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Abstract: Traditional histological evaluation for grading liver disease severity is based on subjective
and semi-quantitative scores. We examined the relationship between digital pathology analysis
and corresponding scoring systems for the assessment of hepatic necroinflammatory activity. A
prospective, multicenter study including 156 patients with chronic liver disease (74% nonalcoholic
fatty liver disease-NAFLD, 26% chronic hepatitis-CH etiologies) was performed. Inflammation was
graded according to the Nonalcoholic Steatohepatitis (NASH) Clinical Research Network system and
METAVIR score. Whole-slide digital image analysis based on quantitative (I-score: inflammation
ratio) and morphometric (C-score: proportionate area of staining intensities clusters) measurements
were independently performed. Our data show that I-scores and C-scores increase with inflammation
grades (p < 0.001). High correlation was seen for CH (ρ = 0.85–0.88), but only moderate for NAFLD
(ρ = 0.5–0.53). I-score (p = 0.008) and C-score (p = 0.002) were higher for CH than NAFLD. Our
MATLAB algorithm performed better than QuPath software for the diagnosis of low-moderate
inflammation (p < 0.05). C-score AUC for classifying NASH was 0.75 (95%CI, 0.65–0.84) and for
moderate/severe CH was 0.99 (95%CI, 0.97–1.00). Digital pathology measurements increased with
fibrosis stages (p < 0.001). In conclusion, quantitative and morphometric metrics of inflammatory
burden obtained by digital pathology correlate well with pathologists’ scores, showing a higher
accuracy for the evaluation of CH than NAFLD.
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1. Introduction

Chronic liver disease is a major cause of morbidity, mortality, and health care resource
utilization worldwide [1]. Liver biopsy remains the reference method to evaluate the
extent and distribution of the histological features that define disease severity. However,
traditional histological evaluation is based on subjective and semi-quantitative scoring
systems that are prone to interobserver variability [2]. Additionally, the use of grading
and staging systems creates discrete categories from pathological processes that are a
histological continuum [3].

Histologically identified necroinflammatory activity has prognostic significance in
the management of chronic liver diseases [4–6]. Systems used to grade the intensity of
injury in chronic hepatitis include morphological assessment of both inflammation and
hepatocellular necrosis. Generally, the inter-reader reliability agreement between patholo-
gists is lower for necroinflammatory changes than for other histological features [2,7]. In
practice, pathologists must decide which of several grading systems to use, according to the
clinical context and histological findings. Scoring systems are disease-specific and a system
suitable for a particular disease process is unlikely to be suitable for a different process. For
example, the lobular pattern of inflammation seen in steatohepatitis is different from the
portal distribution seen in chronic viral or autoimmune hepatitis, and therefore different
grading systems are required.

To overcome these limitations, emerging computer-assisted digital image analysis
technologies have been used to assess histological features in an objective, reliable, and
quantitative way [8]. Digital pathology is the scanning of tissue slides to create digital
images, allowing quantitative and automated analysis [9]. This technique plays a funda-
mental role in cancer diagnosis and treatment assessment [10]. Adoption of computerized
analysis based on machine learning algorithms has shown reproducible results for grading
histologic features in liver disease [11,12]. Such methods are not presently in clinical use
because they require high-resolution images and specialized equipment [13]. With the in-
creasing availability of digital images, simple and user-friendly image processing software
is rather required for digital pathology analysis. In this regard, previous studies have used
different programs (Zeiss Axiovision or MATLAB) to quantify the proportionate area of
collagen (based on stained colour thresholds) and correlated with fibrosis stages [14–16].
However, assessment of other important histological features, such as necroinflammatory
activity, using a morphological analysis approach is still lacking.

We hypothesized that automated digital image analysis can accurately quantify
necroinflammatory activity in biopsies from participants with chronic liver diseases. The
primary aim of this study was to identify and quantify hepatic inflammatory areas based
on immunohistochemical and morphometric features and to evaluate its correlation with
the corresponding pathologists´ grading scores in a well characterized cohort of patients
with chronic liver disease.

2. Materials and Methods
2.1. Study Design and Subjects

A cross-sectional, multicenter, prospective study was performed between 2017 and
2021. This study recruited consecutive chronic liver disease patients who had undergone
clinically indicated liver biopsy at the Hepatology Units of three participating Spanish
centers. Target chronic liver diseases were NAFLD, AIH, and viral hepatitis. Criteria
for inclusion were age over 18 years and liver biopsies greater than 15 mm in length
and containing at least six portal tracts. Sample biopsies containing tumoral cells and
histological diagnosis of competing liver diseases including alcoholic hepatitis and primary
biliary cholangitis (PBC) were excluded. Baseline characteristics, including clinical and
laboratory parameters, were collected. We initially recruited 162 participants with chronic
liver disease and biopsy. Indications for liver biopsy were to determine the degree of fibrosis
or inflammatory activity (40%), uncertain or mixed etiology (38%), confirm HAI diagnosis
(12%), and inclusion in clinical trials (10%). After excluding inadequate histological samples
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(n = 3) and cases with histological features of PBC non-overlapped with AIH (n = 3), the
final series included 156 patients. Among them, 74% (n = 116) had NAFLD and 26% (n = 40)
had CH. Informed consent was provided by all subjects prior to their participation in the
study. The study protocol conformed to the ethical guidelines of the 1975 Declaration
of Helsinki and received ethical approval by the Institution Review Board of the three
participating hospitals (2016/209; 2017/0031/PI, and 29/2019). A portion of the included
participant data (n = 78) has already been published regarding technical developments
of digital pathology [17]. The prior study used a simpler methodology for digital image
analysis and did not evaluate other chronic hepatitis etiologies beyond NAFLD.

2.2. Histological Analysis

Percutaneous biopsies were obtained with a semi-automatic 16G, two-step needle.
After formalin fixation (10% buffered), paraffin-embedded tissue sections (4 µm-thick)
were stained with hematoxylin and eosin (H&E). Immunohistochemical staining was
performed with an automated system Autostainer Dako Omnis (Agilent Technologies,
DAKO) on paraffin-embedded tissue sections of the same block. Prediluted monoclonal
mouse antibody against CD45 (Leucocyte Common Antigen, Clone 2B11 + PD7/26, DAKO)
was used to highlight inflammatory activity for subsequent digital analysis. CD45 stains
lymphocytes, basophils, eosinophils, neutrophils, macrophages, monocytes, mast cells,
plasma cells and dendritic cells [18]. Conventional H&E-stained sections were not used for
digital analysis because of possible methodological errors caused by the identification of
non-inflammatory cells spaces, such as hepatocytes and cholangiocytes nucleus (details
in Appendix A.1). Immunohistochemistry for CD45 was performed at the time of biopsy
reception and evaluation for clinical diagnosis. Inflammation grades throughout this
study refer to inflammatory activity grades and lobular inflammation grades as scored by
the METAVIR and the NASH Clinical Research Network (NASH-CRN) scoring systems,
respectively [19,20]. For patients with nonalcoholic fatty liver disease (NAFLD), the NASH-
CRN scoring system was used to grade lobular inflammation from 0 to 3 and fibrosis from
F0 to F4 [19]. For patients with CH etiologies (HBV, HCV, or autoimmune hepatitis), the
METAVIR scoring system was used to grade inflammatory activity from 0 to 3 and fibrosis
stages from F0 to F4 [20]. Steatosis grading for all cases was performed on an ordinal scale
from S0 to S3 [19]. Patients with NAFLD were categorized as either simple steatosis or
NASH, defining NASH as by the presence of hepatic steatosis with lobular inflammation
and definite ballooning with or without fibrosis. Patients with CH were also categorized
in two disease categories according to their METAVIR activity score: none/low (0–1) vs.
moderate/severe (2–3) inflammation activity. Disease categories were selected based on
the risk of NASH and moderate necroinflammatory activity progression to advanced
fibrosis [21,22]. For each biopsy, the total length and number of portal tracts were recorded.
Histological assessment was performed centrally by two experienced pathologists (C.A.C.
and A.F., each with >10 years of experience in the field of liver pathology), blinded to
clinical data and digital image analysis results.

2.3. Digital Image Analysis

Whole-slide samples were scanned (Ventana iScan HT slide scanner, Roche, Ventana
Medical Systems, Inc., Oro Valley, AZ, USA) using a 40× magnification objective and a
calibrated camera (4000 × 4000 pixels = 1 mm2). The images were stored in 24-bit RGB
colour format. Digital image analysis was performed at the highest resolution level us-
ing an in-house automatic tool developed using MATLAB software (MathWorks, version
R2016a) [17]. The analysis included a sequential workflow of six-steps: (a) detection of the
tissue area and removal of the background; (b) colour standardization and transformation
to CIELab format to reduce variability between images [23]; (c) segmentation based on
colour threshold to detect CD45+ stained cells; (d) mask dilatation of 4-pixels to draw
together neighboring inflammatory cells forming foci (morphologic closing); (e) removal
of segmented areas <0.0032 mm2 to exclusively detect clusters of inflammatory cells; and
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(f) removal of unstained CD45+ areas from the final extracted mask to avoid overestimation.
The optimal colour threshold for the detection of stained cells was established with the
consensus of pathologists, taking one case as reference. The rest of the cases were normal-
ized to this case using the Reinhard normalization [23]. Hence, all the cases presented a
similar distribution of colour intensities. Mask dilatation value was selected after a series
of trial and improvement analysis involving pathologists, hepatologists, and biomedical
engineers (details in Appendix A.2). Distribution of the segmented area (lobular and/or
portal inflammation) was not considered. The whole process is illustrated in Figure 1. This
computational algorithm based on immunohistochemical colour and morphological fea-
tures identified CD45+ staining intensity areas and clusters of staining intensities, allowing
the quantification of the following scores:

Inflammation proportionate area (I − score) =
segmented area total tissue

area total tissue
× 100 (in %) (1)

Clusters proportion (C − score) =
number of segmented foci total tissue

area total tissue
(2)

Figure 1. Digital image analysis workflow in a biopsy specimen with NASH diagnosis. Mask extraction was based on
colour detection, size threshold, and morphological analysis. Bottom row shows a small region of interest to display
details of the image processing algorithm, although the analysis was performed on the whole slice. Image segmentation of
the represented case determined inflammation proportional area (I-score: 4.9% CD45+) and clusters proportion (C-score:
12.2 foci/mm2).

The analyses were repeated with the open-source digital image analysis software
QuPath v0.3 (https://qupath.github.io/ (accessed on 16 November 2021) [24]. The CD45
DAB-stained images were imported into QuPath and the total tissue area was detected
using the wand detection tool. The uniform intensity staining pattern of CD45 lends itself
to assessment by a simple density method within QuPath (DAB threshold). To compare our

https://qupath.github.io/
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algorithm results with an alternative widely used software, we calculated CD45 positive
area divided by the total analyzed tissue area, expressed as a percentage (QuPath’s positive
staining detection algorithm).

2.4. Statistical Analysis

Data were analyzed using SPSS V25.0 software package (IBM) and MedCalc Statistical
Software 19.4 (MedCalc Software, Ostend, Belgium), by one author (D.M.A., with >5 years
of experience in statistics). Categorical data were expressed as frequencies (%), and quan-
titative data as the mean and SD or median and interquartile range (IQR). Comparisons
between digital image analysis quantitative data and histological groups were assessed
using ANOVA or Kruskal-Wallis test followed by multiple comparisons between groups
using post hoc Bonferroni or Tukey’s range test, as required. The Spearman test (ρ) was
used to calculate correlations between inflammation scores and digital pathology. Com-
parisons between digital pathology measurements and disease categories were assessed
using a T-student or Mann-Whitney U test, as required. Comparisons between paired
distributions of NAFLD and CH etiology for digital pathology data were assessed with
the Wilcoxon matched pairs test stratified by histological grade. The receiver operating
characteristic (ROC) curves and areas under the ROC curve (AUC) were calculated for
each set of dichotomized groups of different histological grades of inflammation and the
optimal threshold for diagnosis of NASH and moderate/severe activity (inflammation
grades 2–3) were established. For each ROC analysis, the optimal cut-off value was se-
lected using Youden’s index to maximize sensitivity and specificity. The DeLong test
was used to compare the AUCs of software’s performance for specific grades of lobular
inflammation and METAVIR score. A logistic regression model was constructed to examine
factors associated with NASH. Digital pathology data and liver function tests exhibiting
p-value < 0.10 in the univariate model were incorporated into the final stepwise logistic
regression analysis. Linear regression analysis was performed to determine the correlation
(Pearson correlation coefficient [r]) between MATLAB and QuPath data. All tests were
two-sided and a p-value < 0.05 was considered statistically significant.

3. Results
3.1. Patients and Histological Characteristics

The clinical and biochemical characteristics of the cohort are summarized in Table 1.
In brief, 58% were female (n = 91) with a mean age of 55 ± 12 years and most were
overweight (mean BMI of 28.7 kg/m2, 43% (n = 68) obese). The histopathological features
of participants are summarized in Table 2. Median biopsy length was 20 (17–23) mm and
included 10 (8–13) portal tracts. Histological review showed that 23% had mild steatosis
(S1, n = 36), 22% had moderate steatosis (S2, n = 34), and 22% presented severe steatosis (S3,
n = 35). In NAFLD cases, 57% (n = 67) had NASH, and in patients with chronic hepatitis,
37% had significant fibrosis (≥F2, n = 15).

3.2. Digital Image Analysis and Inflammation Scoring Systems

Distribution of digital pathology values across histological grades is shown in Table 3.
I-score and C-score increased with inflammation grades (p < 0.001). There were statistically
significant differences between overall I-score (p = 0.008) and C-score (p = 0.002) quantified
for NAFLD and CH cases. Analyzing individual grades separately, higher measured
values were obtained among CH tissue sections for moderate and severe inflammation
(mean I-score increase of 3.5% and 3.2%, mean C-score increase of 11.8 and 17.3 foci/mm2,
respectively). Within NAFLD cases, a moderate correlation was seen between digital
pathology and histological lobular inflammation (ρ = 0.50 for I-score, ρ = 0.53 for C-score;
p < 0.001), discrimination only being possible between lobular inflammation grade 0
vs. grades 1–3, and grades 0–1 vs. grade 3 (Figure 2). A higher correlation was seen
for CH METAVIR histologic score (ρ = 0.85 for I-score, ρ = 0.88 for C-score; p < 0.001),
differentiating between grades 0–1 vs. grades 2–3 (Figure 2). Although QuPath metrics
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also increased with grading systems (p < 0.001) and a strong correlation was seen with
I-score (r = 0.78; p < 0.001) and C-score (r = 0.76; p < 0.001), the accuracy of our MATLAB
software parameters was higher (details in Appendix A.3). The AUC of I-score for detecting
moderate/severe inflammation (≥grade 2) was 0.72 [95%CI, 0.62–0.82] for NAFLD and
0.97 (95%CI, 0.92–1.00) for CH (Table 4). The best I-score cut-off values for detecting
moderate/severe inflammation was 0.6% (86% sensitivity, 70% specificity), and 2.0% (94%
sensitivity and 91% specificity) for NAFLD and CH, respectively. The DeLong test showed
no difference when comparing the AUCs of I-score and C-score for detecting different
inflammatory grades.

Table 1. Characteristics of the included population.

Characteristic Overall Cohort (n = 156)

Female sex 91 (58%)
BMI (kg/m2)
Hypertension

Diabetes
Dyslipidemia

28.7 ± 5.1
71 (45%)
54 (34%)
99 (63%)

Liver disease etiology
• NAFLD 116 (74%)
• AIH 32 (21%)
• Viral 8 (5%)

Platelet count (×109/L) 231 ± 76
AST (U/L) 39 (29–59)
ALT (U/L)
GGT (U/L)

49 (36–75)
81 (50–174)

Total bilirubin (mg/dL)
Albumin (g/dL)

INR

0.6 (0.4–0.8)
4.4 (4.2–4.6)
1.0 (1.0–1.1)

Triglycerides (mg/dL) 116 (80–166)
Total cholesterol (mg/dL) 189 ± 41

Note: Data reported as mean ± standard deviation when normal distribution, median (IQR) when skewed distri-
bution or count (percentage). Abbreviations: AIH, autoimmune hepatitis; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; BMI, body mass index; INR, international normalized ratio; NAFLD, nonalcoholic
fatty liver disease.

Table 2. Histopathological characteristic distribution of the study population.

Histology NAFLD (n = 116) CH (n = 40)

Feature Grade/Stage NASH-CRN Score METAVIR Score

Inflammation

Grade 0 26 (22%) 14 (34%)
Grade 1 58 (50%) 8 (20%)
Grade 2 28 (24%) 9 (23%)
Grade 3 4 (3%) 9 (23%)

Fibrosis

Stage 0 26 (22%) 16 (40%)
Stage 1 28 (24%) 9 (23%)
Stage 2 26 (22%) 8 (20%)
Stage 3 18 (16%) 5 (12%)
Stage 4 18 (16%) 2 (5%)

Note: Data reported as count (percentage). Abbreviations: CH, chronic hepatitis; NAFLD, nonalcoholic fatty liver
disease; NASH-CRN, nonalcoholic steatohepatitis clinical research network.
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Table 3. Summary of I-score (%CD45+) and C-score (clusters proportion) results (mean ± SD) for each grade of inflammation.
The p-value indicates the significance of paired distributions comparison between NAFLD and chronic hepatitis.

Etiology Histology Grade I-Score (%) p-Value C-Score
(foci/mm2) p-Value

NAFLD NASH-CRN 0
METAVIR 0

0.6 ± 0.5
0.23

2.7 ± 1.8
0.38CH 0.4 ± 0.3 2.2 ± 1.6

NAFLD NASH-CRN 1
METAVIR 1

1.5 ± 1.2
0.58

6.8 ± 3.8
0.56CH 1.8 ± 2.1 5.9 ± 3.0

NAFLD NASH-CRN 2
METAVIR 2

1.9 ± 1.4
0.005

8.5 ± 4.8
0.015CH 5.4 ± 2.8 20.3 ± 11.5

NAFLD NASH-CRN 3
METAVIR 3

3.4 ± 2.1
0.04

12.5 ± 11.1
0.06CH 6.6 ± 2.4 29.8 ± 18.6

Abbreviations: CH, chronic hepatitis; NAFLD, nonalcoholic fatty liver disease; NASH-CRN, nonalcoholic steatohepatitis clinical re-
search network.

Figure 2. Distribution of digital pathology data across necroinflammatory activity histological scores. Boxplot of (a) I-score
in NAFLD cohort, (b) I-score in chronic hepatitis cases, (c) C-score in NAFLD, and (d) C-score in chronic hepatitis. Blue
boxes correspond to I-score (%CD45+) and green boxes to C-score (clusters proportion) data.
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Table 4. Diagnostic accuracy of digital image analysis: raw performance parameters of I-score (%CD45+) and C-score
(clusters proportion) for different etiologies of chronic liver disease stratified by histological grade. The DeLong p-value
compares the AUCs of the software performance for specific grades of NASH-CRN and METAVIR scores.

Etiology Grades I-Score
Cut-Off (%)

I-Score
AUC (95%CI)

C-Score
Cut-Off (foci/mm2)

C-Score
AUC (95%CI)

DeLong
p-Value

NAFLD NASH-CRN ≥ 1
METAVIR ≥ 1

>0.6 0.83 (0.74–0.92) >4.5 0.87 (0.80–0.94) 0.20
CH >0.9 0.96 (0.92–1.00) >4.4 0.96 (0.92–1.00) 0.99

NAFLD NASH-CRN ≥ 2
METAVIR ≥ 2

>0.9 0.72 (0.62–0.82) >6.6 0.72 (0.61–0.82) 0.94
CH >2.0 0.97 (0.92–1.00) >9.6 0.99 (0.97–1.00) 0.22

NAFLD NASH-CRN ≥ 3
METAVIR ≥ 3

>2.2 0.83 (0.64–0.99) >7.4 0.75 (0.56–0.93) 0.16
CH >4.4 0.86 (0.74–0.97) >12.3 0.91 (0.82–0.99) 0.27

Abbreviations: AUC, area under the curve; CH, chronic hepatitis; NAFLD, nonalcoholic fatty liver disease, NASH-CRN, nonalcoholic
steatohepatitis clinical research network.

3.3. Relationship between Different Histological Features

Distribution of digital pathology values across NAFLD and chronic hepatitis disease
categories are summarized in Table 5. Patients with NASH and moderate/severe activity
in chronic hepatitis had a higher proportion of C-score compared to patients with simple
steatosis and none/low chronic hepatitis activity, respectively. In the multivariable analysis
adjusted by liver function tests, I-score and C-score were both independent factors for
predicting NASH (Table 6). Using C-score values, the AUC for detecting NASH was 0.75
(95%CI, 0.65–0.84) and for moderate/severe CH activity diagnosis it was 0.99 (95%CI,
0.97–1.00) (Figure 3). The optimal cut-off value for detecting NASH was 4.5 foci/mm2,
with 79% sensitivity and 65% specificity, whereas for moderate/severe CH activity it was
9.6 foci/mm2, with 94% sensitivity and 96% specificity. Higher overall measurements
were obtained for individual with moderate/severe CH activity than NASH (mean I-
score increase of 4.4% and mean C-score increase of 17.2 foci/mm2; p < 0.001). No such
differences were seen within disease categories of simple steatosis and none/low CH
activity (Table 5).

Table 5. Distribution of digital pathology data across disease categories of NAFLD (simple steatosis and NASH) and chronic
hepatitis (none/low and moderate/severe inflammation).

Digital Pathology NAFLD (n = 116) Chronic Hepatitis (n = 40)

Measurements Simple
Steatosis NASH p-Value None/Low Moderate/

Severe p-Value

I-score (%) 1.2 ± 1.3 1.6 ± 1.3 0.08 0.9 ± 1.4 6.0 ± 2.6 <0.001

C-score (foci/mm2) 4.6 ± 3.9 7.9 ± 4.8 <0.001 3.6 ± 2.8 25.1 ± 15.8 <0.001

Abbreviations: NAFLD, nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis.

Digital pathology CD45+ measurements also increased significantly with fibrosis
stages (p < 0.001). Specifically, a linear association was seen between fibrosis stages and
both I-score and C-score, stratified by liver disease etiology (Figure 4). For the NAFLD
cohort, I-score (0.6 ± 0.5, 1.0 ± 0.7, 1.5 ± 1.6, 2.1 ± 1.4, and 2.6 ± 1.3, F0–F4, respectively)
was able to differentiate between F0 vs. F2–4, F1 vs. F3–4, F2 vs. F4 (p < 0.001); and
C-score (2.6 ± 1.9, 4.6 ± 2.6, 5.9 ± 2.5, 9.2 ± 3.1, and 11.7 ± 4.6, F0–F4, respectively) was
able to differentiate between F0 vs. F2–4 and F1–2 vs. F3–4 (p < 0.001). For CH cohort,
I-score (0.5 ± 0.5, 3.4 ± 2.8, 5.1 ± 2.9, 7.1 ± 3.1, and 7.0 ± 0.6, F0–F4, respectively) was
able to differentiate between F0 vs. F1–4, F1 vs. F3–4, F2 vs. F4 (p < 0.001); and C-score
(3.1 ± 3.5, 9.0 ± 4.6, 18.6 ± 12.9, 30.5 ± 16.7, and 48.8 ± 17.9, F0–F4, respectively) was able
to differentiate between F0 vs. F2–4, F1 vs. F3–4, F2 vs. F4 (p < 0.001).
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Table 6. Predictive factors for NASH, as assessed using univariate and multivariate regression models.

Univariate Analysis Multivariate Analysis

Parameter OR (95%CI) p-Value OR (95%CI) p-Value

AST 1 1.02 (1.0–1.04) 0.025 1.01 (0.99–1.03) 0.28
ALT 1.01 (0.99–1.02) 0.37
GGT 1.0 (0.99–1.0) 0.26

Total bilirubin 0.48 (0.17–1.39) 0.17
Albumin 0.86 (0.33–2.23) 0.74

INR 1.01 (0.97–1.04) 0.29
Platelets 1.0 (0.99–1.01) 0.75
I-score 2 1.32 (0.97–1.80) 0.08 1.71 (1.04–2.81) 0.03
C-score 2 1.24 (1.09–1.39) <0.001 1.41 (1.16–1.70) 0.01

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; INR, international normalized
ratio, I-score, C-score. 1 Significant factor, as assessed with univariate analysis. 2 Significant factors, according to
both univariate and multivariate analyses.

Figure 3. Receiver operating characteristic curves of digital pathology data for discriminating the presence of (a) NASH in
NAFLD population, and (b) moderate/severe inflammation in chronic hepatitis cases. The blue line corresponds to I-score
(%CD45+), and the green line corresponds to C-score (clusters proportion).

Figure 4. Distribution of digital pathology data across fibrosis histological scores. Boxplot of (a) I-score and C-score in
NAFLD cohort, (b) I-score and C-score in chronic hepatitis cases. Blue boxes correspond to I-score (%CD45+) and green
boxes to C-score (clusters proportion) data.
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4. Discussion

There is a clear need for objective quantification of histological features in liver biopsies
to circumvent classical microscopy techniques limitations. In this work, we investigated
the use of digital pathology and image processing for the quantitative and morphometric
assessment of necroinflammatory activity features in chronic liver diseases. Importantly,
we found that digital image analysis-derived parameters are able to accurately differentiate
between grades of inflammation. Compared to NAFLD, chronic hepatitis etiologies had
higher inflammatory burden as assessed by staining intensity areas, and digital pathology-
derived metrics showed stronger correlation with the METAVIR scoring system.

Digital pathology imaging analysis is emerging as a promising tool and has already
been demonstrated to be a reliable and precise technique for quantitative histological
assessment [8]. Its main clinical application has been the quantification of collagen fibers
amount for continuous staging of hepatic fibrosis and prediction of clinical outcomes in
chronic liver diseases, including hepatitis C and alcoholic liver disease [14,25–27]. With
recent changing trends in chronic liver disease etiologies, NAFLD biopsies have also been
evaluated with digital image analysis for fibrosis and steatosis detection and quantifica-
tion [15–17]. However, to date the quantitative evaluation of necroinflammatory histologic
activity and the potential role of morphometric analysis based on qualitative patterns of
injury such as cell closing in clusters has been limited.

To grade inflammatory activity, simple and clinically validated scoring systems based
on the underlying disease were used in the current study [19,20]. Lobular inflammation
grade is based on the number of necroinflammatory foci in a given area with clusters
of mainly lymphocytes and monocytes [28]. Periportal interface hepatitis is usually rec-
ognized as an extension of lymphoplasmacytic inflammation foci into the surrounding
parenchyma to replace hepatocytes lost by apoptosis [7]. Because the lesions can overlap
and vary considerably from one zone to the next, the utility of a single, disease-specific
grading scheme is limited, and reproducibility between pathologists can be hampered.
To overcome these limitations, digital pathology offers a broad approach regardless of
liver disease damage (patterns of injury, localization, and etiology). For digital image
analysis, this study used immunohistochemistry CD45, one of the most abundant leucocyte
surface glycoproteins of haematopoietic lineage cells [18]. Colour is considered a source of
histopathological image variation with the widely used H&E staining, but the effects of
pre-processing methods are not entirely clear yet [29]. This is the reason why we used CD45,
an IHC that lends itself towards a more uniform intensity staining pattern. Color normal-
ization was applied as previously described in publications of artificial intelligence-assisted
technology to assess liver biopsies [30].

The digital pathology software used was previously developed in NAFLD patients [17].
The present study was performed in a well-characterized cohort of 156 patients with a
wide range of chronic liver diseases including autoimmune and viral hepatitis. Current
image analysis is more advanced than prior colour-space algorithm given that a sequential
mask dilatation and size thresholding is now applied (Figure 1). This workflow allows the
quantification of inflammatory burden with the developed I-score and C-score. This CD45+
staining intensity area analysis has lower values than alternative software that only use
colour-space thresholding: average of 1.1 (0.6–2.3) with current algorithm vs. 5.4 (4.2–7.1)
with our prior algorithm and 7.2 (4.1–10.2) with QuPath. The new scores classify better the
disease activity, reflecting the importance of morphometric assessment.

Higher I-scores and C-scores were seen for CH etiologies compared to NAFLD. Dif-
ferent values according to liver disease etiologies have also been reported for collagen
proportionate area [31]. This can be explained because inflammatory diseases like viral
and autoimmune hepatitis have a faster rate of progression compared to NAFLD [32].
The present study provides evidence that digital pathology-derived measurements of
inflammation staining areas (total area ratio and morphologic closing in clusters) increases
with inflammation grades. Correlation of lobular inflammation grades with these CD45+
staining intensity metrics was slightly higher in our study (ρ = 0.50–0.53) compared to previ-
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ous publications that used supervised machine learning techniques (ρ = 0.35–0.45) [11–13].
This result reinforces the utility of simple computational algorithms based on imaging
processing and such simplicity may facilitate its clinical adoption. Our MATLAB software
also showed better performance than QuPath positive staining detection algorithm (see
Appendix A.3). The counting different cell types command should be explored in the
future to evaluate whether it can add accuracy for disease activity classification.

It is important to diagnosis individuals with NASH for inclusion in clinical trials
given its prediction of adverse outcomes [5]. NASH is a complex process that involves
a number of disturbances including oxidative stress, increased hepatocellular apoptosis,
and inflammation. Prior investigations focusing on identifying serum biomarkers for
detecting NASH consistently obtained poor results [33]. Recently, a combined biomarker
of AST and liver stiffness measurement by transient elastography (FAST score) has shown
good accuracy for identifying patients at risk of progressive NASH [34]. In our study,
AST was only associated with NASH in the univariate analysis. In the multivariable
analysis, none of the liver function tests, only digital pathology metrics, were independent
factors for predicting NASH (Table 6). The C-score performed better than I-score to classify
NASH, adding valuable information to previous results that just analyzed inflammatory
proportionate areas [17]. This score based on clusters of stained intensity areas could
help to diagnose a NASH given the low inter-observer agreement between pathologists
and that non-NASH cases still have some inflammatory degree in the liver [2,35,36]. The
C-score represents a morphological metric associated with inflammatory changes and key
features related to NAFLD: clusters of different cells including lymphocytes, plasma cells,
monocytes, polymorphonuclears, eosinophils, and Kupffer cells, all of them positive for
CD45 staining [28].

Diagnostic performance of both I-score and C-score was better in cases with a CH
etiology. This can be attributed to the less prominent degree of inflammation among
NAFLD cases (Table 3). Activity classification of moderate/severe CH inflammation was
well detected with digital image analysis metrics (AUC= 0.97–0.99). Activity CH disease
categories are better distinguished than the NAFLD spectrum perhaps because NASH
represents a complex pathological entity where other histological features can play a
role [28]. Finally, I-score and C-score also increased with fibrosis stage (Figure 4). In close
agreement with other recent studies, these data support the dynamic of inflammatory cells
infiltration in the liver across disease progression of fibrosis to cirrhosis [36,37].

Our study has some limitations that must be considered for future research perspec-
tives. First, CD45 non-specifically stains a range of different haematopoietic cells. Other
more specific markers, such as CD68 and CD163 for macrophage/Kupffer cells, could be
addressed in future studies given its role in NAFLD severity [38]. Moreover, our study did
not differentiate between lobular and portal inflammation. This can be important given
that portal chronic inflammation is related to NAFLD severity [39]. Cells detection and type
classification is possible with machine learning algorithms and certain software [11–13,24].
Our digital pathology analysis is based on image processing and did not used advanced
deep learning methodology. Future studies could quantify cellular infiltrates as positively
stained cells/negatively stained cells, which could add accuracy to disease classification.
The cross-sectional nature does not allow the assessment of changes in the proportions of
inflammation burden over the time course of the disease. Future studies could correlate
digital image analysis measurements with clinical outcomes. Traditional grading systems
may be insufficiently granular to detect small clinically relevant changes in inflammation
that could be detected by digital pathology methods [40]. In the future, digital pathology
analysis may offer an objective evaluation of therapeutic drugs effects and play a key role
in clinical trials.

5. Conclusions

Digital pathology with computational analysis allows an automated, quantitative,
and morphometric assessment of hepatic necroinflammatory activity. Our methodology
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shows good correlation with scoring by pathologists and reveals a better performance
among chronic hepatitis etiologies than NAFLD. Developed I-scores and C-scores based on
staining intensity areas offer promise for further development of automatic quantification
as a potential aid to pathologists evaluating chronic liver disease biopsies in clinical practice
and clinical trials.
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Appendix A

Appendix A.1

Digital image analysis method for inflammatory cells quantification in a subject with
autoimmune hepatitis (Ventana iScan HT slide scanner, ×40 magnification).

Figure A1. Cont.
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Figure A1. (a) The immunohistochemistry for CD45 shows positive reaction to all leucocytes express-
ing this membrane marker; (b) colour mask segmentation only identifies leucocytes (marked in blue);
(c) H&E-stained tissue section; (d) colour mask segmentation (marked in blue) identifies leucocytes
and non-inflammatory cells spaces such as hepatocytes and cholangiocytes nucleus (yellow squares).

Appendix A.2

The pixel value of mask dilatation for classifying necroinflammatory activity was
selected to optimize sensitivity with specificity at 90% or greater.

Figure A2. Sensitivity analysis stratified by inflammation grading for (a) I-score, and (b) C-score, shows that for both
parameters a 4-pixel mask dilatation performed the best.

Appendix A.3

Comparison of our MATLAB software and QuPath software.

Table A1. Diagnostic performance of QuPath software for digital pathology image analysis: raw performance parameters
for different histological grades and comparison with our MATLAB software results.

Etiology Histologic Grades QuPath %
Cut-Off

QuPath
AUC (95%CI)

DeLong p-Value
vs. %CD45

DeLong p-Value
vs. Clusters

Grade ≥ 1 >5.0 0.62 (0.52–0.71) <0.001 <0.001
NAFLD Grade ≥ 2 >7.4 0.67 (0.58–0.77) 0.007 0.02

Grade ≥ 3 >15.1 0.85 (0.70–0.99) 0.59 0.98

Grade ≥ 1 >5.5 0.63 (0.53–0.72) 0.003 0.005
CH Grade ≥ 2 >7.3 0.78 (0.70–0.86) 0.06 0.02

Grade ≥ 3 >11.1 0.87 (0.77–0.96) 0.47 0.06

Abbreviations: AUC, area under the curve; CH, chronic hepatitis; NAFLD, nonalcoholic fatty liver disease.
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Figure A3. Scatterplots of QuPath data and the parameters obtained with our MATLAB software:
clusters proportion (C-score in green dots) and inflammatory proportionate area (I-score in blue dots).
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