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Abstract

Community detection in complex networks is an important issue in network science. Several

statistical measures have been proposed and widely applied to detecting the communities

in various complex networks. However, due to the lack of flexibility resolution, some of them

have to encounter the resolution limit and thus are not compatible with multi-scale structures

of complex networks. In this paper, we investigated a statistical measure of interest for com-

munity detection, Significance [Sci. Rep. 3 (2013) 2930], and analyzed its critical behaviors

based on the theoretical derivation of critical number of communities and the phase diagram

in community-partition transition. It was revealed that Significance exhibits far higher resolu-

tion than the traditional Modularity when the intra- and inter-link densities of communities

are obviously different. Following the critical analysis, we developed a multi-resolution ver-

sion of Significance for identifying communities in the multi-scale networks. Experimental

tests in several typical networks have been performed and confirmed that the generalized

Significance can be competent for the multi-scale communities detection. Moreover, it can

effectively relax the first- and second-type resolution limits. Finally, we displayed an impor-

tant potential application of the multi-scale Significance in computational biology: disease-

gene identification, showing that extracting information from the perspective of multi-scale

module mining is helpful for disease gene prediction.

1 Introduction

Complex systems, including the artificial and natural ones in the real world, can be properly

described as complex networks that consist of vertices and links. Typical examples contain the

social, biological, and computer information networks. Currently, it has been recognized that
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networked description of complex systems is a kind of useful approach to study the structures

of and dynamical processes on these systems. Although networked structures are abstracted

out from different complex systems, they exhibit many common topological properties [1, 2],

such as small-world property, scale-free features and modularity. Among them, the modularity

indicates that the networks are generally organized by the communities with dense inner-con-

nections and sparse outer-connections. Community structure is a special perspective for

understanding the structures and functions of complex networks and can also significantly

affect the dynamical behaviors on networks [3–8]. For example, when the epidemic spreads on

a network with clear community structure, the local targeted immunization will be more effec-

tive than global targeted one for preventing the epidemic outbreak [9]. Also, the cooperation

under strong selection is closely related to the density of communities in social networks [10].

For another example, the genes associated with the same or similar disease phenotypes are

usually involved in the same molecular module or pathways leading to the disease. Thus, com-

munity or module can be helpful for identifying the disease genes [11] and understanding the

disease processes [12].

Benefited from the underlying implications, many community-detection methods have

been proposed and developed during the past decade [13–30]. Typical examples include the

spectral analysis [22], random walk [23–25], label propagation [30], dynamic evolutionary

[26–29], and modularity optimization [31, 32]. They could effectively identify community

structures in complex networks and are helpful for understanding their underlying functions.

However, some of them were found to have respective scopes of application. For instance,

phase transitions from detectable to undetectable community structures were found to exist in

the methods based on modularity optimization and Bayesian inference [33–35]. In addition,

some limitations have been uncovered for the recently proposed modularity density maximisa-

tion algorithm [36]. Especially, as a paradigm of some community-detection methods, Modu-
larity was found to have the (first-type) resolution limit where communities below certain

scale cannot be identified [37]. Similarly, the resolution limit has be also suffered by some

other global measures. In order to solve or alleviate these problems, several schemes [15, 38,

39], such as the random walk network preprocessing [39] and the analysis of correlation

between communities [15], have been recently suggested. Also, due to the important implica-

tion for biomedical research, the Disease Module Identification DREAM Challenge [40] have

been initiated as a joint effort to comprehensively evaluate module identification methods on

gene and protein networks. All these facts suggest that it is still necessary to investigate the

community-detection methods in detail, aiming to understand the methods themselves and

improve them. In particular, the resolution limit implies that community structures generally

distribute at multiple scales [1], and thus it is naturally required to develop methods with a

adjustable resolution to identify the multi-scale communities in complex networks.

In literatures, some methods with flexible resolution have been proposed to analyze multi-

scale communities in networks based on distinct approaches [14, 41–45], such as the correla-

tion between dynamics and multi-scale structures [25, 46–48], the local optimization of fitness

functions [49], and Potts model [30, 44, 47, 50, 51]. However, a simplest and effective scheme

for solving the problem of resolution limit is to introduce a tunable resolution parameter into

the quantitative measure evaluating accuracy or quality of network partition [41, 45]. Particu-

larly, one standard framework for the multi-resolution Modularity was proposed recently by

using the general rescaling strategy [14] where several important measures have been well uni-

fied [41, 44, 45, 51].

It is well known that one of most popular methods is to detect the community structures by

directly optimizing statistical measures (e.g., Modularity [52], Hamiltonian [44], Partition den-

sity [53, 54]). In reference [55], Traag et al proposed a statistical measure of interest for
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community detection, called Significance. It evaluates how likely dense communities appear in

random networks by,

S ¼
P

s
ns

2

� �
Dðps k pÞ

¼
X

s

nsðns � 1Þ

2
psln

ps
p
þ ð1 � psÞln

1 � ps
1 � p

� �

; ð1Þ

where ns denotes the number of vertices in community s; ps is the link density of community s,
i.e., the ratio of the number of existing links to the maximum within the community; p denotes

the link density of whole network, i.e., the ratio of the number of existing links to the maxi-

mum in the whole network; the sum runs over all communities. This measure was initially

used to evaluate the significant scale of community structures, but it could also be directly opti-

mized as a target function to search for the optimal community partitions [55]. It was shown

that Significance has a good performance in some networks, due to its high resolution. But it is

still a kind of single-scale method with limited resolutions and thus not compatible with the

multi-scale structure in complex networks.

In this paper, we firstly discuss the critical behavior of Significance and analyze its resolu-

tion, by analytically deriving the critical number of communities in community-partition tran-

sition. Following the theoretical analysis, the multi-resolution method based on Significance,
i.e., an extension of Significance to the multi-scale networks, is then designed by using a resolu-

tion parameter to adjust the random model. Finally, the multi-resolution Significance are

tested experimentally on various baseline networks, to demonstrate the efficiency for identify-

ing the multi-scale communities and resolving the problem of resolution limit.

2 Phase transition of Significance in community detection

In order to learn about the critical behavior of Significance in community-partition transition

and provide a theoretical basis for designing the multi-resolution method based on Signifi-
cance, we here conduct the critical analysis of Significance and discuss its resolution in commu-

nity detection by analytically deriving the critical number of communities for community

merging.

2.1 Critical analysis of Significance
For the sake of convenience of analysis, a set of computer-generated, called community-loop

networks, are firstly introduced. In each community-loop network, a total of r communities is

connected one by one and each community has nc vertices. The probability of linking vertices

within community and between two adjacent communities are denoted by pi and po, respec-

tively. An example for the community-loop network is shown in Fig 1. To investigate the criti-

cal behavior of Significance in partition transition, we may assume a set of partitions where

each partition contain r/x groups of vertices and each group contains x adjacent communities.

For any partition of this kind, Significance can be then written as

Sx ¼
r
x

x � nc

2

� �
Dðpx k pÞ

�
r � x � n2

c

2
pxln

px
p
þ ð1 � pxÞlnð1 � pxÞ

� �

;

ð2Þ

where px ¼
pi
x þ

2ðx� 1Þpo
x2 , p ¼ piþ2po

r , and 1 − p� 1 for large r-value. In the networks, the
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predefined community partition corresponds to the case with x = 1, while x� 2 means the par-

titions with communities merging.

Significance is a multivariate function, which is closely related to various network parame-

ters. For the sake of visual illustration, Fig 2(a)–2(c) shows the curves of Significance with sev-

eral different network parameters. As can be seen from Fig 2(a), for small r values, S(x)/S(1)

monotonously decreases with the increase of x, so that S(x)/S(1) is always less than 1 which

indicates that any coalescence of communities do not occurs. But, for large r values, a signifi-

cant peak appears at x = 2 where S(x)/S(1)>1. This implies that some communities have

merged into a single and large one. The similar situation can be also found from the curves of

S(r) with x = 2 and 3. From Fig 2(b), one can noted that all communities can survive separately

and do not merge with each other when r is relatively small. However, with the increase of r, S
(r, x)/S(r, 1) will increase continuously and be significantly larger than 1, which implies that

communities have began to merge. Moreover, with the increase of r, S(r, x = 2 and 3) will be

larger than others in turn, which indicates that the merging of communities for x = 2 and 3

will be preferred, compared with x = 1. In addition, with the increase of po/pi, the Significance
normalized by the number m of links existing in network, i.e. S/m, decreases for all different x
values, and S(x = 1, 2 or 3) will be larger than others in turn (see Fig 2(c)). This means that the

partition for x = 1, 2 and 3 will be preferred in turn. Other statistical measures, such as Surprise
and Modularity, have similar phenomena, but different statistical measures have different criti-

cal points in partition transition.

Fig 1. An example of community-loop network. An example of community-loop network and the definitions of network parameters.

https://doi.org/10.1371/journal.pone.0227244.g001
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2.2 Resolution of Significance in community detection

As we show above, the merging of communities may appear, or say, be allowed in some cases.

When Sx> S1, the partition identified by Significance will be the partition with communities

merging while not the predefined one. In order to theoretically analyze the critical points of

Significance for community merging, we focus on the transition of partition from x = 1 to 2.

According to Eq 2, the critical condition reads
2nc

2

� �

Dðp2 k pÞ � 2
nc

2

� �
Dðp1 k pÞ ¼ 0 (see

Appendix A). By solving the equation for r, one can obtain the critical number of communi-

ties,

r� � expf
1

2p2 � p1

½p1lnðp1Þ þ ð1 � p1Þlnð1 � p1Þ � 2p2lnðp2Þ

� 2ð1 � p2Þlnð1 � p2Þ� þ lnðpi þ 2poÞg

¼ ðpi þ 2poÞexp
2Hðp2Þ � Hðp1Þ

2p2 � p1

� �

¼ ðpi þ 2poÞexp
1þ 2DH=Hðp1Þ

1þ 2Dp=p1

�
Hðp1Þ

p1

� �

;

ð3Þ

where p2 = (pi + po)/2 (p1 = pi), H(y) = −y ln(y) − (1 − y) ln(1 − y) is the information entropy;

ΔH = H(p2) −H(p1) and Δp = p2 − p1. Obviously, the critical number of communities at parti-

tion transition point is extremely dependent on the variations of information entropy resulted

Fig 2. Critical behavior of Significance in partition transition. (a) Relations between Significance S and the number x
of communities merging in the networks with different sizes. Significance is normalized by S(x = 1), i.e. the Significance
for the pre-defined partition. (b) Relations between the normalized Significance for various x and the number r of pre-

defined communities. (c) Significance as a function of po/pi for distinct x, where Significance is normalized by the

number m of links in the networks. (d) The critical number r� of communities for communities merging as a function

of po/pi, which represents the phase transition in network partition by three different methods, i.e., Significance,
Surprise and Modularity.

https://doi.org/10.1371/journal.pone.0227244.g002
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from the link-density changes in a community. For comparison, the critical number of com-

munities for Modularity is also derived by r� = pi/po + 2. Because of the complexity of nonline-

arity of Surprise, its critical point is difficult to be obtained analytically.

In Fig 2(d), we presented the phase diagrams of partition transition for Surprise, Modularity
and Significance according to their critical numbers, where the partition with community-

merging appears above the corresponding curves, while not below the curves. It is not unex-

pected that the resolution of Significance decreases with the increase of po/pi. Because the num-

ber of links between communities gradually increases and the differences between the intra-

and inter-link densities will decrease with the increase of po/pi, the community structures

become more and more unclear. Naturally, the resolution of Significance decreases. Similar sit-

uations can be found for Surprise and Modularity. However, it should be noted that Signifi-
cance has highest resolution, while Modularity has lowest resolution. Especially for small po/pi
values, the critical number r� of Significance dramatically increases with the decrease of po/pi,
so that it is far larger than that of Modularity. This implies that Significance generally tends to

split communities in networks, especially for the networks with low inter-community link

density, and can usually detect more communities than other methods.

2.3 Experimental results of resolution limit

In this section, we experimentally tested the resolutions of these measures based on a direct

optimization. Usually, one can employ the Normalized Mutual Information (NMI) [56], a

measure of similarity originating from information theory, to estimate the performance of the

community-detection methods. In fact, NMI presents the similarity between two community

partitions, and reveal the amount of community information correctly obtained in the net-

works with known community structures. If two community partitions are matched perfectly,

NMI will be equal to 1. While the smaller NMI means less matching. Also, the Fraction (Fr) of

vertices affected by merging of communities is calculated to demonstrate the performance of

these measures. As can be seen from Fig 2, it will be not easy to identify the predefined com-

munities when po/pi is very large, i.e., when the difference between the inter- and intra-com-

munity link densities is very small. In fact, some communities have merged into one group at

this time, which indicates the emergence of the resolution-limit problem. As a result, these

methods can not effectively identify all predefined communities in the network, so that their

NMIs decrease with the increase of po/pi (Fig 3(a) and 3(c)). Clearly, it is also seen from the

variations of Fr which are depicted in Fig 3(b) and 3(d). Moreover, the more the predefined

communities, or the larger the network size, the quicker the communities merge for these

methods. However, with the increase of po/pi, NMI of Significance is larger and the significant

reduction is later than that of Modularity, which indicates that Significance can remarkably

outperform Modularity. In addition, by combining Figs 2(d) with 3, one can found that Signifi-
cance has a higher resolution than Surprise, but NMI of Significance seemly decreases more

quickly than that of Surprise. This is because Surprise has the so-called “potential well” effect.

General greedy optimization algorithms are difficult to get across the “potential well” to find

the final optimal solution [57]. However, Significance doesn’t encounter the “potential well”

effect (see Appendix B).

Further, we apply the measures to a set of networks with tunable sizes, i.e., Lancichinetti-

Fortunato-Rachicchi (LFR) networks [58]. They have heterogeneous structures and some

other statistical properties exhibited by many real-word networks. In addition, the NMI may

result significantly non-zero when two random partitions with large numbers of groups are

compared, because random coincidences become likely in this case. Similarly, it may result in

artificially large values, even when two non-random partitions are compared if these have a
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large number of groups. To counter balance for such bias, several metrics alternative to the

NMI were introduced [59–61]. It seems that Significance tends to favor the detection of small-

scale structures, potentially returning partitions with more communities (i.e. groups) than

other methods such as those based on Modularity Maximization. It is convenient, then, to use

one of these alternative metrics to judge the benefits of the Significance as compared to that of

Modularity. Therefore, we also employed two other metrics: the adjusted mutual information

(AMI) [59] and the adjusted Rand index (ARI) [59], to comprehensively estimate the perfor-

mances of these community-detection methods. As is shown in Fig 4(a)–4(c), all three metrics

indicate that Significance gets a somewhat better performance than Surprise, and significantly

overcomes Modularity, especially for the LFR networks with a large mixing parameter. Of

course, with the increase of the mixing parameter, it will be also difficult that both Significance
and Surprise identify all predefined communities, because the resolution-limit problem will

appear and even become more severe. Finally, the network-size effects is also investigated to

assess their performances, which are shown in Fig 4(d)–4(i). Interestingly, with the increase of

network size, NMI, AMI and ARI for both Significance and Surprise gradually increase, while

decrease for Modularity, indicating that Significance and Surprise have better performance for

the large networks than Modularity.

3 Analysis of multi-resolution method based on Significance

3.1 Multi-resolution Significance and its resolution

In view of the emergence of multi-scale community structures in many realistic networks,

both Modularity and Surprise have been extended to the corresponding multi-scale versions.

However, the traditional Significance is still a single-scale method in spite of its high resolution

Fig 3. Normalized mutual information and fraction of vertices affected by merging of communities in

community-loop networks. Normalized mutual information (NMI) calculated from three different methods, as a

function of po/pi in the community-loop networks with (a) r = 16 and (c) r = 64, respectively. Fr as a function of po/pi
in the networks with (a) r = 16 and (c) r = 64.

https://doi.org/10.1371/journal.pone.0227244.g003
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and well performance for community detection. As we know, in order to obtain the corre-

sponding multi-scale methods, a simplest and effective approach is to introduce a additional

variable to adjust the weight of the referential random network (i.e. the null model). Because

Significance depends on the difference between the link density of community and the link

density of network, i.e., the expected value in a null model, we can easily extend the traditional

Significance to a multi-scale version by introducing a resolution parameter to adjust the link

density of network. So, that is to say, we may modify the traditional Significance as

SðgÞ ¼
P

s
ns

2

� �
Dðps k ~pÞ

¼
X

s

nsðns � 1Þ

2
pslnps~p þ ð1 � psÞln

1 � ps
1 � ~p

� �

; ð4Þ

where ~p ¼ g � p and γ is the resolution parameter. Of course, the critical point of Significance

Fig 4. Normalized mutual information, adjusted mutual information and adjusted Rand index in LFR networks. Three different metrics: (a) Normalized mutual

information (NMI), (b) Adjusted mutual information (AMI) and (c) Adjusted Rand index (ARI), obtained by three different methods versus the mixing parameter in the

LFR networks [58], where the mixing parameter in the LFR networks is defined as a free parameter to adjust the ratio between the external degree of each vertex with

respect to its community and the total degree of the vertex. (d)-(i) The network-size effects for these metrics in LFR network with two typical mixing parameters.

https://doi.org/10.1371/journal.pone.0227244.g004
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for communities merging should be also changed accordingly as

r� � gðpi þ 2poÞexp
2Hðp2Þ � Hðp1Þ

2p2 � p1

� �

: ð5Þ

For comparison, we also give the critical point for the multi-resolution Modularity, i.e., r� = γ
(pi + 2po)/po. Obviously, with the increase of the resolution parameter, the resolution of these

methods increases.

The multi-resolution Modularity can identify the communities that are undetectable for the

original Modularity and the community structures at different scales, by varying the resolution

parameter. Similarly, the multi-resolution Significance is also able to detect the communities

beyond the resolution of original Significance and identify the community structures at differ-

ent scales. Moreover, one can use any effective algorithms to search for the optimal values of

the statistical measures for community detection. Here, we use the Louvain procedure. Lou-

vain process is a widely used and efficient algorithm, though its exact computational complex-

ity is not known. Most of its computational effort is spent on the optimization at the first level,

taking a time O(nkm f) if we control the maximal iteration times, where n is the number of

nodes, km is the mean degree of nodes, and f is the number of operations of calculating S-value

each time (on average the number of communities that each node connects to is less than the

number of neighbors of the vertex).

3.2 Attack to the first-type resolution limit

As discussed above, because of the lack of flexible resolution, the original Significance and

Modularity cannot identify communities below a certain scale, which will be merged into large

communities. This means the appearance of the first-type resolution limit. In order to test the

performance of these multi-resolution methods, we apply them to detect the multi-scale com-

munities in both the community-loop network and LFR one. As shown in Figs 5 and 6, the

multi-resolution Significance and Modularity can successfully solve the resolution-limit prob-

lem, where those predefined communities have been identified correctly at a suitable resolu-

tion. Of course, as should be pointed out, with the increase of po/pi values, the needed value of

the resolution parameter for solving the first-type resolution limit increases. This means that it

is more and more difficult to identify the predefined communities.

3.3 Strong tolerance to the second-type resolution limit

When applying a multi-resolution method to detect the multi-scale communities in a network,

some unstable and large communities can be split before small communities become detect-

able. This phenomenon, called as the second-type resolution limit, can be generally encoun-

tered only if the difference of community size is large enough [43, 45]. Therefore, in order to

comprehensively assess the community detection methods, the second-type resolution limit

should be also considered as a important criteria for assessing their effectiveness. Here, a set of

Fortunato and Barthélemy (FB) networks [37] was adopted to test the ability of the proposed

multi-resolution Significance against the second-type resolution limit. For comparison, the

multi-resolution Modularity have been also tested experimentally.

As is demonstrated in Fig 7(a), when the size of the large community is not significantly

larger than that of the small community, the multi-resolution Modularity may detect all prede-

fined communities in the FB network by choosing a suitable resolution parameter, whose par-

tition was marked by Nd = 4 in Fig 7(a). In fact, due to the small difference of size among these

predefined communities in the FB network, Modularity does not suffer from the second-type

resolution limit at all. However, when the relatively large difference of community sizes is set
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in the FB network, it become difficult to detect the predefined partition. As shown in Fig 7(b),

in order to detect the predefined and small communities, one has to increase the resolution

parameter, but at this time, the large communities have been split into many small cliques by

Modularity. Therefore, the multi-resolution Modularity can not solve, at least not well alleviate

the problem of the second-type resolution limit, in spite of its adjustable resolution parameter.

Interestingly, the multi-resolution version of Significance is able to correctly identify the

predefined community partition in the two networks with small and large community-size dif-

ference, as shown in Fig 7(c) and 7(d). This means the strong tolerance of the multi-resolution

Significance for the second-type resolution limit. It can detect the community structures in the

networks better than Modularity.

3.4 Effectiveness of identifying multi-scale community structures

The flexible resolution of multi-resolution Significance can help in detecting communities at

multiple scales. To further test the ability of multi-resolution Significance to identify multi-

scale community structures, we firstly employed two kinds of computer-generated networks

with a well-defined hierarchical community structure, i.e., the homogeneous hierarchical net-

work [62] and the heterogeneous hierarchical network [63]. They have been widely used as a

Fig 5. Normalized mutual information in community-loop networks with different po/pi values. NMI calculated by using (a) Significance
and (b) Modularity, as a function of resolution parameter γ, in the community-loop networks with r = 64 and several typical values of po/pi.

https://doi.org/10.1371/journal.pone.0227244.g005
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benchmark for testing various community-detection methods. The homogeneous hierarchical

network [62] is generally constructed to include two hierarchical levels of communities. Here,

we assume that each homogeneous hierarchical network is composed of 256 vertices. At the

first level (L1), these 256 vertices are equally divided into 16 groups, and thus every group

includes 16 vertices. The second level L2 contains four relatively large groups where each of

them is composed of four different groups of the above first level. The vertices in the network

are connected by setting the number of internal links of each vertex within the first-level com-

munity and within the second-level one as kin0 and kin1, respectively. The number of links with

any other vertex at random in the network is 1. The heterogeneous hierarchical networks we

generate are as follows: 1000 vertices and two predefined hierarchical levels are firstly pre-

scribed. The number of links is controlled by fixing the average degree of vertices to be 20. The

maximum degree is set to be 50. The sizes of these micro communities distributed between 10

and 25 which constitute the micro level of a homogeneous hierarchical network, while the

sizes of communities at the macro level are changed from 50 to 100. In addition, two mixing

parameters, μ1 and μ2, are treated as free ones to adjust the fraction of links between vertices

belonging to different macro communities and belonging to the same macro but not micro

Fig 6. Normalized mutual information in LFR networks with different μ values. NMI calculated by using (a) Significance and (b)

Modularity, as a function of resolution parameter γ, in the LFR networks with N = 1000 and several values of μ. Other parameters are the same

as in Fig 4.

https://doi.org/10.1371/journal.pone.0227244.g006
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community, respectively. The remaining parameters are adopted according to the default val-

ues of program.

In the homogeneous hierarchical network, all communities predefined at two different lev-

els can be well detected by both the multi-resolution Modularity and Significance. In Fig 8, the

network partitions predefined at two levels have been correctly identified which are marked by

L1 and L2, respectively. When comparing Fig 8(a) and 8(c) with Fig 8(b) and 8(d), one can

find that the leap of Nd from L1 to L2 will occurs at a smaller value of the resolution parameter,

which means that the smaller the number of internal links of each vertices at the second level

(kin1), the smaller the required resolution parameter can be for detecting the communities at

the second level L1. Because kin1 controls the density of links between the first-level communi-

ties, the small kin1 means the sparse links among the first-level communities which leads to the

first-level communities are easily identified.

In Fig 9, we find that the original Modularity, i.e., the multi-resolution Modularity with γ =

1, could only identify these heterogeneous communities predefined at the macro level, while

Fig 7. Number of identified communities and normalized mutual information in FB networks. Number of identified communities Nd and

Normalized mutual information NMI, by multi-resolution Modularity (a)-(b) and multi-resolution Significance (c)-(d), versus the resolution parameter γ,

in the FB networks. Each FB network is composed of four predefined communities, i.e., two large communities with n1 vertices and two small

communities with n2 vertices. The partition corresponding to Nd = 3 indicates that two predefined small cliques have been identified as a single

community, while the situation for Nd = 4 means that all predefined four communities have been exactly identified.

https://doi.org/10.1371/journal.pone.0227244.g007
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the original Significance, could only identify these heterogeneous communities predefined at

the micro level. However, their corresponding multi-resolution versions may well detect all

these predefined communities at both the macro and micro levels by adjusting the resolution

parameter, as marked by L1 and L2 in Fig 9. In addition, with the increase of μ1, the resolution

parameter γ is required to reach a larger value for detecting the predefined communities at the

macro level. Obviously, a large μ1 means the relatively dense links between two different

macro-level communities which naturally causes these macro communities would be not eas-

ily split. Thus, a relative large value of γ is needed to identify the macro-level communities.

In general, both the homogeneous and heterogeneous hierarchical networks include only

two hierarchical levels of communities. Naturally, one can expect that these multi-resolution

methods can be competent for community identification in the networks with several levels or

scales of organization. In view of the hierarchical organization of many real-world networks,

Yang et al. proposed a good hierarchical benchmark graph for testing various community

detection algorithms [64]. The hierarchical benchmark is constructed by combining the LFR

Fig 8. Number of identified communities and normalized mutual information in homogeneous hierarchical networks. Number of identified

communities Nd and Normalized mutual information NMI, by the multi-resolution Modularity (a)-(b) and the multi-resolution Significance (c)-(d), as a

function of resolution parameter γ, in the homogeneous hierarchical networks with two hierarchical levels of homogeneous communities. L1 and L2 are

marked to highlight the two predefined scales in the networks. NMI-1 denotes the NMI between the identified partition and the predefined partition at

the first level L1. NMI-2 is the NMI between the identified partition and the predefined partition at the second level L2.

https://doi.org/10.1371/journal.pone.0227244.g008
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benchmark graphs and the rule of constructing hierarchical organization proposed by Ravasz

and Barabási, and thus is named as the Ravasz-Barabási-Lancichinetti-Fortunato-Radicchi

(RB-LFR) benchmark [64]. Besides the properties of the standard LFR network, the RB-LFR

benchmark possess a clear hierarchical organization with an arbitrary number of levels, which

is a challenging benchmark for various community-detection methods. In the present paper,

we employed the RB-LFR networks with three levels to test the multi-resolution versions of

Modularity and Significance. The results have been shown in Fig 10. For two typical mixing

parameters of seed LFR benchmark, three different ground truths: seed-replica-replica (abbre-

viated to S-R�2), replica-replica-seed (abbreviated to R�2-S) and Flat, are well identified.

As should be noted in Fig 10 that for a single mixing parameter, only two ground truths can

be well defined. In order to obtain a richer hierarchical community structure, we thus

extended the RB-LFR network by setting different probabilities of randomly removing connec-

tions between the seed communities and the replicas for the different hierarchies. In these

extended RB-LFR benchmarks with three levels, three different community structures

Fig 9. Number of identified communities and normalized mutual information in heterogeneous hierarchical networks. Number of identified

communities Nd and Normalized mutual information NMI, by the multi-resolution Modularity (a)-(b) and the multi-resolution Significance (c)-(d),

versus the resolution parameter γ. The heterogeneous hierarchical networks is composed of two hierarchical levels of heterogeneous communities. L1 and

L2 are marked to highlight the predefined scales at the micro and macro levels, respectively. NMI-1 denotes the NMI between the identified partition and

the predefined partition at the micro level L1. NMI-2 is the NMI between the identified partition and the predefined partition at the macro level L2.

https://doi.org/10.1371/journal.pone.0227244.g009
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corresponding to three different hierarchies may be well defined for each of the mixing param-

eters. For instance, when the mixing parameter is small enough (e.g., μ = 0.01) and the proba-

bilities p1 and p2 of removing connections are small (e.g., p1 = 0.1 and p2 = 0.3), the

communities for every LFR (including seed LFR and its replicas) can been well defined on the

first level (or upper level), and two levels of community structures (i.e., two seed-replica-repli-

cas), corresponding to the second and the third hierarchy, can be then defined. When the mix-

ing parameter is large (e.g., μ = 0.4) and the probabilities p1 and p2 of removing connections

are large enough (e.g., p1 = 0.5 and p2 = 0.9), the first level is the same as the case for small mix-

ing parameter, and the second and third levels are refereed to two kinds of Flats. The testing

results of the multi-resolution Significance and Modularity in the extended RB-LFR networks

are shown in Fig 11. It is found that when the mixing parameter is small, it is very difficult for

the multi-resolution Modularity to detect three different community structures corresponding

to three levels of organization, while the multi-resolution Significance can still plausibly

Fig 10. Number of identified communities and normalized mutual information in the RB-LFR networks. Number of identified communities Nd and

Normalized mutual information NMI, by the multi-resolution Modularity and the multi-resolution Significance (top and bottom, respectively), as a function of

resolution parameter γ, in the RB-LFR networks with three hierarchical levels. The mixing parameters are μ = 0.01 and 0.4 for the left and right panels,

respectively. L1, L2, and L3 denote the three predefined levels in the networks. “S-R�2” is an abbreviation of “seed-replica-replica”, and “R�2-S” is an

abbreviation of “replica-replica-seed”. Thus, “L1: S-R�2” denote the ground truth of seed-replica-replica at level 1, while “L3: R�2-S” denote the ground truth of

replica-replica-seed at level 3.

https://doi.org/10.1371/journal.pone.0227244.g010
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identify all ground truths at three levels due to its high resolution (see Fig 11(a) and 11(c)). For

the case of large mixing parameter, both the multi-resolution Modularity and Significance can

successfully identify the predefined community structures at every level (see Fig 11(b) and 11

(d)). However, it should be noted that the multi-resolution Significance can detect the ground

truth of replica-replica-seed at level 1 (i.e., L1: R�2-S) more explicitly than the multi-resolution

Modularity because Significance seems to be more competent for the detection of small-scale

communities than other methods such as Modularity.

4 Application to the disease-gene identification

Module/community structure is ubiquitous in biomedical networks. Network module analysis

is an important method for biomedical network research [65]. Here, we apply the multi-scale

significance method to some hot issues in current computational biology: the disease-gene

identification [66]. Identifying disease-related genes is of interest in the study of molecular

Fig 11. Number of identified communities and normalized mutual information in the extended RB-LFR networks. Number of identified communities Nd

and Normalized mutual information NMI, by the multi-resolution Modularity and the multi-resolution Significance (top and bottom, respectively), as a

function of resolution parameter γ, in the RB-LFR networks with three hierarchical levels. The mixing parameters are μ = 0.01 and 0.4 for the left and right

panels, respectively. The levels and the ground truths at various levels are denoted as the corresponding abbreviations with the same rule of Fig 10.

https://doi.org/10.1371/journal.pone.0227244.g011
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mechanism of disease. It is of great significance for the diagnosis, treatment and prognosis

analysis of diseases.

Many candidate gene prioritization methods have been proposed based on protein network

analyses. The theoretical basis of the network-based methods is that genes associated with the

same or similar disease phenotypes are not randomly distributed in the network, and tend to

form disease-gene modules together [67, 68]. Module structure is an important property of

protein networks [69]. It is clear that protein functions arise from modular characteristics and

that mutations of proteins in the same module can lead to similar disease phenotypes [70]. We

have showed that identifying (single-scale) disease-related modules/communities is helpful to

the identification of disease-related genes [71]. Here, we further extract multiple-scale module

partitions from an integrated protein network [72] by using our multi-scale significance and

then score all modules and genes according to the fraction of disease-related genes in modules

so as to identify unknown disease-related genes (denoted by MSS).

Network-based methods for identifying disease-related genes at least need two types of

data: protein networks and known disease-related genes for a disease. Here, we used the inte-

grated protein network that consists of physical protein interactions from several sources [72]:

literature-curated datasets, regulatory interactions, binary interactions from several yeast two-

hybrid high-throughput, metabolic enzyme-coupled interactions, protein complexes, kinase-

substrate pairs and signaling interactions. The set of diseases was manually chosen by a medi-

cal expert with the additional criteria of at least 20 associated genes reported in the literature

[72, 73]. The associations between genes and diseases were retrieved from OMIM (Online

Mendelian Inheritance in Man) and GWAS (Genome-Wide Association Studies).

We perform a 5-fold cross-validation for each disease. The disease gene set of each disease

was split into five parts, one of which is used as a test set and the rest as a training set for scor-

ing all modules and genes. Here, we calculate the proportion of disease genes in each module

directly as the score of genes in the module to evaluate the probability that these genes are dis-

ease-related genes. The results show that this approach could have considerable predictive per-

formance for identifying disease genes. For example, our module-based prioritization method

outperforms classical RWR [74] for the diseases: Cardiomyopathies, Hypertrophic Cardiomy-

opathy, Coronary Artery Disease, Muscular Dystrophies, Mycobacterium Infections, Heredi-

tary Spastic Paraplegia and Varicose Veins (see Fig 12(a)), and it outperforms both RWR and

PRINCE [75] for the diseases: Coronary Artery Disease, Muscular Dystrophies, Mycobacte-

rium Infections, Hereditary Spastic Paraplegia, Varicose Veins (see Fig 12(b)).

As we note, MSS uses totally different ways from other methods (e.g., RWR and PRINCE)

to extract disease gene information, and the complementation for different information may

bring about better results. Therefore, we try to accumulate the two scores of MSS and RWR

linearly to get a comprehensive gene score (denoted by MSS+). As expected, MSS+ effectively

improved the prediction performance of RWR and MSS(see Fig 12(c)). To display the

improvements more clearly, we further calculate the increment of AUC for each disease

obtained by MSS+ compared to MSS, RWR and PRINCE (see Fig 12(d)). It is clear that MSS

+ significantly improved the performance for predicting disease-related genes for most

diseases.

5 Conclusion

Identification of community structures has been a subject of interest in network science due to

its important implications for understanding the structures and functions of complex net-

works. Many methods have been proposed, aiming to find a optimal network partition. Partic-

ularly, some statistical measures, such as Modularity, Hamiltonian, Surprise and Significance,
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Fig 12. Comparison of four methods of disease-gene prediction. Comparison of Area Under ROC (receiver operating characteristic) Curves (AUCs) for several

diseases: (a) MSS vs RWR and (b) MSS vs PRINCE. (c) Comparison of AUCs obtained by MSS, MSS+, RWR and PRINCE. (d) Improvements of AUCs (ΔAUC)

obtained by MSS+, compared to MSS, RWR and PRINCE.

https://doi.org/10.1371/journal.pone.0227244.g012
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have been widely used for community detection, and also provided a basic framework for

developing new methods. However, it has been recognized that all of these methods have their

respective application scopes, and thus it is necessary to learn about the critical behaviors of

these traditional measures. Also, some of these methods lack the flexibility of resolution, lead-

ing to the resolution limit, and thus are not compatible with the multi-scale community struc-

tures of complex networks.

In this paper, we have investigated a statistical measure of interest for community detection,

i.e., Significance. The critical behaviors of Significance in community detection were analytically

studied based on the derived critical number of communities where the phase diagrams for

three distinct methods (Modularity, Surprise and Significance) were presented to demonstrate

the phase transitions in network partition and compare their resolutions. It has been revealed

that Significance generally has far higher resolution than Modularity. Of course, the resolutions

is closely related to the intra- and inter-link densities of communities. Moreover, the so-called

“potential well” effect will be encountered for Modularity, while not for Significance.
Thanks to the critical analysis, we have developed a multi-resolution Significance, which is a

generalization of Significance to detect the multi-scale communities in complex networks. In sev-

eral computer-generated networks, the multi-resolution Significance has been tested and also

compared with the multi-resolution Modularity. The results show that, similarly to the multi-res-

olution Modularity, the multi-resolution Significance can well solve the first-type resolution limit

by adjusting its resolution parameter. In addition, it has been demonstrated that both the multi-

resolution Significance and Modularity would suffer from the second-type resolution limit. Inter-

estingly, the multi-resolution Significance has stronger tolerance against the second-type resolu-

tion limit than the multi-resolution Modularity, due to its high resolution. In several hierarchical

networks with two or three levels, we have examined the performance of the multi-resolution

Significance and find that it can well detect the multi-scale communities in these networks.

Finally, the multi-scale Significance has been applied to the disease-gene prediction. The

results show that extracting information from the perspective of multi-scale module mining is

helpful for disease gene prediction, and its combination with other methods can effectively

improve the overall performance of prediction methods. However, there are still many issues

worthy of further in-depth study, e.g., how to extract the multi-scale module partitions of the

networks more effectively and how to combine information from different module partitions

effectively and so on. We will further study these issues in the next work.

In summary, we presented a detail critical analysis of Significance for community detection,

and proposed an alternative Significance-based approach to detect the multi-scale community

structures in complex networks. The results could be helpful for further understanding the

behavior of Significance, and provide useful insight into the investigation of community struc-

ture in complex networks. Also, it has an important implication to develop any other extension

of Significance in the future.

Appendix A

Critical condition of communities in partition transition

Consider a community-loop network consisting of r communities with nc vertices. For the pre-

defined community partition, p1 ¼
n2
c pi
n2
c
¼ pi, and p ¼ r�n2

c piþ2r�n2
c po

r2n2
c
¼

piþ2po
r . So,

S1 ¼
1

2
rncðnc � 1ÞDðp1 k pÞ

¼
1

2
rncðnc � 1Þ p1ln

p1

p
þ ð1 � p1Þln

1 � p1

1 � p

� �

;
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For the partition with r/2 groups of predefined communities, each of which has 2nc vertices,

p2 ¼
2n2

c piþ2n2
c po

4n4
c
¼

piþpo
2

. Thus,

S2 ¼
1

2
rncð2nc � 1ÞDðp2 k pÞ

¼
1

2
rncð2nc � 1Þ p2ln

p2

p
þ ð1 � p2Þln

1 � p2

1 � p

� �

� rn2
c p2ln

p2

p
þ ð1 � p2Þln

1 � p2

1 � p

� �

:

If S2 − S1 > 0, the partition with r/2 groups of predefined communities will be preferred, that

is to say,

2nc

2

� �

Dðp2 k pÞ � 2
nc

2

� �
Dðp1 k pÞ > 0: ðA1Þ ðA1Þ

By solving this equation for r, one can obtain the critical number of communities for

Significance.

Appendix B

Analysis of “potential well” effect in community detection

Generally, statistical measures for community detection, e.g., Modularity, allow one (or two)

group(s) of x-communities merging when a partition with r/x groups of x-communities is

allowed, or say, one (or two) group(s) of x-communities merging can lead to the increase of

the statistical measures. However, a “potential well” effect may occur due to the nonlinearity of

some statistical measures—one (or two) group(s) of x-communities merging can lead to the

decrease of the statistical measures even if a partition with r/x groups of x-communities has

higher values of statistical measures. Surprise and its asymptotical approximation have been

conformed to have the “potential well” effect, which may lead that general greedy divisive algo-

rithms may be unable to search for global optimum effectively.

Fortunately, Significance doesn’t have this effect. Consider the partition with k groups of 2

predefined communities merging,

S2ðkÞ ¼ ðr � 2kÞ
nc

2

� �
Dðp1 k pÞ þ k

2nc

2

� �

Dðp2 k pÞ

¼ k

(

k
2nc

2

� �

Dðp2 k pÞ � 2
nc

2

� �
Dðp1 k pÞ

)

þ r
nc

2

� �
Dðp1 k pÞ:

This means that S2(k) is a monotonically increasing function with the number k of groups of 2

predefined communities merging. One (or two) group(s) of x-communities merging can be

allowed as long as
2nc

2

� �

Dðp2 k pÞ � 2
nc

2

� �
Dðp1 k pÞ > 0, that is, Eq A1 is satisfied, because

S2(k) can increase with communities merging. So Significance does not show the “potential-

well” effect.
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41. Arenas A, Fernández A, Gómez S. Analysis of the structure of complex networks at different resolution

levels. New J Phys. 2008 May; 10(5):053039. https://doi.org/10.1088/1367-2630/10/5/053039

42. Zhang J, Zhang K, Xu XK, Tse CK, Small M. Seeding the Kernels in graphs: toward multi-resolution

community analysis. New J Phys. 2009 Nov; 11(11):113003. https://doi.org/10.1088/1367-2630/11/11/

113003

43. Xiang J, Hu XG, Zhang XY, Fan JF, Zeng XL, Fu GY., et al. Multi-resolution modularity methods and

their limitations in community detection. Eur Phys J B. 2012 Oct; 85(10):352. https://doi.org/10.1140/

epjb/e2012-30301-2

44. Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E. 2006 Jul; 74

(1):016110. https://doi.org/10.1103/PhysRevE.74.016110

45. Xiang J, Hu K. Limitation of multi-resolution methods in community detection. Physica A. 2012 Oct; 391

(20):4995–5003. https://doi.org/10.1016/j.physa.2012.05.006

46. Cheng XQ, Shen HW. Uncovering the community structure associated with the diffusion dynamics on

networks. J Stat Mech. 2010 Apr; 2010(4):P04024. https://doi.org/10.1088/1742-5468/2010/04/P04024

47. Li HJ, Wang Y, Wu LY, Liu ZP, Chen L, Zhang XS. Community structure detection based on Potts

model and network’s spectral characterization. Europhys Lett. 2012 Feb; 97(4):48005.

48. Martelot EL, Hankin C. Multi-scale community detection using stability optimisation. International Jour-

nal of Web Based Communities. 2013 May; 9(3):323–348. https://doi.org/10.1504/IJWBC.2013.054907

49. Huang JB, Sun HL, Liu YG, Song QB, Weninger T. Towards Online Multiresolution Community Detec-

tion in Large-Scale Networks. Plos One. 2011 Aug; 6(8):e23829. https://doi.org/10.1371/journal.pone.

0023829 PMID: 21887325

50. Ronhovde P, Nussinov Z. Local resolution-limit-free Potts model for community detection. Phys Rev E.

2010 Apr; 81(4):046114. https://doi.org/10.1103/PhysRevE.81.046114

51. Ronhovde P, Nussinov Z. Multiresolution community detection for megascale networks by information-

based replica correlations. Phys Rev E. 2009 Jul; 80(1):016109. https://doi.org/10.1103/PhysRevE.80.

016109

52. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004

Feb; 69(2):026113. https://doi.org/10.1103/PhysRevE.69.026113

53. Zhang ZY, Wang Y, Ahn YY. Overlapping community detection in complex networks using symmetric

binary matrix factorization. Phys Rev E. 2013 Jun; 87(6):062803. https://doi.org/10.1103/PhysRevE.87.

062803

54. Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature.

2010 Aug; 466(7307):761–764. https://doi.org/10.1038/nature09182 PMID: 20562860

55. Traag VA, Krings G, Van Dooren P. Significant Scales in Community Structure. Scientific Reports. 2013

Oct; 3:2930. https://doi.org/10.1038/srep02930 PMID: 24121597

56. Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure

in complex networks. New J Phys. 2009 Mar; 11(3):033015. https://doi.org/10.1088/1367-2630/11/3/

033015

57. Xiang J, Li HJ, Bu Z, Wang Z, Bao MH, Tang L, et al. Critial analysis of (Quasi-)Surprise for community

detection in complex networks. Scientific Reports. 2018 Sep; 8:14459. https://doi.org/10.1038/s41598-

018-32582-0 PMID: 30262896

58. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms.

Phys Rev E. 2008 Oct; 78(4):046110. https://doi.org/10.1103/PhysRevE.78.046110

59. Vinh NX, Epps J, Bailey J. Information theoretic measures for clusterings comparison: variants, proper-

ties, normalization and correction for chance. Journal of Machine Learning Research. 2010 Oct; 11:

2837–2854.
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