III trials are currently recruiting patients [7–9]. Although 
the finite range of the proton beam results in a favourable dose distri-
bution, it can also result in significant dose perturbations if, e.g., the 
patient’s anatomy changes. This explains the need for a thorough follow- 
up of the patients’ internal anatomy during treatment via plan recal-
culations and, if necessary, plan adaptations [10]. About half of all pa-
tients need at least one replanning throughout their PT-treatment 
course, more often than with XT [11]. Adaptation is usually performed 
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‘offline’, when the patient is off the treatment couch, using a new CT- 
simulation scan and subsequent treatment replanning. However, 
advanced imaging techniques combined with enhanced treatment 
planning (TPS) and delivery systems, could allow for online treatment 
adaptation, when the patient is on the treatment couch. Proton Online 
Adaptive RadioTherapy (ProtOnART) would immediately enact upon 
mentioned impactful anatomical changes by reoptimization of the 
treatment plan [12]. However, clinical implementation of ProtOnART is 
still lacking, except for early applications [13]. ProtOnART could use the 
superior physical properties of PT while also reducing uncertainties. 
Consequently, this would lower the dose to the OARs, especially in areas 
difficult to treat, like for EC.

While daily ProtOnART appears to benefit EC-treatment, it presents 
practical challenges. Image acquisition, delineation, planning and 
quality assurance (QA) protocols need to be performed while the patient 
is on-couch [12]. Fast plan adaptation and acceptance is needed to limit 
the overall treatment time for three reasons: (1) on the per-patient level, 
it will limit the chance of slow intra-fraction movement; (2) for patients 
themselves, limiting the on-couch time will increase comfort and (3) 
from an organizational point of view, it limits the time usage of PT- 
treatment facilities that are relatively scarce.

Delineation is among the most time-consuming steps in this work-
flow, especially for large target volumes as is the case for EC [14,15]. 
Today, several methods of automation are available, which both save 
time and reduce inter- and intra-observer variability [16–18]. In this 
analysis, we explored the autodelineation methods available in a 
commercially available TPS for PT. We aimed to identify the best 
method for each structure, based on quantitative and qualitative eval-
uations. The preferred methods were then used to investigate the 
feasibility of a fully automated delineation and planning EC-ProtOnART- 
workflow.

2. Materials and methods

2.1. Patient population

For this analysis, 60 simulation CT-scans of 15 patients (4 per pa-
tient) were used. Patients were included in a clinical trial 
(Supplementary Table 1) at our centre and gave prior written informed 
consent to use their data for translational research. The study was 
approved by our Ethical Board with reference number S65789. All 15 
patients commenced neoadjuvant treatment between November 2022 
and January 2024 for locally advanced EC. Each underwent a baseline 
planning CT-scan (CT1) and three repeated simulation CT-scans in 
treatment position after one, two and three weeks (CT2, CT3 and CT4 
respectively), mimicking an in-room CT ProtOnART-worklow. All CTs 
were performed on Siemens SOMATOM Drive (Siemens Healthineers, 
Germany), acquired at 2 mm slice thickness and encompassed the whole 
lungs, heart and –depending on the target location– the whole liver and 
kidneys. On all CTs (CT1-CT4), delineation of the clinical target volume 
(CTV) and OARs was executed by a radiation oncologist and supervised 
by a senior radiation oncologist.

2.2. Delineation

Delineation on all scans followed the guidelines outlined in the 
protocol of the PROTECT-trial [9]. This meant the use consensus 
guidelines of Thomas et al. for CTV-delineation and ASTRO consensus 
guidelines for delineation of the heart [19,20]. Other OARs comprised of 
left and right lung (Lung_L, Lung_R), left and right kidney (Kidney_L, 
Kidney_R), spinal cord (Spinal_cord), stomach, liver and spleen. After 
review, these contours were labelled ‘ground truth’ (GT). For this 
analysis, autodelineations were generated on CT2 through CT4 in 
RayStation version 2023B (Raysearch, Sweden) using different methods 
as described below.

For OARs, three autodelineation methods were tested: contour 

propagation through rigid image registration (RIR), deformable image 
registration (DIR) and deep learning segmentation (DLS). Image regis-
tration mimicked the clinically used matching protocols to account for 
positioning errors. RIR was done using the intensity-based algorithm 
available in RayStation. For DIR, the ANACONDA method in RayStation 
was used with intensity information only (no controlling structures) 
[21]. Propagations via DIR and RIR were performed from baseline (GT- 
contours on CT1) to the three adaptive scenarios (CT2 through CT4). For 
DLS, the clinically released models were used [22–24].

Evaluation of the OARs was done both quantitatively and qualita-
tively [25]. For the quantitative analysis, Dice similarity coefficients 
(DICE), mean Hausdorff Distance (HD) and mean distance to agreement 
(meanDTA) were calculated based on the GT-contours [25,26]. The 
ideal values for these parameters are DICE=1, meanDTA=0, and HD=0, 
representing perfect overlap, perfect alignment, and no distance be-
tween corresponding points on the two contours, respectively. For the 
qualitative analysis, contours were independently scored by two radia-
tion oncologists (BM and PP) using a four-point Likert scale (Accept, 
Minor variation, Major variation or Reject, key in Supplementary 
Table 2). The four-point Likert scale was dichotomized in Accept or 
Minor variation versus Major variation or Reject accounting for inter-
observer variability and creating two distinct subgroups that also 
encompass expected annotation times (respectively <90 and ≥90 s). In 
case of disagreement, cases were discussed until consensus was reached.

For CTV-autodelineation, four propagation methods were investi-
gated: RIR and three different DIR-methods. For RIR, the same method 
as for OAR propagation was used. For DIR, we used the ANACONDA 
method with (DIR_def) intensity information only (no controlling 
structures); (DIR_focus) intensity information only but within a focus 
region; and (DIR_ctrl) intensity information and the GT-heart contour as 
a controlling structure [21,27]. As focus region in DIR_focus, the GT- 
CTV on CT1 expanded with 3 cm was used to include the relevant 
parts of the neighbouring structures such as the lungs, spine and heart. 
Quantitative analysis was performed using the same metrics as for OAR. 
Qualitative analysis was performed by the same radiation oncologists, 
evaluating the three DIR-methods. The same four-point Likert scale, 
used for OARs, was applied (Supplementary Table 2). Additionally, the 
different DIR-methods were ranked from best to worst.

The results of the quantitative evaluation were compared using t- 
tests, significance level alpha = 0.05. Qualitative evaluations were 
analysed using Chi Squared (group size > 5) or Fisher exact tests (group 
size ≤ 5), significance level alpha = 0.05. Given each patient contributes 
the same number of samples (three CT scans), any possible intra-patient 
correlation of results is assumed to be consistently distributed across all 
patients, preserving balance in the analysis. Statistics were performed in 
IBM SPSS Statistics version 29 [28].

2.3. Treatment planning

Based on the best-scoring autodelineated contours of OARs and CTV, 
adaptive treatment planning was performed in RayStation using pre-
determined objectives and constraints (Supplementary Table 3). 
Adaptive treatment plans (ATP) were created on all repeated simulation 
CTs after rigidly transferring the isocenter. All plans were created for an 
IBA ProteusOne using 3-beam setup (left-posterior-oblique, posterior 
and right-posterior-oblique). Treatment plans were optimized based on 
class-solution objectives for CTV and OARs using maximum 250 itera-
tions (or until cost function <10E-8) with spot filtering after 30 itera-
tions. The planned dose was calculated with Monte-Carlo dose engine 
(v5.2). Calculation grid-size was set to 2.5x2.5x2.5 mm3. Two different 
uncertainty levels were used for adaptive replanning, an isotropic error 
of 7 mm (ATP7mm) and 3 mm (ATP3mm) for setup robustness and 3 % 
range uncertainty, reflecting respectively the currently clinically used 
robustness parameters without online adaptation and a proposed 
reduced-robustness scenario that does not take positioning errors or 
inter-fraction motion into account.
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ATPs, based on the autodelineated contours, were then evaluated on 
the GT-contours using the plan evaluation goals (Supplementary 
Table 4). Evaluation took place on the nominal plan as well as consid-
ering a 7 mm for ATP7mm or 3 mm for ATP3mm isotropic margin and 3 % 
range uncertainty for robustness. Evaluation goals were evaluated as 
passed or failed, both nominally and robustly. ATPs were labelled as 
clinically accepted when fulfilling the evaluation goals versus rejected 
when this was not the case.

3. Results

3.1. Delineation

In the OAR, qualitative (Table 1) and quantitative (Fig. 1, detailed 
data in Supplementary Table 5) evaluations indicated that for auto-
delineation a combination of DIR and DLS is preferred. Heart and lung 
autodelineation using DIR and DLS showed comparable, limited need for 

time-consuming major annotations. Conversely, RIR often required 
major annotations. DIR had the largest DICE for both heart and lungs. 
For the spinal cord, all DIR autodelineations required less than 90 s 
annotation time. Similarly, DIR had the largest DICE. For autodelinea-
tion of the kidneys, liver, spleen and stomach, DLS outperformed the 
other methods, both in qualitative and quantitative assessment.

For CTV autodelineation, quantitative analysis (Fig. 2, detailed data 
in Supplementary Table 6) ruled out RIR as a potential candidate. 
DIR_focus had the most favourable metrics compared to the other DIR 
methods, though these differences were not statistically significant. 
Qualitatively comparing the DIR methods (Table 2), no statistically 
significant differences were identified using the 4-point Likert scale: all 
methods resulted in a major need for annotation in approximately 40 % 
of the cases. Using the ranking system, DIR_focus was found to result in 
the most favourable (best) contour in about 60 % (p < 0.001 compared 
to DIR_def) of the cases and the least favourable (worst) contour in only 
2 % of the cases (p < 0.001 compared to both DIR_def and DIR_ctrl). 
DIR_focus was therefore identified as the preferred propagation method. 
Moreover, this method is slightly faster to compute and does not require 
annotation of the heart contour as a controlling structure prior to 
propagation, unlike DIR_ctrl.

Table 3 summarises the best-performing autodelineated contours.

3.2. ATP evaluation

Percentages of passed evaluation metrics of the ATPs 
(Supplementary Table 4) on the GT-contours are displayed in Table 4. 
Insufficient CTV coverage was the only reason for nominal ATP- 
rejection. Lowering the CTV-V95% evaluation criterion from 99 % 
(objective used in plan optimization) to 98 % or 97 % resulted in a larger 
plan acceptance rate. Dose to spinal cord was never a reason for plan 
rejection. Body dose only resulted in ATP7mm-rejection after robust 
evaluation (three out of 45 plans (7 %)). Using CTV-V95%>98 % as 
evaluation criterion, in the 45 nominal plans distributed over 15 pa-
tients, ATP7mm-rejections occurred for three patients, in a total of six 
plans (13 %), while ATP3mm-rejections of the plan occurred for eight 
patients, in a total of 15 plans (33 %). After robust evaluation, only one 
ATP7mm (2 %) and 13 ATP3mm (29 %) passed the CTV-V95%>98 % cri-
terion, graphical CTV-evaluation per CT is displayed in Supplementary 
Fig. 1. Predicting nominal ATP-rejection based on qualitative evaluation 
of delineation (major variations) proved inaccurate, with sensitivity and 
specificity of respectively 0.50 and 0.59 for ATP7mm and respectively 
0.60 and 0.67 for ATP3mm. After robust evaluation, sensitivity and 
specificity of ATP3mm-rejections were 0.53 and 0.85 respectively. 
Sensitivity and specificity of ATP7mm-rejections after robustness evalu-
ation were not considered given only 1/45 plans passed. While not 
evaluation metrics, OAR-planning objectives and constraints 
(Supplementary Table 3) were met for all nominal ATPs.

4. Discussion

While ProtOnART could mitigate this risk of CTV underdosage due to 
geometric uncertainties, its clinical implementation still poses signifi-
cant challenges. We evaluated different autodelineation methods for 
CTV and OARs as the first step in a ProtOnART-workflow, based on 45 
adaptive scenarios in 15 patients. Our analyses showed that a combi-
nation of DLS and DIR is most useful for adaptive autodelineation. 
However, our findings indicate manual annotations remain necessary as 
using the autodelineated contours often failed to produce clinically 
acceptable ATPs.

To our knowledge, we are the first group who explored the feasibility 
of a ProtOnART-workflow for EC. ProtOnART delineation in the thoracic 
region was already discussed by Smolders et al., quantitatively evalu-
ating five patients with non-small cell lung cancer [29]. Their findings 
cannot, however, be extrapolated to EC given the different CTV and 
position for EC within the body. Additionally, delineation within a 

Table 1 
Qualitative analysis of different methods for autodelineating organs-at-risk. 
Dichotomized 4-point Likert scale as detailed in Supplementary Table 2 is 
used.

Structure Method Score

Accept/Minor % (n) Major/Reject % (n)

Heart RIR 4 % (2) 96 % (43)
DIR 78 % (35)* 22 % (10)
DLS 71 % (32)* 29 % (13)

Kidney_L RIR 11 % (5) 89 % (40)
DIR 20 % (9) 80 % (36)
DLS 98 % (44)* y 2 % (1)

Kidney_R RIR 16 % (7) 84 % (38)
DIR 24 % (11) 76 % (34)
DLS 96 % (43)* y 4 % (2)

Liver RIR 2 % (1) 98 % (44)
DIR 9 % (4) 91 % (41)
DLS 89 % (40)* y 11 % (5)

Lung_L RIR 16 % (7) 84 % (38)
DIR 98 % (44)* 2 % (1)
DLS 98 % (44)* 2 % (1)

Lung_R RIR 11 % (5) 89 % (40)
DIR 98 % (44)* 2 % (1)
DLS 100 % (45)* 0 % (0)

Spinal_cord RIR 16 % (7) 84 % (38)
DIR 100 % (45)*^ 0 % (0)
DLS 82 % (37)* 18 % (8)

Spleen RIR 9 % (4) 91 % (41)
DIR 44 % (20)* 56 % (25)
DLS 96 % (43)* y 4 % (2)

Stomach RIR 0 % (0) 100 % (45)
DIR 0 % (0) 100 % (45)
DLS 56 % (25)* y 44 % (20)

RIR=Rigid Image Registration, DIR=Deformable Image Registration, DLS=Deep 
Learning Segmentation
* Statistically significantly larger proportion accepted/minor than for RIR with 
p < 0.001.
† Statistically significantly larger proportion accepted/minor than for DIR with p 
< 0.001.
^ Statistically significantly larger proportion accepted/minor than for DLS with p 
< 0.010.
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ProtOnART-workflow will require a clinical approval, expressing the 
need for qualitative assessments that remain the gold standard [30,31]. 
Using our findings, we also assessed whether these autodelineations 
could be used to generate clinically acceptable ATPs without further 
user input.

Apart for lungs, heart and spinal cord, DLS was the preferred method 
for autodelineation. For lungs and heart, DIR was slightly preferred, 
based on DICE and MeanDTA scores. For spinal cord, both qualitative 
and quantitative evaluations favoured DIR. For the EC-CTV, propagation 
using DIR_focus was preferred, though the difference compared to other 
DIR methods was small. About 40 % of the propagated CTVs required 
major annotations prior to clinical approval that is an inherent part of an 
online adaptive workflow. Boekhoff et al. reported that online contour 
adaptation takes close to 20 min using Elekta Unity MR-Linac [15]. 
Improving guideline-based EC-CTV autodelineation will likely reduce 
the need for major annotations and is therefore a priority [20].

Rejections of fully automated ATPs were mainly due to GT-CTV 
coverage, especially when accounting for uncertainties by robust 

evaluation. This indicates the importance of improving autodelineation 
of the EC-CTV. Some rejections, however, could also be attributable to 
small differences that can be considered within the scope of interob-
server variability. Even after introduction of consensus guidelines, 
interobserver variability results in DICE scores and HDs in the vicinity of 
0.85 and 2.5 mm respectively that are similar in order of magnitude to 
our automated propagations (average DICE and HD of 0.89 and 1.21 mm 
respectively) [20]. Future tools could aid clinicians in identifying only 
the dosimetrically relevant regions for annotation [32]. This likely 
contributed to the larger number of rejections in GT-CTV-V95%>99 % 
when compared to GT-CTV-V95%>98 % or GT-CTV-V95%>97 % and in 
ATP3mm when compared to ATP7mm. Acknowledging the impact of 
interobserver variability while still assuring adequate coverage of the 
target volume, we proposed to reduce the GT-CTV-V95% objective to 97 
or 98 % in evaluation, as opposed to 99 % used in optimisation. This is 
also how the need for (offline) replanning based on weekly surveillance 
repeat CTs is identified within the PROTECT-trial [9]. Additionally, 
robust evaluations were performed using the isotropic shifts of 7 mm 

Fig. 1. Quantitative analysis of autodelineation of organs-at-risk Quantitative analysis of autodelineation of respective organs-at-risk comparing validated ground 
truth contours with rigid image registration (RIR), deformable image registration (DIR) or deep learning segmentation (DLS). Metrics used are Dice similarity co-
efficient (DICE, first plane), mean distance to agreement (meanDTA, second plane) and Hausdorff distance (HD, third plane). Based on these findings, DLS appears to 
be the preferred method for autodelineation for all organs-at-risk, except for spinal cord, lung and heart where DIR is preferred. Significance: * indicated p < 0.005; +
indicates p < 0.050.
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and 3 mm for respectively ATP7mm and ATP3mm which could potentially 
be reduced within a ProtOnART-workflow. Research guiding online 
adaptive planning optimization and evaluation parameters is needed. 
Our findings show the limitations (limited sensitivity and specificity) of 
a qualitative contour evaluation in identifying ATP-rejections. This 
highlights the difficulty in determining when to adapt a PT-plan. Rather, 
in absence of clear and accurate triggers, efficient day-to-day adaptation 
is a better alternative as is used in commercially available systems for XT 
with CBCT-guidance (Ethos, Varian Medical Systems, Palo Alto, CA, 
USA) and MR-guidance (Unity, Elekta AB, Stockholm, Sweden).

Our analysis has some limitations. First, in this ProtOnART- 
simulation we retrospectively used data from three weekly simulation 
CT-scans. Day-to-day variations could be less pronounced and result in 

favourable propagation of contours. The repeated ATP-rejections in the 
same patient indicate anatomical shifts in CT2-4 when compared to the 
baseline treatment plan (CT1). In practice, one would change the 
reference CT, likely reducing ATP-rejections. Furthermore, ProtOnART 
is ideally CBCT-based, compared to our simulation implying use of in- 
room CT. Nonetheless, clinical application is still lacking given con-
cerns about accuracy [12]. Second, we identified one single autodeli-
neation method per structure to be used while other methods could be 
favoured in select cases. For example, one in three patients did not have 
DIR_focus as preferred propagation method for the CTV. However, nor 
the 4-point Likert scale for qualitative evaluation, nor the quantitative 
evaluation suggested other propagation methods would significantly 
improve results. Furthermore, within ProtOnArt, there is no (computa-
tional) time nor resources to generate and evaluate multiple variations 
of the same structure. We did not evaluate time parameters during our 
analyses as data would not accurately represent clinical application in 
the, at time of writing, absence of a publicly available system for Pro-
tOnART to test. However, our qualitative analysis used a 90-second 
expected annotation cutoff to determine major variations. Nearly half 
of the autodelineated CTVs surpassed this threshold, confirming delin-
eation to be a significant bottleneck [12]. For planning, timing will 
depend on computational power and uncertainty parameters used [33]. 
The extra time for ProtOnART in the thoracic region should be limited to 
10–15 min [34], including integration between imaging, TPS and 
treatment delivery system as well as QA (not evaluated in our analysis). 
Third and finally, we only evaluated tools available in one commercial 
system (RayStation) as this would be capable to perform the 
ProtOnART-workflow. Other automation tools could deliver different 
conclusions.

In conclusion, we have offered the necessary input needed for 
delineation and planning within a clinically applicable ProtOnART- 
workflow for EC. Our findings underline that clinical and dosimetric 
evaluations are both needed within this workflow and full automation is 
currently not accurate enough. We believe an executable EC- 
ProtOnART-workflow is feasible. Nonetheless, improvements for (CTV- 
)autodelineation, finetuning of the planning/QA steps and integration of 
software and hardware are required to speed up the workflow and allow 
clinical implementation. ProtOnART will require close collaboration 
between radiation oncologists, radiation therapists and medical physics 
experts to provide the needed care for this innovative treatment concept.
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