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The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find
an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone.
Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage
accumulation models in the bone tissue have been investigated. Phenomenological models for bone damage have been
discussed in detail. In addition, 3D finite element model of the femur prepared from imaging data with both cortical
and trabecular structures is delineated using MIMICS and ANSYS® and simulated as a composite structure. The
damage accumulation occurring during cyclic loading was analyzed for fatigue scenario. We found that the damage
accumulates sooner in the multiaxial than in the uniaxial loading condition for the same number of cycles, and the
failure starts in the cortical bone. The damage accumulation behavior seems to follow a three-stage growth: a primary
phase, a secondary phase of damage growth marked by linear damage growth, and a tertiary phase that leads to
failure. Finally, the stiffness of the composite bone comprising the cortical and trabecular bone was significantly
different as expected.

1. Introduction

In order to understand the bone fracture, it is very important
to study the macrodamage of the bone with respect to
mechanical and physiological loads. Bone tissue is a complex,
multiphasic, heterogeneous, anisotropic, and highly hierar-
chized material structure. Predicting and preventing bone
fracture is a very important area in orthopaedics given the
volume of fractures that occurs annually. From a macro-
scopic point of view, bone tissue is divided into two types:
the trabecular bone with 50–95% porosity [1] and the cortical
bone with 5–10% porosity [1]. Bone tissue can be divided
into five levels [2], which are macro, meso, micros, submicro,
and nanostructure. The macrostructure level is the whole
bone, which ranges from several millimeters to several centi-
meters, as shown in Figure 1. In this paper, an attempt has

been made to establish a detailed understanding of the bone
tissue mechanical behavior as it is important in the device
design and to derive implant life. Correspondingly, an accu-
rate damage prediction model for a bone tissue is needed in
order to predict the fracture of the bone or the reliability of
a bone-implant structure.

Numerous damage models were proposed using the
macrostructure of the bone. However, each model has
made an assumption regarding the mechanical properties,
loading conditions, or the structure of the bone. These
assumptions have not given realistic predictions for the
damage accumulation in a bone. Depending on the
mechanical properties of bone tissue, bone damage models
can be divided into elastic-viscoplastic, elastoplastic, and
plastic damage models. In addition, depending on the
damage type, bone damage models can be divided into
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electromagnetic, fracture, bending, and fatigue damage
models. The elastic-viscoplastic damage models take into
consideration that the bone has elastic, plastic, and viscus
material properties.

Recently, several models have been proposed that
describe the damage model of the bone as an elastic visco-
plastic model such as Keyak and Rossi [3]. They proposed
fracture load by using finite element models and several
failure theories [3]. However, they used isotropic material
properties for bone tissue. Some studies proposed elastoplas-
tic damage modes as well. These models take into account
elastic and plastic material properties such as in the Garcia
et al. study [4] and the Fondrk et al. study [5]. They proposed
elastic plastic damage models for bone tissue and developed a
model for cortical bone tissue only. Other studies proposed
plastic damage models, which take into consideration that
the bone has plastic material properties only. In addition to
the mechanical properties, the loading conditions have a sig-
nificant effect on the macrodamage accumulation of the
bone. Some studies analyzed only tension, compression, or
three-point bending [6].

Zlámal et al. proposed a numerical model for trabecular
tissue using compression test and time-lapse X-ray radiogra-
phy and three-point bending test of single trabecula [6].
Besides all of that, the main challenge that has been faced
was to design a model for the bone that contains together
the cortical and trabecular components of the bone. Some
studies have worked only on the cortical component, such
as Natali et al. [7]. Figures 2 and 3 show the use of a small
sample from the femur to perform the finite element simula-
tions. Other studies assumed that the damage starts at the
trabecular components, so they created the damage models
for the trabecular bone only, such as Charlebois et al. [10],
Hambli [11], and Hosseini et al. [12]. Figures 4 and 5 show
the use of a micro-CT to create small samples to perform
the finite element simulations. In this paper, an attempt has
been made to create a 3D model of the femoral bone that
considers the anisotropic material properties of bone tissue
and loads from realistic gait cycle to understand how damage
accumulates in human bone tissue.

2. Material and Methods

2.1. Finite Element Modeling. Because of the difficulty in
studying the macrodamage accumulation of the bone in vivo,
mathematical and phenomenological models were used to
simulate physiological conditions. A three-dimensional
model of the femoral bone was created. Hip fractures are
currently treated by trauma instrumentation. The choice of
the biomaterial constituting the prosthesis determines the
reliability. Hence, failure predictions in bone and bone-
implant stability must be thoroughly investigated on compu-
tational models.

2.1.1. Creating the Model. A femur bone model was devel-
oped in three steps. Firstly, CT images for the femur were
taken from a normal healthy femoral bone. Secondly, the
CT images have been imported into the MIMICS 13.0 pro-
gram to create a 3D model of the femoral bone, as shown
in Figure 6. The cortical and trabecular components were
created depending on the difference in density between them.
Thirdly, the final model has been imported into SolidWorks
(Dassault Systèmes SolidWorks Corp., Concord, MA, USA)
to make the final improvements. The final model of the
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Figure 1: Hierarchal structure of the bone [2].
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Figure 2: Garcia et al.’s [8] elastic-viscoplastic damage model finite
element analysis on a cortical bone specimen.
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femoral bone that has both the cortical and the trabecular
parts is shown in Figure 7.

2.1.2. Material Definition. The proposed material properties
of the bone consider the anisotropic and nonhomogeneity
of the bone with its two types, the cortical and the trabecular.
The trabecular bone is a spongy region; its density is lower
than that of the cortical region, which is the hard and dense
part of the bone. There are various procedures that have been
performed to approximate the modulus of elasticity (E) of the
bone depending on Hounsfield units (HU) and density (ρ)
[14–16]. To give a realistic approximation for the bone tissue
material properties, nine elastic constants must be provided
depending on the orientation of the principal axes of ortho-
tropy. While it is straightforward to assign the principal axes
to the cortical zone, it is very challenging for the trabecular
zone. In this study, both the cortical and trabecular zones
have been divided into eight smaller segments. Then, each
segment has been divided into ten material groups.

Within the MIMICS program, the Hounsfield units (HU)
were used to calculate the density (ρ) across each segment,
and then the young’s modulus (E) has been calculated in the
radial, axial, and circumferential directions. Figure 8 shows
the HU distribution across the femoral bone CT images.

The mathematical relationship between Hounsfield units
(HU) and effective density (ρ) that has been applied in
MIMICS is as follows:

ρ = 0 0000464HU + 1, 1

where the unit for the effective density (ρ) is g/cm3. The CT
slices were used to align the orientation of each segment
material. Also, the orthotropic relationships between the
elastic constants and the density are different for the cortical
and trabecular parts as described earlier, as shown in Table 1.
Also, Figure 9 shows the procedure that has been used to find
the material properties for each part of the femoral bone that
has been used in this study. Table 2 shows the 80 material
groups with their densities and the nine elastic constants.
The colors have been modified to be green-blue colors for
the trabecular material groups and yellow-red colors for the
cortical material groups, so one can differentiate between
them, as shown in the last step. Finally, the material proper-
ties have been imported into ANSYS Workbench 16.2
(ANSYS Inc., Canonsburg, PA, USA). This procedure has
been discussed in detail in the literature [14–16]. Addition-
ally, to validate the importance of studying the bone as a
composite material, the finite element simulation for each
part of the bone has been done separately also. These simula-
tions are extremely important in order to understand the
effect of each zone on the whole bone.

2.1.3. Finite Element Mesh. Tetrahedral element type was
used in this study with a minimum element size of 0.02mm,
as shown in Figure 10. The final model, which has been mod-
ified by SolidWorks, was imported into ANSYS Workbench
16.2. The finite element mesh was adapted automatically
through the program. Following mesh convergence checks,
the total number of elements was 26,898 for the whole femur,
22,328 elements in the cortical bone, and 4570 in the trabec-
ular bone. In order to achieve repetitions of results within five
percent, the meshing was refined with small increment size.

2.1.4. Loads and Boundary Conditions. To mimic physiolog-
ical loading during normal walking, the reconstructed gait
loads in the model were applied as a time-dependent analysis
along its longitudinal axis. The gait cycle for walking was
imported from the HIP98® program. In this program, total
hip replacement joints on different patients were studied,
and their movements were compared with the normal move-
ments during different activities [17]. For the uniaxial
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Figure 3: Ridha and Thurner’s [9] finite element model.
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Figure 4: Hosseini et al.’s [12] plastic damage model for the
trabecular bone.

Figure 5: Hambli’s [13] fatigue damage model.
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loading, the equivalent maximum stress from the gait cycle
was converted into a single load cycle. For the multiaxial
loading condition from the gait pattern during walking, the
initial applied triaxial load (Fz = vertical direction force, Fy
and Fx= anterior–posterior and medial–lateral forces, resp.).
A model fully fixed at the distal end was used in this study.
The body weight acted on the femoral head and muscular
force acted on the proximal femur. The hip contact, which
transfers load from the upper body to the lower limbs, was
investigated under static and dynamic conditions. The
dynamic loads of the hip contact are shown in Figure 11 for
walking condition. In this study, 106 numbers of cycles have
been used assuming that the average number of human
walking cycles in one year is 1,000,000/year.

2.2. Phenomenological Bone Macrodamage Model. Goswami
investigated phenomenological life prediction methods in
great detail [18–21]. The macroscopic deformable bodies
can be described via continuum mechanics. The main
assumption made considers the nonhomogeneous aniso-
tropic material properties of the bone tissue for both the cor-
tical and trabecular bones. Since we assumed our model to be
a composite material with different Young’s moduli in the
cortical and trabecular zones, an assumption was made that
the strain in the cortical and trabecular zones is the same.
Thus, we invoked a strain-based concept in damage model-
ing. The main material properties that are considered in cre-
ating the macrodamage accumulation model of the bone
tissue are modulus of elasticity, fatigue strength coefficient,
fatigue ductility coefficient, fatigue strength exponent, and
fatigue ductility exponent. The first assumption in creating
the model is to consider the elastic and plastic components
as follows:

εt = εe + εp, 2

where εt represents the total strain, εe the elastic strain, and εp
the plastic strain. According to Hook’s law,

σ = Eε, 3

whereEdenotes themodulus of elasticity andσ the total stress.
As it is important to take the nonhomogeneity of the bone tis-
sue, the total strain can be expressed as follows:

εkl = εkl Elastic + εkl Plastic , 4

where εkl represents the strain into different directions.

Figure 7: Femoral bone model.

Figure 6: Creating the 3D model of the femoral bone using MIMICS.
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According to the Coffin-Manson relation for the strain-
life curve that is shown in Figure 12, the elastic and plastic
parts can be expressed as follows:

εkl =
σ̀f
Cijkl

2N f
b + ὲf 2N f

c, 5

where σ̀f is the fatigue strength coefficient, ὲf is the fatigue
ductility coefficient, b is the fatigue strength exponent, c is
the fatigue ductility exponent, and Cijkl are the elasticity ten-
sor components. There are three types of fluctuating stresses.
These are fully reversed, repeated, and fluctuating stresses.
To create the model, the mean stress σm is taken into consid-
eration. The mean stress exists when the loading is of a
repeating or fluctuating type.

When considering the mean stress, the equation of the
total strain is written as follows:

εkl =
σ̀f − σm
Cijkl

2N f
b + ὲf

σ̀f − σm
σ̀f

c/b
2N f

c 6

To find the mean stress σm and the ultimate stress σa,

σm = σmax + σmin
2 ,

σa =
σmax − σmin

2 ,
7

where σmax and σmin are the maximum and minimum von
Mises stresses, respectively, during the loading cycle. As find-
ing the empirical constants b and c needs experimental work,
the universal slops method, shown in Figure 13, was used

instead of the Coffin-Manson relation [23]. With the uni-
versal slope method, the fatigue strength exponent (b) is
related to the ultimate tensile strength and ductility expo-
nent (c) which is related to the true strain at the fracture
of the material are replaced by average slope values of
−0.12 and −0.6, respectively. The total strain relation is
written as follows:

εkl =
σ̀f − σm
Cijkl

2N f
−0 12 + ὲf

σ̀f − σm
σ̀f

−0 6/−0 12
2N f

−0 6

8

And by simplifying (8),

εkl =
σ̀f − σm
Cijkl

2N f
−0 12 + ὲf

σ̀f − σm
σ̀f

5
2N f

−0 6 9

The amount of damage experienced by the body is quan-
tified by a single damage variable D. The damage variable
D=0 when the material is undamaged, while the damage var-
iable D=1 when the material totally failed. According to
Miner’s rule, the damage equation is as follows:

D = 〠
n

i=0

ni
N f i

, 10

where ni is the number of cycles of the occurred stress range
and Nfi is the number of cycles to failure. In the case of aniso-
tropic damage, the relation among the damage variable D,
stress, and strain is as follows:

Table 1: The orthotropic relationships between elastic constants and density.

Modulus of elasticity Poisson ratio Shear modulus

Cortical bone

E1 = 2314ρ1 57 ν12 = 0.4 G12 = G12 maxρ
2 / ρ2max

E2 = 2314ρ1 57 ν23 = 0.25 G23 = G23 maxρ
2 / ρ2max

E3 = 2065ρ3 09 ν31 = 0.25 G31 = G31 maxρ
2 / ρ2max

Trabecular bone

E1 = 1157ρ1 78 ν12 = 0.4 G12 = G12 maxρ
2 / ρ2max

E2 = 1157ρ1 78 ν23 = 0.25 G23 = G23 maxρ
2 / ρ2max

E3 = 1904ρ1 64 ν31 = 0.25 G31 = G31 maxρ
2 / ρ2max

ρmax represents the maximum density, G12 max = 5.71MPa, G23 max = 7.11MPa, and G31 max = 6.58MPa. The superscript numbers denote the following: 1 for
the radial direction, 2 for the circumferential direction, and 3 for the longitudinal direction [14–16].
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Figure 8: Hounsfield unit (HU) distribution across the femoral bone CT images.
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σij = 1 −D Cijklεkl, 11

where D denotes the damage variable, σij are the stress com-
ponents, εkl are the strains, and Cijkl are the elasticity tensor
components (stiffness matrix), where

σ11

σ22

σ33

σ12

σ13

σ23

= 1 −D

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

ε11

ε22

ε33

ε12

ε13

ε23

, 12

C11 = E1 1 − v23v32 γ,
C22 = E2 1 − v13v31 γ,
C33 = E3 1 − v12v21 γ,
C12 = E1 v21 − v31v23 γ = E2 v12 − v13v32 γ,
C13 = E1 v31 − v21v32 γ = E3 v13 − v23v12 γ,
C23 = E2 v32 − v12v31 γ = E3 v23 − v21v13 γ,
C44 = G23,
C55 = G31,
C66 = G12,

13

Figure 9: Material definition: the femoral bone model was imported in MIMICS, and different material properties were assigned by relating
the bone mineral density with Hounsfield units. The colors have been modified to be green-blue colors for the trabecular material groups and
yellow-red colors for the cortical material groups.
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Table 2: Material group numbers with their densities and the nine elastic constants. The subscript numbers denote the following: 1 for the
radial direction, 2 for the circumferential direction, and 3 for the longitudinal direction.

Material group number Density (g/cm3) E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν23 ν31 G12 G23 G31

1 0.997 1.151 1.151 1.894 0.40 0.25 0.25 0.053 0.066 0.061

2 0.998 1.153 1.153 1.897 0.40 0.25 0.25 0.053 0.066 0.061

3 0.999 1.154 1.154 1.900 0.40 0.25 0.25 0.053 0.066 0.061

4 1.000 1.156 1.156 1.903 0.40 0.25 0.25 0.053 0.066 0.061

5 1.001 1.158 1.158 1.906 0.40 0.25 0.25 0.053 0.066 0.061

6 1.002 1.160 1.160 1.909 0.40 0.25 0.25 0.053 0.066 0.061

7 1.002 1.162 1.162 1.912 0.40 0.25 0.25 0.053 0.066 0.061

8 1.003 1.164 1.164 1.915 0.40 0.25 0.25 0.053 0.067 0.062

9 1.004 1.166 1.166 1.918 0.40 0.25 0.25 0.054 0.067 0.062

10 1.005 1.168 1.168 1.921 0.40 0.25 0.25 0.054 0.067 0.062

11 1.006 1.170 1.170 1.923 0.40 0.25 0.25 0.054 0.067 0.062

12 1.007 1.172 1.172 1.926 0.40 0.25 0.25 0.054 0.067 0.062

13 1.008 1.174 1.174 1.929 0.40 0.25 0.25 0.054 0.067 0.062

14 1.009 1.176 1.176 1.932 0.40 0.25 0.25 0.054 0.067 0.062

15 1.010 1.178 1.178 1.935 0.40 0.25 0.25 0.054 0.067 0.062

16 1.011 1.180 1.180 1.938 0.40 0.25 0.25 0.054 0.068 0.063

17 1.012 1.181 1.181 1.941 0.40 0.25 0.25 0.054 0.068 0.063

18 1.013 1.183 1.183 1.944 0.40 0.25 0.25 0.054 0.068 0.063

19 1.014 1.185 1.185 1.947 0.40 0.25 0.25 0.055 0.068 0.063

20 1.015 1.187 1.187 1.950 0.40 0.25 0.25 0.055 0.068 0.063

21 1.016 1.189 1.189 1.953 0.40 0.25 0.25 0.055 0.068 0.063

22 1.016 1.191 1.191 1.956 0.40 0.25 0.25 0.055 0.068 0.063

23 1.017 1.193 1.193 1.959 0.40 0.25 0.25 0.055 0.068 0.063

24 1.018 1.195 1.195 1.962 0.40 0.25 0.25 0.055 0.069 0.063

25 1.019 1.197 1.197 1.965 0.40 0.25 0.25 0.055 0.069 0.064

26 1.020 1.199 1.199 1.968 0.40 0.25 0.25 0.055 0.069 0.064

27 1.021 1.201 1.201 1.971 0.40 0.25 0.25 0.055 0.069 0.064

28 1.022 1.203 1.203 1.973 0.40 0.25 0.25 0.055 0.069 0.064

29 1.023 1.205 1.205 1.976 0.40 0.25 0.25 0.056 0.069 0.064

30 1.024 1.207 1.207 1.979 0.40 0.25 0.25 0.056 0.069 0.064

31 1.025 1.209 1.209 1.982 0.40 0.25 0.25 0.056 0.069 0.064

32 1.026 1.211 1.211 1.985 0.40 0.25 0.25 0.056 0.070 0.064

33 1.027 1.213 1.213 1.988 0.40 0.25 0.25 0.056 0.070 0.065

34 1.028 1.215 1.215 1.991 0.40 0.25 0.25 0.056 0.070 0.065

35 1.029 1.217 1.217 1.994 0.40 0.25 0.25 0.056 0.070 0.065

36 1.030 1.219 1.219 1.997 0.40 0.25 0.25 0.056 0.070 0.065

37 1.030 1.221 1.221 2.000 0.40 0.25 0.25 0.056 0.070 0.065

38 1.031 1.223 1.223 2.003 0.40 0.25 0.25 0.056 0.070 0.065

39 1.032 1.224 1.224 2.006 0.40 0.25 0.25 0.057 0.070 0.065

40 1.033 1.226 1.226 2.009 0.40 0.25 0.25 0.057 0.071 0.065

41 1.034 1.228 1.228 2.012 0.40 0.25 0.25 0.057 0.071 0.065

42 1.035 1.230 1.230 2.015 0.40 0.25 0.25 0.057 0.071 0.066

43 1.036 1.232 1.232 2.018 0.40 0.25 0.25 0.057 0.071 0.066

44 1.037 1.234 1.234 2.021 0.40 0.25 0.25 0.057 0.071 0.066

45 1.038 12.363 12.363 20.240 0.40 0.25 0.25 5.367 6.683 6.185

46 1.039 12.383 12.383 20.269 0.40 0.25 0.25 5.377 6.695 6.196

47 1.040 12.403 12.403 20.299 0.40 0.25 0.25 5.386 6.707 6.207

48 1.041 12.423 12.423 20.329 0.40 0.25 0.25 5.396 6.719 6.218

7Applied Bionics and Biomechanics



where E denotes the Young’s modulus, G denotes the shear
modulus, and ν denotes Poisson’s ratio. The superscript
numbers denote the following: 1 for radial direction, 2 for
circumferential direction, and 3 for longitudinal direction.

Also,

Υ = 1
1 − υ12υ21 − υ23υ32 − 2υ21υ32υ13

14

Table 3 shows the elasticity tensor components for each
material group calculated by using (13) and (14). The

proposed model of macrodamage accumulation of the bone
tissue can be written as follows:

D =
Cijklεkl − σij

Cijklεkl
15

And by applying (15), the final equation for damage is as
follows:

D =
Cijkl σ̀f − σm / Cijkl 2N f

−0 12 + ὲf σ̀f − σm / σf
5 2N f

−0 6 − σij

Cijkl σ̀f − σm / Cijkl 2N f
−0 12 + ὲf σ̀f − σm / σf

5 2N f
−0 6

16

Table 2: Continued.

Material group number Density (g/cm3) E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν23 ν31 G12 G23 G31

49 1.042 12.442 12.442 20.359 0.40 0.25 0.25 5.406 6.731 6.229

50 1.043 12.462 12.462 20.389 0.40 0.25 0.25 5.415 6.743 6.240

51 1.044 12.482 12.482 20.419 0.40 0.25 0.25 5.425 6.755 6.252

52 1.044 12.502 12.502 20.449 0.40 0.25 0.25 5.435 6.767 6.263

53 1.045 12.522 12.522 20.479 0.40 0.25 0.25 5.444 6.779 6.274

54 1.046 12.542 12.542 20.509 0.40 0.25 0.25 5.454 6.791 6.285

55 1.047 12.562 12.562 20.539 0.40 0.25 0.25 5.464 6.804 6.296

56 1.048 12.582 12.582 20.569 0.40 0.25 0.25 5.474 6.816 6.308

57 1.049 12.602 12.602 20.599 0.40 0.25 0.25 5.483 6.828 6.319

58 1.050 12.622 12.622 20.629 0.40 0.25 0.25 5.493 6.840 6.330

59 1.051 12.642 12.642 20.659 0.40 0.25 0.25 5.503 6.852 6.341

60 1.052 12.662 12.662 20.689 0.40 0.25 0.25 5.513 6.864 6.353

61 1.053 12.682 12.682 20.719 0.40 0.25 0.25 5.522 6.876 6.364

62 1.054 12.702 12.702 20.749 0.40 0.25 0.25 5.532 6.889 6.375

63 1.055 12.722 12.722 20.779 0.40 0.25 0.25 5.542 6.901 6.386

64 1.056 12.742 12.742 20.810 0.40 0.25 0.25 5.552 6.913 6.398

65 1.057 12.762 12.762 20.840 0.40 0.25 0.25 5.562 6.925 6.409

66 1.058 12.782 12.782 20.870 0.40 0.25 0.25 5.572 6.938 6.420

67 1.058 12.802 12.802 20.900 0.40 0.25 0.25 5.581 6.950 6.432

68 1.059 12.822 12.822 20.930 0.40 0.25 0.25 5.591 6.962 6.443

69 1.060 12.842 12.842 20.961 0.40 0.25 0.25 5.601 6.974 6.454

70 1.061 12.862 12.862 20.991 0.40 0.25 0.25 5.611 6.987 6.466

71 1.062 12.882 12.882 21.021 0.40 0.25 0.25 5.621 6.999 6.477

72 1.063 12.902 12.902 21.051 0.40 0.25 0.25 5.631 7.011 6.489

73 1.064 12.923 12.923 21.082 0.40 0.25 0.25 5.641 7.024 6.500

74 1.065 12.943 12.943 21.112 0.40 0.25 0.25 5.650 7.036 6.511

75 1.066 12.963 12.963 21.142 0.40 0.25 0.25 5.660 7.048 6.523

76 1.067 12.983 12.983 21.173 0.40 0.25 0.25 5.670 7.061 6.534

77 1.068 13.003 13.003 21.203 0.40 0.25 0.25 5.680 7.073 6.546

78 1.069 13.024 13.024 21.234 0.40 0.25 0.25 5.690 7.085 6.557

79 1.070 13.044 13.044 21.264 0.40 0.25 0.25 5.700 7.098 6.569

80 1.071 13.064 13.064 21.294 0.40 0.25 0.25 5.710 7.110 6.580
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A single scalar damage variable is often insufficient
to describe the variation in mechanical properties of
damaged materials.

2.2.1. Applicability of Damage Models to the Femur. The gait
cycle of the hip is used to predict the macrodamage accumu-
lation for the femoral bone. Because the femoral bone is sub-
jected to a complex loading, the rainflow method is used to
simplify the counting of load cycles. This method is very
accommodating with the use of Miner’s rule. The values of
strength and ductility coefficients were used from the litera-
ture. The value of fatigue strength coefficient σf that was used
is 6, and the fatigue ductility coefficient εf value that was used
is 0.352 [24]. The procedure of using the rainflow method is
shown in Figure 14.

A comparison between the proposed model and the three
different macrodamage accumulations models was per-
formed. The first model was for the cortical bone only, the
second model for the trabecular bone only, and the third
model for both cortical and trabecular composite bones.

The first model is for the damage of the cortical bone from
Pattin et al. [25]. In their study, thirty-two specimens of the
cortical bone were used; the stress range (Δσ) = 83MPa,
number of cycles to failure (Nf) = 417, and the modulus
(Ef) = 9.02GPa. The other model is for the trabecular bone
from Hambli [13]. In his study, five specimens were taken
from the trabecular part of the head of the femoral bone;
the stress range (Δσ) = 85MPa, number of cycles to failure
(Nf) = 10

7, and the modulus (Ef) = 0.17GPa. The third model
is for the damage of both the cortical and trabecular bone
components from Zioupos and Casinos [26]. On the other
hand, Miner’s rule and the finite element analysis data were
used for the proposed model of the femoral bone that has
both the cortical and trabecular components.

Figure 15 shows the relation between the damages of the
bones in terms of cycle fraction (n/Nf) for the models, where
n is the number of cycles at a specific stress range and Nf
is the number of cycles to failure at the same stress range.
The convex curve shows the damage of the cortical bone,
while the concave curve shows the damage accumulation
of the trabecular bone as the cycles increase. Monte Carlo
simulation was performed using the results from determinis-
tic analysis that shows damage accumulation with number of
cycles, probabilistically. Monte Carlo simulation generates a

Figure 10: Meshing with tetrahedral elements.
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Table 3: Material group numbers with the elasticity tensor components (stiffness matrix). The subscript numbers denote the following: 1 for
the radial direction, 2 for the circumferential direction, and 3 for the longitudinal direction.

Material group number Density (g/cm3) C11 C22 C33 C12 C13 C23 C44 C55 C66

1 0.997 1.423 1.483 2.187 0.534 0.297 0.237 0.066 0.061 0.053

2 0.998 1.426 1.541 2.455 0.535 0.297 0.238 0.066 0.061 0.053

3 0.999 1.428 1.546 2.467 0.536 0.298 0.238 0.066 0.061 0.053

4 1.000 1.431 1.551 2.479 0.536 0.298 0.238 0.066 0.061 0.053

5 1.001 1.433 1.556 2.491 0.537 0.299 0.239 0.066 0.061 0.053

6 1.002 1.435 1.561 2.503 0.538 0.299 0.239 0.066 0.061 0.053

7 1.002 1.438 1.566 2.516 0.539 0.300 0.240 0.066 0.061 0.053

8 1.003 1.440 1.572 2.528 0.540 0.300 0.240 0.067 0.062 0.053

9 1.004 1.442 1.577 2.540 0.541 0.301 0.240 0.067 0.062 0.054

10 1.005 1.445 1.582 2.552 0.542 0.301 0.241 0.067 0.062 0.054

11 1.006 1.447 1.587 2.565 0.543 0.302 0.241 0.067 0.062 0.054

12 1.007 1.450 1.593 2.577 0.544 0.302 0.242 0.067 0.062 0.054

13 1.008 1.452 1.598 2.589 0.545 0.303 0.242 0.067 0.062 0.054

14 1.009 1.454 1.603 2.602 0.545 0.303 0.242 0.067 0.062 0.054

15 1.010 1.457 1.608 2.614 0.546 0.304 0.243 0.067 0.062 0.054

16 1.011 1.459 1.614 2.627 0.547 0.304 0.243 0.068 0.063 0.054

17 1.012 1.462 1.619 2.640 0.548 0.305 0.244 0.068 0.063 0.054

18 1.013 1.464 1.624 2.652 0.549 0.305 0.244 0.068 0.063 0.054

19 1.014 1.466 1.630 2.665 0.550 0.306 0.244 0.068 0.063 0.055

20 1.015 1.469 1.635 2.678 0.551 0.306 0.245 0.068 0.063 0.055

21 1.016 1.471 1.640 2.691 0.552 0.307 0.245 0.068 0.063 0.055

22 1.016 1.474 1.646 2.704 0.553 0.307 0.246 0.068 0.063 0.055

23 1.017 1.476 1.651 2.717 0.554 0.308 0.246 0.068 0.063 0.055

24 1.018 1.478 1.656 2.729 0.554 0.308 0.246 0.069 0.063 0.055

25 1.019 1.481 1.662 2.743 0.555 0.309 0.247 0.069 0.064 0.055

26 1.020 1.483 1.667 2.756 0.556 0.309 0.247 0.069 0.064 0.055

27 1.021 1.486 1.673 2.769 0.557 0.310 0.248 0.069 0.064 0.055

28 1.022 1.488 1.678 2.782 0.558 0.310 0.248 0.069 0.064 0.055

29 1.023 1.491 1.684 2.795 0.559 0.311 0.248 0.069 0.064 0.056

30 1.024 1.493 1.689 2.808 0.560 0.311 0.249 0.069 0.064 0.056

31 1.025 1.495 1.695 2.822 0.561 0.312 0.249 0.069 0.064 0.056

32 1.026 1.498 1.700 2.835 0.562 0.312 0.250 0.070 0.064 0.056

33 1.027 1.500 1.706 2.849 0.563 0.313 0.250 0.070 0.065 0.056

34 1.028 1.503 1.711 2.862 0.563 0.313 0.250 0.070 0.065 0.056

35 1.029 1.505 1.717 2.876 0.564 0.314 0.251 0.070 0.065 0.056

36 1.030 1.508 1.722 2.889 0.565 0.314 0.251 0.070 0.065 0.056

37 1.030 1.510 1.728 2.903 0.566 0.315 0.252 0.070 0.065 0.056

38 1.031 1.512 1.733 2.917 0.567 0.315 0.252 0.070 0.065 0.056

39 1.032 1.515 1.739 2.930 0.568 0.316 0.252 0.070 0.065 0.057

40 1.033 1.517 1.745 2.944 0.569 0.316 0.253 0.071 0.065 0.057

41 1.034 1.520 1.750 2.958 0.570 0.317 0.253 0.071 0.065 0.057

42 1.035 1.522 1.756 2.972 0.571 0.317 0.254 0.071 0.066 0.057

43 1.036 1.525 1.761 2.986 0.572 0.318 0.254 0.071 0.066 0.057

44 1.037 1.527 1.767 3.000 0.573 0.318 0.255 0.071 0.066 0.057

45 1.038 15.295 15.932 23.369 5.736 3.186 2.549 6.683 6.185 5.367

46 1.039 15.319 15.958 23.404 5.745 3.192 2.553 6.695 6.196 5.377

47 1.040 15.344 15.983 23.438 5.754 3.197 2.557 6.707 6.207 5.386

48 1.041 15.368 16.009 23.473 5.763 3.202 2.561 6.719 6.218 5.396
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set of random variables normally distributed about a mean
and standard deviation. Monte Carlo simulation was car-
ried out for the proposed model and the other three
models. The mean and standard deviation for each macro-
damage accumulation model have been measured by using
the JMP program, as shown in Figure 16. The simulation
for each model consisted of 200 random generated vari-
ables normally distributed. The probability of failure was
calculated for each model. Table 4 shows the mean, standard
deviation (SD), variance, and probability of failure for the
four models.

3. Results

First, stress-strain analyses in uniaxial and multiaxial loading
conditions are considered, then fatigue life prediction of the
bone is carried out. The maximum von Mises stresses were

obtained from both uniaxial and multiaxial loading condi-
tions for static simulations, as shown in Figures 17 and 18,
where the stresses are 78.7 and 99.4MPa for the uniaxial
and multiaxial loadings, respectively. Figure 19 shows the
von Mises stresses for the dynamic simulation of both
loading conditions, where the stresses are 105.8 and
124.2MPa for the uniaxial and multiaxial loadings, respec-
tively. In addition, the total life was obtained from both
uniaxial and multiaxial loading conditions for the dynamic
simulation assuming that the bone is not a synthetic mate-
rial with regeneration/remodeling capabilities, as shown in
Figure 20. The relation between the maximum stress and
the number of cycles to failure is shown in Figure 21 for
both the uniaxial and multiaxial loading conditions. The
polynomial curve fitting (σmax = −19 0 ln N f + 309 4,
R2 = 0 963 for the multiaxial loading condition, and
σmax = −16 8 ln N f + 265 5, R2 = 0 957 for the uniaxial

Table 3: Continued.

Material group number Density (g/cm3) C11 C22 C33 C12 C13 C23 C44 C55 C66

49 1.042 15.393 16.034 23.507 5.772 3.207 2.565 6.731 6.229 5.406

50 1.043 15.417 16.060 23.542 5.781 3.212 2.570 6.743 6.240 5.415

51 1.044 15.442 16.085 23.576 5.791 3.217 2.574 6.755 6.252 5.425

52 1.044 15.466 16.111 23.611 5.800 3.222 2.578 6.767 6.263 5.435

53 1.045 15.491 16.137 23.646 5.809 3.227 2.582 6.779 6.274 5.444

54 1.046 15.516 16.162 23.680 5.818 3.232 2.586 6.791 6.285 5.454

55 1.047 15.540 16.188 23.715 5.828 3.238 2.590 6.804 6.296 5.464

56 1.048 15.565 16.214 23.750 5.837 3.243 2.594 6.816 6.308 5.474

57 1.049 15.590 16.239 23.784 5.846 3.248 2.598 6.828 6.319 5.483

58 1.050 15.614 16.265 23.819 5.855 3.253 2.602 6.840 6.330 5.493

59 1.051 15.639 16.291 23.854 5.865 3.258 2.607 6.852 6.341 5.503

60 1.052 15.664 16.316 23.888 5.874 3.263 2.611 6.864 6.353 5.513

61 1.053 15.689 16.342 23.923 5.883 3.268 2.615 6.876 6.364 5.522

62 1.054 15.713 16.368 23.958 5.892 3.274 2.619 6.889 6.375 5.532

63 1.055 15.738 16.394 23.993 5.902 3.279 2.623 6.901 6.386 5.542

64 1.056 15.763 16.420 24.028 5.911 3.284 2.627 6.913 6.398 5.552

65 1.057 15.788 16.445 24.062 5.920 3.289 2.631 6.925 6.409 5.562

66 1.058 15.812 16.471 24.097 5.930 3.294 2.635 6.938 6.420 5.572

67 1.058 15.837 16.497 24.132 5.939 3.299 2.640 6.950 6.432 5.581

68 1.059 15.862 16.523 24.167 5.948 3.305 2.644 6.962 6.443 5.591

69 1.060 15.887 16.549 24.202 5.958 3.310 2.648 6.974 6.454 5.601

70 1.061 15.912 16.575 24.237 5.967 3.315 2.652 6.987 6.466 5.611

71 1.062 15.937 16.601 24.272 5.976 3.320 2.656 6.999 6.477 5.621

72 1.063 15.962 16.627 24.307 5.986 3.325 2.660 7.011 6.489 5.631

73 1.064 15.987 16.653 24.342 5.995 3.331 2.664 7.024 6.500 5.641

74 1.065 16.012 16.679 24.377 6.004 3.336 2.669 7.036 6.511 5.650

75 1.066 16.037 16.705 24.412 6.014 3.341 2.673 7.048 6.523 5.660

76 1.067 16.062 16.731 24.447 6.023 3.346 2.677 7.061 6.534 5.670

77 1.068 16.087 16.757 24.482 6.033 3.351 2.681 7.073 6.546 5.680

78 1.069 16.112 16.783 24.517 6.042 3.357 2.685 7.085 6.557 5.690

79 1.070 16.137 16.809 24.552 6.051 3.362 2.689 7.098 6.569 5.700

80 1.071 16.162 16.835 24.587 6.061 3.367 2.694 7.110 6.580 5.710
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loading condition) proves that the stress decreases linearly
with the increase in life or number of cycles to failure
(Nf). In addition, Figure 22 shows that for the given life,
the trabecular bone accumulated approximately 25% more
plastic strain than the cortical bone. Also, the same trend
was observed with elastic strain accumulation in the
trabecular bone where it was approximately 6% higher than
the cortical bone.

The finite element modeling of damage considers that the
damage equals to zero when the element in the region of
interest is undamaged. While, the damage is equal to one
when the element failed. Figure 23 shows that the damage
starts at the femoral neck after 106 cycles. To make a compar-
ison between the cortical and trabecular components of the
bone, each part has been evaluated individually. Figure 24
shows the relation between the damage and the fraction of
fatigue lifetime (n/Nf).

Force versus displacement curves were presented
from the finite element analysis, as shown in Figure 25.
The polynomial curves fitting for the whole bone data
(F = 562 9d3–1461d2 + 6538d, R2 = 0 996), for the cortical
bone (F = −1284d3–8091d2 + 20430d, R2 = 0 994), and

for the trabecular bone (F = 1029d3–798 1d2 + 2170d,
R2 = 0 997) suggest linear relation between the force
and the displacement.

To measure the stiffness, data was generated from 26,898
elements and analyzed. It appears that the mean stiffness of
the cortical bone was 7890; trabecular bone, 2860; and that
of the whole bone, 4864N/mm, as expected.

4. Discussion

Macrodamage accumulation of bone tissue was estimated
for two different loading conditions. For the mathematical
part, the elastic and plastic behaviors of the bone were
taken into consideration. Also, the anisotropic and the
nonhomogeneous material properties of the cortical and
trabecular zones were included. The MIMICS program
was used to create the material properties depending on
the Hounsfield unit and the relation among the density
of the bone and the modulus of elasticity and Poisson’s
ratio assigned based on grayscale distribution across the
3D model of the femur.
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Figure 16: Monte Carlo simulation of the four models using the JMP program.
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Table 4: Monte Carlo simulation results.

Macrodamage model Mean SD Variance Probability of failure

The proposed femoral model using Miner’s rule 0.333299 0.393134 0.154554 13.26%

Zioupos and Casinos [26] 0.806667 0.944787 0.892622 37.90%

Pattin et al. [25] 0.55734 0.246868 0.060944 42.20%

Hambli [13] 0.171942 0.393134 0.01129 16.63%

13Applied Bionics and Biomechanics



To validate the importance of studying the bone as a
composite material, a study on each part of the bone has been
done separately also. This is very important in order to
understand the effect of each zone on the whole bone. A com-
parison between the proposed model and the three different
macrodamage accumulations models was performed. The
first model [25] shows cortical bone behavior, and the study
was done on a small sample of the femoral bone. The second
model [13] was for the trabecular bone only, on a small
sample of the bone. The third model [26] was for a portion
of the bone that contained both cortical and trabecular parts.
However, the material properties were simple, isotropic, and
homogeneous for all the three models. Moreover, the macro-
damage models were nonlinear in the first two models and
linear in the last model. In the current study, Miner’s rule
was used with the proposed femoral model that contained
both the cortical and the trabecular components, and a linear
relationship was assumed. Also, the rainflow method was
used to simplify the gait cycle of normal walking. Figure 15
shows that the damage in the cortical bone is higher than that
in the trabecular bone for the same fraction of fatigue cycles
(n/Nf) at a particular stress range. For the cortical bone, the
damage starts to decrease when (n/Nf) reaches 0.9, while for
the trabecular bone, the damage keeps increasing till (n/Nf)
reaches 1.

The probability of failure was calculated from the distri-
bution of the random variables for each model by using
Monte Carlo simulation. The probability of failure for the
proposed model was 13.26%, while the probability of failure
was 37.90% for the whole bone model and 42.20% for the
cortical bone model. The reason for this large difference
between the probability of failure of the proposed model
and the other models is likely due to the entire femoral bone

was studied in our study. On the other hand, the other
models were on a small sample of the bone. The data clearly
shows that the composite bone as considered in the present
study has lower von Mises stresses and thus lower failure
probability than elastic/plastic materials.

Furthermore, the finite element analysis allowed a deeper
understanding for the macrodamage accumulation of bone
tissue. A comparison between different loading conditions
was evaluated. The first loading condition was a multiaxial
loading, where the cycle for normal walking was used includ-
ing Fx, Fy, and Fz; the other loading condition was the uniax-
ial loading, where the equivalent maximum stress from the
gait cycle was converted into a single load cycle. The results

(a) (b)

Figure 17: von Mises stresses for the static uniaxial (a) and multiaxial (b) loading conditions.
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Figure 18: Finite element simulation results for both the static and
dynamic loading conditions.
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Figure 20: Total life for the uniaxial and multiaxial loading conditions; the results show that the bone is not a synthetic material with
regeneration/remodeling capabilities.
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showed a significant difference between the two loading con-
ditions. In static finite element simulation, the maximum von
Mises stress was 78MPa for the uniaxial loading condition
and 99MPa for the multiaxial loading condition, respec-
tively. These results were expected as the loads are higher in
the multiaxial loading condition, which led to a greater
amount of stress than those in the uniaxial loading condition.
The advantage of the static simulation in this study is to

confirm the validation of the 3D model of the femoral bone
with the literature. In the dynamic finite element simulation,
the maximum vonMises stresses were 105.8MPa for the uni-
axial loading condition and 124.2MPa for the multiaxial
loading condition, respectively.

The study showed that the failure starts faster in the mul-
tiaxial loading condition than that in the uniaxial loading
condition for the same number of cycles. Furthermore, the

Figure 23: The macrodamage of the femoral bone under 106 cycles.
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Figure 24: The relation between the fraction of fatigue lifetime (n/Nf) and the damage of (a) the cortical bone, (b) the trabecular bone, and (c)
the combined model that has both.
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finite element simulation showed that the relation between
the stress and the strain stays the same till the stress reaches
65MPa. Then, the stress starts to be higher for the multiaxial
loading condition than that for the uniaxial loading condi-
tion for the same amount of displacement. In addition, the
finite element simulation for the damage of the bone showed
that the damage starts at the femoral neck. This result was
expected, as the femoral neck is the weakest point in the fem-
oral bone, and the study was done on a healthy bone that
does not have any injury.

The anisotropic material properties were used in the
finite element simulation of the proposed model. The dam-
age accumulation process in a long bone may be described
by a three-stage process, as shown in Figure 26.

Since stage II shows a linear behavior, stage I is reflective
of the primary phase, where the damage developed in the
cortical bone decreases as the cycle fractions increase.
However, as stage I transitions to stage II, the damage
accumulated in the cortical bone increases linearly until
about a cycle fraction of 0.8; upon attaining this level of
fatigue life, the damage mode transitions to a more rapid
damage accumulation that cannot be described by a linear
equation. This state, stage III, is known as the tertiary
damage accumulation stage and must lead to the bone
fracture. We proposed this behavior for the cortical bone,
and the lower ranges of damage hold good for the trabec-
ular bone as well, assuming that the bone is anisotropic
and nonhomogeneous. However, the damage accumulated
on the composite bone was derived from the material
properties of both the cortical and trabecular bones. Three
damage prediction equations were developed, as shown in
Table 5, where B represents the fatigue cycle fractions (n/Nf)
at a particular stress range. These equations can be used in
deriving the bone fracture at a given stress range and fatigue
life. The charts in Figure 26 show that R2 decreases as the
damage increases. The failure starts in the cortical bone
before the trabecular bone.

By comparing between the behaviors of the damage of
the bone that were reported in Figure 15 versus Figure 27,

our effort shows a very clear three-stage process. Therefore,
the mathematical significance of our analysis is applicable
in the engineering design.

The results from the FE analysis was used to determine
mean stiffness. It appears that the mean stiffness of the corti-
cal bone was 7890; trabecular bone, 2860; and that of whole
bone, 4864N/mm. Data generated from 26,898 elements
was analyzed, and we observed a significant difference in
the stiffness of each element. The stiffness is observed in
Figures 25 and 27 for the whole bone and the cortical
and trabecular bone components, respectively. The micro-
motions or displacements in the hip with implants were
investigated [27, 28] and found to be 2.5 to 6 times higher
in the composite bone than with the implants. This differ-
ence was a result of the mismatch between the E values of
the bone and implant materials.

Our results are consistent with stress concentration on
the bone surface via the body and surface stress. These
stresses are concentrated on the first layers of the cortical
bone which is several millimeters thick. Since we are assum-
ing repeated cyclic loads in this study, damage likely concen-
trated on the surface comprised of the cortical bone. Since
mechanism in the cancellous bone is displacement driven,
the composite bone assumes that stress on both the zones will
be same whereas the displacement will be different. Also, our
results are consistent with femoral fractures observed
clinically resulting from high stress.

The results of FEM analysis is presented in terms of
both max von Mises stress and strain values (Figures 19
and 20), respectively, showing the composite laws and
material properties as expected, that is, the displacement
in the trabecular zone is higher, resulting in a higher
strain than that in the cortical zone. Also, a higher total
strain obtained life for the D equivalent of 1 is lower than
at low total strains. A similar trend was found for the von
Mises stress plot as well.

The limitations of this study can be the inability to vali-
date the in vivo conditions in the absence of a biological
self-healing environment. The second limitation is the
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Figure 25: Force (N) versus displacement (mm) curves (the data
from the finite element simulation).
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computer, which makes it harder to apply more than 106

cycles during the damage simulation of the bone.

5. Conclusion

(1) Based on the nonlinear relationship of the macro-
damage mathematical models of bone tissue, a
conceptual model has been proposed and tested on
a human femur. Monte Carlo simulation showed that
the probability of failure for the proposed model was
lower than that for the other models. The reason for
this difference is that in this study the entire femoral
bone was separated in terms of cortical and trabecu-
lar components.

(2) The results have been validated using anisotropic
material properties that showed the bone tissue dam-
age cannot be expressed by only the cortical or the tra-
becular bone and both of them should be taken into
consideration to develop a more realistic simulation.

(3) Three damage prediction equations were developed
(cortical, trabecular, and together cortical and trabec-
ular). These equations can be used in deriving the
bone fracture equations at a given stress range and
fatigue life.

(4) The study showed that the failure starts faster in the
multiaxial loading condition than the uniaxial load-
ing condition for the same number of cycles in the

finite element simulation. Also, the damage starts at
the femoral neck, as the femoral neck is the weakest
part of the femoral bone.

(5) The failure starts in the cortical bone before the tra-
becular bone. This means that the trabecular bone is
more ductile while the cortical bone is more brittle.

(6) The damage behavior seems to follow a three-stage
regression; stage one was described by the primary
phase of damage growth, stage two was described by
the secondary phase of damage growth, and stage
three was described by the tertiary phase of damage
growth.

(7) There is a significant difference in the stiffness of
each element. Also, the stiffness of the cortical
bone and the trabecular bone are significantly dif-
ferent as expected.
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