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Abstract: Quadcopters are widely used in a variety of military and civilian mission scenarios.
Real-time online detection of the abnormal state of the quadcopter is vital to the safety of aircraft.
Existing data-driven fault detection methods generally usually require numerous sensors to collect
data. However, quadcopter airframe space is limited. A large number of sensors cannot be loaded,
meaning that it is difficult to use additional sensors to capture fault signals for quadcopters. In this
paper, without additional sensors, a Fault Detection and Identification (FDI) method for quadcopter
blades based on airframe vibration signals is proposed using the airborne acceleration sensor. This
method integrates multi-axis data information and effectively detects and identifies quadcopter blade
faults through Long and Short-Term Memory (LSTM) network models. Through flight experiments,
the quadcopter triaxial accelerometer data are collected for airframe vibration signals at first. Then,
the wavelet packet decomposition method is employed to extract data features, and the standard
deviations of the wavelet packet coefficients are employed to form the feature vector. Finally, the
LSTM-based FDI model is constructed for quadcopter blade FDI. The results show that the method
can effectively detect and identify quadcopter blade faults with a better FDI performance and a
higher model accuracy compared with the Back Propagation (BP) neural network-based FDI model.

Keywords: quadcopter; fault detection and identification; wavelet packet decomposition; LSTM
network; airframe vibration signals

1. Introduction

The quadcopter, with its vertical take-off and landing capability, simple mechanical
structure, and easy maintenance, has been widely used in a variety of military and civilian
mission scenarios, such as search and rescue [1,2], package delivery [3], border patrol [4],
military surveillance [5], and agricultural applications [6,7]. Abnormal and unexpected
situations, such as actuator failure, sensor failure, and structural failure could occur during
the flight of the quadcopter. The real-time online Fault Detection and Identification (FDI)
of the abnormal state of the quadcopter is vital for the safe flight of aircraft. The current
available methods for Unmanned Aerial Vehicle (UAV) fault diagnosis can be basically
divided into three categories: analytical model-based methods, knowledge-based methods,
and signal processing-based methods [8–12].

The analytical model-based method focuses on using an accurate mathematical model
and observable inputs and outputs to construct residual signals. By analyzing the residual
signals, the difference between the expected behavior of the system and the actual oper-
ation mode realizes the FDI of the UAV. Such methods mainly include state estimation
methods [13–17], parameter estimation methods [18–24], etc. The FDI methods based on
state estimation are mainly based on filters and observers, which realize the state estimation
of the system and determine whether it is within the allowable thresholds. Mehra et al. [25]
firstly employed Kalman filtering in fault diagnosis to estimate the state of the system.
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Liu et al. [26] designed multiple fault detection filters for each component of the multiple
fault signals that may occur in the system. By evaluating the residuals of fault thresholds,
the proposed design can effectively detect multiple faults in a quadcopter system. Chen
et al. [27] established a mathematical model of quadcopter UAV and proposed an adaptive
observer-based quadcopter fault diagnosis method. The simulation results verify the effec-
tiveness of the designed robust nonlinear controller and fault estimation scheme. Avram
et al. [28] presented an FDI method for quadcopter based on nonlinear adaptive estimation
which systematically designed adaptive thresholds to achieve enhanced robustness and
fault sensitivity at fixed thresholds. Zhong et al. [29] presented a method for quadcopter
fault detection and diagnosis based on an adaptive three-stage Kalman filter which could
significantly reduce the computational effort and effectively distinguish between aircraft
vehicle faults and external interference. FDI methods based on parameter estimation are
performed by detecting parameter changes in the model. Yoon et al. [30] presented a hybrid
FDI scheme for three consecutive faults of UAV tilt inertial sensors. The combination of
the odd-even space method and the in-lane monitoring method improved the system
tolerance to multiple consecutive failures during flight. The performance of the proposed
FDI scheme was validated by hardware-in-the-loop tests and fixed-wing UAV flight tests.
Since it is difficult to establish accurate mathematical models of objects in some practical
applications, the analytical model-based method has limitations to its implementation in
many cases.

Knowledge-based FDI methods mainly use the knowledge of systems established by
experts in this field. The simulation of expert reasoning processes can realize system FDI.
Such methods include FDI methods based on expert systems [31], fuzzy inference [32], and
fault trees [33]. A fuzzy fault tree analysis algorithm was proposed in the literature [34].
From the perspective of providing the failure possibility of the underlying event, the
knowledge and experience of experts are integrated to calculate the failure interval of the
system components. By directly calculating the fuzzy fault tree interval, fuzzy reliability
interval, and traditional reliability, the faulty system can be effectively diagnosed. In terms
of the complexity, diversity, and nonlinearity of UAV system faults, Xiao et al. [35] proposed
an FDI method based on a combination of expert system and BP network which overcomes
the lack of effective self-learning in traditional expert systems. The diagnosis example of
UAV telemetry and remote control system shows that the expert system can effectively
diagnose the UAV system and has a good application prospect in the field of FDI. Due to
the complexity of knowledge-based methods, the FDI accuracy highly depends on the level
of expert knowledge. Meanwhile, the FDI speed decreases with the rule number. Thus, the
efficiency of the knowledge-based FDI method needs to be improved.

Signal processing-based methods extract the features of the measurement signals to
achieve FDI without establishing complex mathematical models of the system. Due to
the widespread existence of vibration signals in rotating machinery, it is widely used in
the FDI of rotating machines. Such methods include the wavelet transform method [36],
the spectral analysis method [37], etc. Glowacz et al. [38] proposed a device to analyze
the vibration signal of a three-phase induction motor. The vibration signal and signal
processing methods are used to diagnose the rotor of the three-phase induction motor, and
the diagnosis effect is good. Caesarendra et al. [39] proposed a parsimonious network
based on a fuzzy inference system and tested the data of low-speed slewing bearings. This
method is applied to the normal to faulty bearing vibration data collected in 139 days to
predict the time series feature of the vibration signal of slewing bearing. The outstanding
performance of the network is verified through experiments. Guo et al. [40] proposed an
FDI method for UAV sensors based on hybrid feature models and deep learning. The
method firstly collected the remaining signals of different sensor failures, such as global
positioning system, inertial measurement unit, air data system, etc. Then, it transformed
the residual signal into a corresponding time-frequency diagram by short-time Fourier
transform. Through a convolutional neural network, it finally extracted map features for
the FDI of the UAV sensors.
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Due to the limited space of the quadcopter airframe, it is difficult to use additional
sensors to capture fault signals. Therefore, we adopt limited airborne sensor data to achieve
FDI without building a complex mathematical model of a quadcopter. In this paper, a signal
processing-based method is introduced to detect and identify quadcopter blade faults. Yan
et al. [41] established a quadcopter FDI model based on the BP network using the vibration
signals of quadcopters. However, the model only adopts single-axis vibration data, which
makes it difficult to identify different faults on different axes of quadcopters. In addition,
the BP network is affected by the local minimization problem as the weight of the network
is gradually adjusted in the direction of local improvement. Local minimization means
that the weight converges to a local minimum and network training fails. A quadcopter
FDI model based on a BP network has limited data mining capabilities, which makes it
sensitive to initial network weights. Initializing the network with different weights tends
to converge to different local minima, resulting in different training results each time and
reducing the accuracy of the model. When the amount of vibration data is relatively large
and the failure modes are relatively large, the BP-based FDI model cannot effectively mine
the data information and has limitations in practical applications.

Considering the deficiencies, this paper proposes a quadcopter FDI method based on
airframe vibration signals using airborne acceleration sensors without additional sensors.
First, the three-axis accelerometer data of the quadcopter from the flight experiment is
regarded as the airframe vibration signal. Second, the wavelet packet decomposition
method is employed to extract the data features and the standard deviations of the wavelet
packet coefficients are employed to compose the feature vector. Finally, an FDI model is
established by LSTM network that realizes the detection and identification of the propeller
blade faults of a quadcopter.

2. FDI Algorithm

In this section, we introduce the FDI algorithm, including the feature extraction of
vibration signals based on wavelet packet decomposition, and the FDI model establishment
of a quadcopter based on an LSTM network.

2.1. Algorithm Overview

The quadcopter FDI method based on the vibration signals of the airframe is shown
in Figure 1. The method includes vibration data acquisition, data preprocessing, feature
extraction, and LSTM-based FDI model training. First, the accelerometer sensor obtains
airframe vibration data of the quadcopter during flight. The collected data sets are divided
into K sets according to K health states during the flight of the quadcopter, which forms
data sets Di(i = 1, 2, · · · , K), respectively. Each data set is divided into multiple subsets
by dividing subsets into units of 1 s, and K data sets are preprocessed to obtain data
sets di(i = 1, 2, · · · , K). Then, the wavelet packet decomposition extracts the features of
the data set di(i = 1, 2, · · · , K). The matrix composed by a feature vector is written as
θi(i = 1, 2, · · · , K), which is imported to train the LSTM network model that realizes the
quadcopter FDI based on airframe vibration signal.

2.2. Signal Feature Extraction
2.2.1. Decomposition of the Airframe Vibration Signal

Signal processing can iteratively optimize the existing signal and eliminate the re-
dundant part of the signal. Fourier transform analyzes the signal by mapping the time
domain to the frequency domain with a large span; however, the volatility of the sig-
nal cannot be reflected in the vibration signal of the quadcopter airframe [42]. Because
wavelet packet decomposition can describe whether the signal has fluctuations and char-
acterize the locality of the signal, it can extract the characteristics that are weakened or
even ignored and research in many fields involve the relevant content of wavelet packet
transform [43–45]. The wavelet packet decomposition suits signal processing, especially
non-stationary signals. It can provide a higher resolution in the high-frequency region and
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better analyze the signal according to its characteristics. We select a condensed part that
can describe all the signals to replace the whole with a part. The condensed part refers to
the data features extracted by the wavelet packet decomposition. The extracted features
and constructed feature vectors are employed to describe the whole dataset. The three-level
wavelet decomposition method in wavelet packet decomposition can meet the detection
requirements. Taking the three-level wavelet decomposition as an example, the original
signal is decomposed into eight wavelet component signals. Figure 2 depicts the three-level
wavelet packet decomposition tree, where δm

j (t), j = 1, 2, 3; m = 1, 2, · · · , 8 denotes the
m-th wavelet packet component signal of the j-th level.
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Figure 1. Flow chart of the algorithm. 

2.2. Signal Feature Extraction 

2.2.1. Decomposition of the Airframe Vibration Signal 

Signal processing can iteratively optimize the existing signal and eliminate the re-

dundant part of the signal. Fourier transform analyzes the signal by mapping the time 

domain to the frequency domain with a large span; however, the volatility of the signal 

cannot be reflected in the vibration signal of the quadcopter airframe [42]. Because wave-

let packet decomposition can describe whether the signal has fluctuations and character-

ize the locality of the signal, it can extract the characteristics that are weakened or even 

ignored and research in many fields involve the relevant content of wavelet packet trans-

form [43–45]. The wavelet packet decomposition suits signal processing, especially non-

stationary signals. It can provide a higher resolution in the high-frequency region and 

better analyze the signal according to its characteristics. We select a condensed part that 

can describe all the signals to replace the whole with a part. The condensed part refers to 

the data features extracted by the wavelet packet decomposition. The extracted features 

and constructed feature vectors are employed to describe the whole dataset. The three-

level wavelet decomposition method in wavelet packet decomposition can meet the de-

tection requirements. Taking the three-level wavelet decomposition as an example, the 

original signal is decomposed into eight wavelet component signals. Figure 2 depicts the 

three-level wavelet packet decomposition tree, where ( ), 1,2,3; 1,2, ,8  m

j t j m  de-

notes the m-th wavelet packet component signal of the j-th level. 

Figure 1. Flow chart of the algorithm.
Sensors 2021, 21, x FOR PEER REVIEW 5 of 18 
 

 

( )t

1

1 ( )t 2

1 ( )t

1

2( )t 2

2 ( )t 3

2 ( )t 4

2 ( )t

1

3( )t 2

3 ( )t 3

3 ( )t 4

3 ( )t 5

3 ( )t 6

3 ( )t 7

3 ( )t 8

3 ( )t
 

Figure 2. Wavelet packet dendrogram. 

If the j-level wavelet packet decomposition method is applied to the original airframe 

vibration signal ( )t , the original airframe vibration signal ( )t  is: 

2

1

( ) ( )



j

m

j

m

t t  . (1) 

A wavelet packet is a function with three indices of integers, m, j, and l, which are the 

modulation, scale, and translation parameters, respectively [46]. The wavelet packet com-

ponent signal ( )m

j t  can be expressed by the linear combination of the wavelet packet 

function 
, ( )m

j l t  as: 

     , ,





 m m m

j j l j l

l

t p t t . (2) 

The wavelet packet coefficient 
, ( )m

j lp t  is obtained by: 

     , ,




 

m m

j l j lp t t t dt . (3) 

Assuming that the wavelet packet function is orthogonal, then: 

     , , 0,   r s

j l j lt t if r s . (4) 

The method focuses on the feature extraction of the N-axis airframe vibration signal 

of the quadcopter. Suppose that: 

, 1=[ (1), (2), , ( )] ( 1, , 1, , 1, , )       δ ， ，n t

i i K n N t q    , (5) 

where K denotes the number of data sets and N denotes the number of axes. Divide the 

data set into q subsets by time, and   is the number of data points in the n-th axis air-

frame vibration signal of the i-th data set at the t-th time period. ,
δ

n t

i
 denotes observations 

in the n-th axis airframe vibration signal of the i-th data set at the t-th time period. 

Then, the N-axis airframe vibration signal of the i-th data set at the t-th time period 

is: 

1, 2, ,[ , , , ]   δ δ δ δ
t t t N t T N

i i i i

 . (6) 

Finally, the N-axis airframe vibration signal of the quadcopter in the data set id  is: 

1 2=[ , , , ]q N q

i i i i

  δ δ δ δ . (7) 

2.2.2. Feature Extraction of the Airframe Vibration Signal 

Figure 2. Wavelet packet dendrogram.

If the j-level wavelet packet decomposition method is applied to the original airframe
vibration signal δ(t), the original airframe vibration signal δ(t) is:

δ(t) =
2j

∑
m=1

δm
j (t). (1)

A wavelet packet is a function with three indices of integers, m, j, and l, which are
the modulation, scale, and translation parameters, respectively [46]. The wavelet packet
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component signal δm
j (t) can be expressed by the linear combination of the wavelet packet

function ψm
j,l(t) as:

δm
j (t) =

+∞

∑
l=−∞

pm
j,l(t)ψ

m
j,l(t). (2)

The wavelet packet coefficient pm
j,l(t) is obtained by:

pm
j,l(t) =

∫ +∞

−∞
δ(t)ψm

j,l(t)dt. (3)

Assuming that the wavelet packet function is orthogonal, then:

ψr
j,l(t)ψ

s
j,l(t) = 0, i f (r 6= s). (4)

The method focuses on the feature extraction of the N-axis airframe vibration signal
of the quadcopter. Suppose that:

δn,t
i = [δ(1),δ(2), · · · , δ(λ)

]
∈ R1×λ(i = 1, · · · , K, n = 1, · · · , N, t = 1, · · · , q), (5)

where K denotes the number of data sets and N denotes the number of axes. Divide the
data set into q subsets by time, and λ is the number of data points in the n-th axis airframe
vibration signal of the i-th data set at the t-th time period. δn,t

i denotes observations in the
n-th axis airframe vibration signal of the i-th data set at the t-th time period.

Then, the N-axis airframe vibration signal of the i-th data set at the t-th time period is:

δt
i = [δ1,t

i ,δ2,t
i , · · · ,δN,t

i ]
T ∈ RN×λ. (6)

Finally, the N-axis airframe vibration signal of the quadcopter in the data set di is:

δi= [δ1
i ,δ2

i , · · · ,δq
i

]
∈ RN×λ×q. (7)

2.2.2. Feature Extraction of the Airframe Vibration Signal

A common method for the extraction of the characteristics of the original airframe
vibration signal regards the energy of the wavelet packet coefficients as the feature vector,
but training artificial neural network by the standard deviation of wavelet packet coeffi-
cients has a faster convergence speed and better performance [46]. Therefore, we adopt the
standard deviation of wavelet packet coefficients to construct the feature vector to train the
LSTM-based FDI model.

The preprocessed quadcopter N-axis airframe vibration signal in (7) adopts the j-level
wavelet packet decomposition method. Decompose the n-th axis airframe vibration signal
of the i-th data set at the t-th time period δn,t

i in the data set di. The wavelet packet
coefficient pm

j,l(t), m = 1, 2, · · · , 2j can be obtained by Equations (1)-(3). Then, the standard
deviation of wavelet coefficient constructs the M-dimensional feature vector:

θn,t
i = [σ1, σ2, · · · , σM]T ∈ RM×1, (8)

where:

σm =

√√√√ 1
M

M

∑
k=1

(pm
j,l − µ)2, M = 2j, m = 1, 2, · · · , M. (9)

µ denotes the mean of the wavelet packet coefficient pm
j,l and θn,t

i denotes the M-dimensional
feature vector constructed by the j-level wavelet packet decomposition method in the n-th
axis vibration signal of the i-th data set at the t-th time period.
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Then, we have:
θt

i = [θ1,t
i ,θ2,t

i , · · · ,θN,t
i ]

T ∈ RN×M, (10)

where θt
i denotes the feature matrix extracted by the N-axis vibration signal of the i-th data

set at the t-th time period.
The N-axis vibration signal of the quadcopter in preprocessed data set di is subjected

to feature extraction, and we obtain the input matrix of the LSTM-based FDI model as:

θi = [θ1
i ,θ2

i , · · · ,θq
i ] ∈ RN×M×q. (11)

2.3. LSTM-Based FDI Model of Quadcopter

Hochreiter et al. [47] proposed LSTM, a special recurrent neural network, which can
solve vanishing gradient. Schematic diagram of a LSTM unit is shown in Figure 3.
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Figure 3. LSTM structure diagram.

LSTM maintains the hidden state vector ht and a memory cell ct. The behavior of the
memory cell is determined by three gates—i.e., the input gate it, the output gate ot, and the
forget gate ft. The updated equations are given as follows:

ft = σ(Vf ht−1 + W f xt + b f ), (12)

it = σ(Viht−1 + Wixt + bi), (13)

ot = σ(VOht−1 + Woxt + bo), (14)

c̃t = tanh(Vcht−1 + Wcxt + bc), (15)

ct = ft � ct−1 + it � c̃t, (16)

ht = ot � tanh(ct), (17)

where xt denotes the new input to the LSTM model at time step t; VΘ, WΘ, bΘ are learnable
parameters (Θ can be f , i, o, or c); and σ is nonlinear function (σ here usually it is sigmoid
function). The operator � denotes the element-wise multiplication. At time step t in
(12), a function of the new input and previous hidden state ht−1 forms the forget gate ft,
determining which historical information will be discarded by the cell state. In (13), the
input gate it is obtained through a function of the new input and the previous hidden
state ht−1, deciding which states will be updated. In (14), a function of the new input
and the previous hidden state ht−1 forms the output gate ot. Then, (15) calculates the
candidate values that will be added to the new cell state described by (16), together with
the values of the old cell state which are regulated by the forget gate. Finally, the output
gate decides which part of the new cell states should be taken to form the new hidden state
ht, as shown in (17).
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Feature extraction is performed in the N-axis vibration signal of the quadcopter for
the preprocessed data set di(i = 1, 2, · · · , K). When the standard deviation of the wavelet
coefficients constructs the M-dimensional feature vector, we finally obtain the input matrix
θi of the LSTM-based FDI model, as shown in (11). The matrix θt

i is conducted as the
input unit of the input layer to train the LSTM-based FDI model. We employ K health
states of quadcopter blades as the output of the LSTM-based FDI model. By training the
LSTM-based FDI model, the failure degree of the blades of the quadcopter is identified.
Figure 4 shows the LSTM-based FDI model in this paper.
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This model incorporates wavelet packet decomposition and LSTM and applies it to
the research on quadcopter blade FDI. According to the characteristics of the data-driven
model, the dynamic system feature extraction of wavelet packet decomposition and the
dynamic system anomaly detection of LSTM are proposed. The FDI method effectively
solves the FDI problem of the blades for the quadcopter.

3. Experimental Validation

In this section, the vibration data of three axes X, Y, and Z directions (N = 3) of the
quadcopter blades under three health states (K = 3) are collected, with non-damaged blades,
5% broken blades, and 15% broken blades, where 5% and 15% refer to the damaged part
of the blade, accounting for 5% and 15% of the blade mass, respectively. The three-level
wavelet packet decomposition method (M = 8) further processes the data and extracts data
features, which train and further verify the LSTM-based FDI model. The experiment results
are compared with the quadcopter FDI method based on the BP network.
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3.1. Collection and Preprocessing of Airframe Vibration Data

In order to meet the data requirements for training neural networks, it is necessary to
measure the flight vibration data of the quadcopter in different states. As a platform, we use
the Parrot AR.Drone, a commercially available quadcopter, which measures 53 cm × 52 cm
and weights 420 g. Its main advantage is its very low price, its robustness to crashes, and
the fact that it can safely be used indoors and close to people. The AR.Drone is equipped
with a 3-axis gyroscope and accelerometer, an ultrasound altimeter, and two cameras. The
first camera is aimed forward, covers a field of view of 73.5◦ × 58.5◦, and has a resolution
of 320 × 240. The video of the first camera is streamed to a laptop at 18 fps, using lossy
compression. The second camera aims downward, covers a field of view of 47.5◦ × 36.5◦

and has a resolution of 176 × 144 at 60 fps. The onboard software uses the down-looking
camera to estimate the velocity. The quadcopter sends gyroscope measurements and the
estimated velocity at 200 Hz to the laptop.

The three health states of the quadcopter blades in this experiment are non-damaged
blades, 5% broken on blade one and blade two, and 15% broken on blade two and blade
four, as shown in Figure 5. The structure diagram of the quadcopter and the x, y, and
z-axis regulations are shown in Figure 6. According to the positive direction of the x-axis,
starting from the rightmost and counterclockwise, they are marked as blade one, three,
two, four. Perform flight experiments separately. The wireless communication module on
the AR.Drone platform communicates with the laptop in real time. We obtained the images
transmitted back by the quadcopter during flight and the vibration data of the quadcopter.
The monitoring screen is shown in Figure 7.
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(c) 15% broken blade.
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module on the AR.Drone platform and the laptop.

The flight vibration data were collected at a sampling frequency of 200 Hz/s. The num-
ber of original data collected were 95,508 pieces of non-damaged blades data, 28,284 pieces
of 5% broken blades data, 25,475 pieces of 15% broken blades data. The measured flight
vibration data under three health states are collected in data set D1, data set D2, and data
set D3, respectively. The blades of a quadcopter provide lift, which directly affects the
acceleration and attitude angle. When the blade fracture of the quadcopter is not serious,
and the aircraft is flying smoothly, the acceleration fluctuation is not large. Angular velocity
is an important component of the quadcopter’s freedom, which can completely depict the
flight state of the entire quadcopter body. Therefore, we only need to extract the angular
velocity of x, y, and z-axis from the flight vibration data of quadcopter. Data preprocessing
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includes two steps. The first step is to remove invalid data and acceleration data in data
set D1, data set D2, and data set D3 caused by the data acquisition software. The second
step is to divide data set D1, data set D2, and data set D3 into 477, 141, and 127 subsets,
respectively, taking one second as a unit and 200 pieces of data as a group. Finally, the
preprocessed data set is rewritten into d1, d2, and d3, and the data samples of d1 are shown
in Table 1.

Table 1. Data samples of d1.

Time Angular Velocity X Angular Velocity Y Angular Velocity Z

1,555,587,861.30445 0.158639818429947 0.0292043387889862 0.0286896377801895
1,555,587,861.31157 0.142599448561668 0.0653511583805084 0.0378986895084381
1,555,587,861.31336 0.175936982035637 0.0409883372485638 0.010272428393364
1,555,587,861.31747 0.16002993285656 0.0935227274894714 0.0228112936019897
1,555,587,861.32163 0.100399397313595 0.0828494876623154 0.0202383417636156
1,555,587,861.33311 0.139274418354034 0.0667824372649193 0.0288971811532974
1,555,587,861.33323 0.141123101115227 0.0438796132802963 0.0646019577980042
1,555,587,861.33652 0.272148668766022 0.0218221284449101 0.0085440427064896
1,555,587,861.34083 0.198535457253456 0.0541263408958912 0.0249678939580917
1,555,587,861.34948 0.193962648510933 0.0859876573085785 −0.007232904434204

3.2. Signal Feature Extraction and LSTM-Based FDI Model Design

Three-level wavelet packet decomposition is performed on the angular velocity data
of the x, y, and z axes in each subset of d1, d2, and d3. The angular velocity data of
each axis of each subset are decomposed into eight wavelet component signals, and 8-
dimensional feature vectors are constructed by the standard deviation of the wavelet packet
coefficients. Therefore, the x, y, and z axes generate a total of 24-dimensional feature vectors.
Extract 477 feature vectors from d1, of which 277 construct matrices α1 and 200 construct
matrices α2. Extract 141 feature vectors from d2, of which 91 construct matrices β1 and
50 construct matrices β2. Extract 127 feature vectors from d3, of which 77 construct matrices
γ1 and 50 construct matrices γ2. α1, β1, γ1 are training samples. α2, β2, γ2 are test samples.
The training samples are [[α1]3×8×277, [β1]3×8×91, [γ1]3×8×77]3×8×445 and test samples are
[[α2]3×8×200, [β2]3×8×50, [γ2]3×8×50]3×8×300.

Specifically, for three-axis data of the quadcopter x, y, and z, respectively, the input
matrix of non-damaged blades is 8× 477, the input matrix of 5% broken blades is 8× 141,
and the input matrix of 15% broken blades is 8× 127. The output is divided into three
types with the output definitions shown in Table 2, and the training design is shown in
Table 3, where M represents the dimension and q represents the number of samples.

Table 2. LSTM output definitions.

O1 O2 O3 Indication

1 0 0 non-damaged blades
0 1 0 5% broken blades
0 0 1 15% broken blades

Table 3. Training design.

Training Group Data Set d1 Data Set d2 Data Set d3

Training samples
[M × q]

x axis: [8× 277] 1 x axis:[8× 91] 2 x axis: [8× 77] 3

y axis:[8× 277] 1 y axis:[8× 91] 2 y axis:[8× 77] 3

z axis:[8× 277] 1 z axis:[8× 91] 2 z axis:[8× 77] 3

1 represents the matrix of non-damaged blades, 2 represents the matrix of 5% broken blades, and 3 represents the
matrix of 15% broken blades.
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3.3. Training and Verification of LSTM-Based FDI Model

In order to verify whether the LSTM-based FDI model can solve the time series classi-
fication problem and identify faulty quadcopter blades, this experiment selects different
features under the same LSTM-based FDI model as an input. We select the feature input
method with the highest correct rate and verify the correctness of the training algorithm in
this paper.

From freedom degree of the quadcopter, multiple combinations and different combi-
nations would cause various results when selecting data training of different axes. This
experiment discusses three fusion methods—i.e., the single x-axis angular velocity feature
vector is the input of network in method 1; the x and y axes angular velocity feature vector
is the input of the network in method 2; and the x, y, and z axes angular velocity feature
vector is the input of the network in method 3. The training methods and accuracy rates
are shown in Table 4, where N represents the number of axis, M represents the dimension,
and q represents the number of samples. The output results of three methods are shown
in Figure 8a–c, where the X-axis represents the number of input test sample sets and the
Y-axis represents the number of output codes.

Table 4. Three methods and accuracy.

Categories Method 1 (x axis) Method 2 (x, y axis) Method 3 (x, y, z axis)

Training samples
[N ×M × q]

[8× 277] 1 [16× 277] 1 [24× 277] 1

[8× 91] 2 [16× 91] 2 [24× 91] 2

[8× 77] 3 [16× 77] 3 [24× 77] 3

Test samples
[N ×M × q]

[8× 200] 1 [16× 200] 1 [24× 200] 1

[8× 50] 2 [16× 50] 2 [24× 50] 2

[8× 50] 3 [16× 50] 3 [24× 50] 3

Accuracy 75% 91.33% 96%

1 represents the matrix of non-damaged blades, 2 represents the matrix of 5% broken blades, and 3 represents the
matrix of 15% broken blades.

The experiment results show that the accuracy rates of method 1, method 2, and
method 3 are 75%, 91.33%, and 96%, respectively. As shown in Figure 8a, some of the FDI
results of method 1 are wrong. When 5% are broken on blade one and blade two and 15%
are broken on blade two and blade four, the vibration signal in the x-axis does not change
significantly. Only the single x-axis angular velocity feature vector is used as the input
to train the LSTM-based FDI model, which makes the training result reliability and the
accuracy rate decrease, so method 1 is discarded. Although the combination of two-axis can
detect the blade failure status of quadcopter in Figure 8b,c, the fusion of angular velocity
data of three-axis is more accurate. When two or three-axis data are fused, the amount of
data increases and the flight attitude of the aircraft is more complete. The data features
that can be learned by the algorithm are richer. Additionally, the algorithm can mine more
data characteristics in the same unit of time. In summary, the dynamic system abnormal
state detection model based on LSTM is highly reliable. Method 3, the angular velocity
data fusion scheme of the x, y, and z axes, is better.

3.4. Comparison of LSTM and BP Based FDI Models

The BP-based FDI model can also detect and identify the failure of the quadcopter.
This experiment compares the LSTM-based FDI model with the BP-based FDI model in
terms of time series classification. The reliability of the LSTM training algorithm in FDI
has been obtained. We compare the advantages and disadvantages of the LSTM-based FDI
model with the BP-based FDI model under the same input. The LSTM-based FDI model
selects method 3. The training design of the BP-based FDI model is shown in Table 5.
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The experiment results of the LSTM-based FDI model are shown in Figure 8c. The
experiment results of the BP-based FDI model are shown in Figure 9.
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Table 5. The training design of the BP-based FDI model.

Training Group Data Set d1 Data Set d2 Data Set d3

Training samples
[M × N × q] [24× 277] 1 [24× 91] 2 [24× 77] 3

Test sample
[M × N × q] [24× 200] 1 [24× 50] 2 [24× 50] 3

Output result
(O1O2O3) 100 010 001

1 represents the matrix of non-damaged blades, 2 represents the matrix of 5% broken blades, and 3 represents the
matrix of 15% broken blades.
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It can be seen from Figures 8c and 9 that the experiment results of the LSTM-based
FDI model are basically in line with expectations, and the accuracy rate is as high as 96%.
However, the accuracy rate of the BP-based FDI model in identifying the blade failures of
the quadcopter is only 65%.

Among the quadcopter FDI methods, the LSTM-based FDI model outperforms the
BP-based FDI model in time series classification, with a higher accuracy and better general-
ization ability. It can quickly adjust the learning rate to find the upper and lower bounds of
the dynamic learning rate.

4. Conclusions

Aiming at the FDI of the quadcopter, this paper proposes an FDI method based
on airframe vibration signal. This method integrates multi-axis data information and
effectively detects and identifies quadcopter blade faults through an LSTM-based FDI
model. The quadcopter triaxial accelerometer data are collected for airframe vibration
signals, the wavelet packet decomposition method is employed to extract data features, and
the standard deviations of the wavelet packet coefficients are employed to form the feature
vector. The FDI model is constructed based on LSTM and compared with the BP-based
FDI model. The experiment results show that the proposed method has a higher accuracy
in the FDI of quadcopters based on airframe vibration signals as the accuracy increases to
96%. When the amount of vibration data is relatively large, the BP-based FDI model cannot
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effectively mine the data information, and the accuracy of the model is only 65%. Therefore,
it can only judge part of the degree of blade fracture data correctly, and the model accuracy
is lower than that of the LSTM-based FDI model. Future work may include the blade FDI
of other multi-rotor aircraft, such as hexacopters and octocopters. In addition, locating
faults through vibration signals is the focus and difficulty of further research. Additionally,
more fault modes, such as sensor fault, are expected to be incorporated into the established
model. The proposed method in this paper can combine the iterative schemes [48–53] and
recursive schemes [54–62] to study the parameter identification problems of linear and
nonlinear stochastic systems with colored noises [63–71] and to present highly efficient
fault detection methods that can also be applied to the literature.
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