®

Check for
updates

From Conditional Independence to
Parallel Execution in Hierarchical Models

Balazs Nemeth!®™) Tom Haber!2, Jori Liesenborgs', and Wim Lamotte’

! Hasselt University - tUL, Expertise Centre for Digital Media,
Martelarenlaan 42, 3500 Hasselt, Belgium
{balazs.nemeth,tom.haber,wim.lamotte}@uhasselt.be
2 Exascience Lab, Imec, Kapeldreef 75, 3001 Leuven, Belgium

Abstract. Hierarchical models describe phenomena by grouping data
into multiple levels. Due to the size of these models, parallel execution
is required to avoid prohibitively long computing time. While it is occa-
sionally possible to specify some of these models using parallel build-
ing blocks, this limits expressivity. Therefore, a more general generative
specification is preferred. To leverage parallel computing capacity, these
specifications can be annotated, but doing so effectively assumes that the
modeler has expertise from computer science. This paper outlines how to
identify parallel parts automatically by leveraging the conditional inde-
pendence property in the graphical model extracted from the dataflow
graph of model specifications. Computation related to random variables
with the same depth in the graphical model are identified as candidates
for parallel execution. Since subsequent proposals in the parameter space
exploration of the model are clustered together, the results show that the
well known longest processing time scheduling heuristic deals adequately
with load imbalance. The proposed parallelization is evaluated on two
pharmacometrics models, a domain where hierarchical models with load
imbalance are common due to the numeric simulation of pharmacokinet-
ics and pharmacodynamics of human subjects. The varying number of
measurements taken per subject further exacerbates load imbalance.

Keywords: High performance computing - Descriptive language -
Probabilistic modelling + Automatic parallelization - Dataflow -
Hierarchical models

1 Introduction

In recent years, the physical limits that would otherwise prohibit Moore’s Law’s
predicted performance increase have been circumvented by the trend towards
more parallel systems [7]. The flip-side of this explicit form of parallelism is that
it puts more of the burden on the software developers, or even the users. It is
far from straightforward to leverage all the compute power available in parallel
systems [10,13], but the complexity of the models precludes fitting a model on
a single processor since it is too time intensive in practice. In the context of
computational modeling, there are two prominent strategies for parallelization.

© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12137, pp. 161-174, 2020.
https://doi.org/10.1007/978-3-030-50371-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50371-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-50371-0_12

162 B. Nemeth et al.

First, in some cases, as models are fit using an iterative optimization rou-
tine, multiple processors can be kept busy within each iteration. Computation
fits into the Bulk Synchronous Parallel (BSP) model of parallel computing [16]
with multiple candidate parameters evaluated concurrently. While this approach
allows hiding the parallel constructs within the routine, improving the usabil-
ity of these routines for scientists from other domains requires the optimization
routine to be designed to run in parallel, which might not be feasible.

Second, depending on the model, a single candidate parameter can be evalu-
ated in parallel. This strategy is suitable both for more sequential optimization
routines as well as parallel optimization routines where it can further improve
performance. Even if a task can be decomposed into smaller concurrently exe-
cutable tasks, doing so manually is tedious and error-prone even when armed
with the right parallel computing background. Arguably, the scientists concerned
with building these models are in an even worse position; their expertise is prob-
ably not in parallel computing and a more automated approach, like the one
explored here, is preferable.

The focus here is on the parallelization of hierarchical models composed of
multiple interconnected levels. Computational tasks required for each model eval-
uation are typically spread across relatively few layers. Consequently, this brings
with it the opportunity to execute each level in parallel. While it might not be
the optimal parallelization, it turns out that it performs well in practice. It can
even be used in conjunction with other methods that search for more fine-grained
parallelism [20]. The main contribution is to show how to extract the graphical
model representation from the dataflow graph of the model and how to map
parallelism from the former to the latter.

When the number of tasks exceeds the number of processors in a layer, some
processors will inevitably execute more than one task. Depending on the variabil-
ity of execution times between these tasks and the ratio between the number of
tasks and processors, neglecting the scheduling problem can result in inefficient
use of the underlying hardware. The parallelization approach is augmented with
the well-known Longest Processing Time (LPT) static scheduling heuristic [9],
where independent jobs with varying execution time are scheduled on p identical
Processors.

The reachable efficiency is model-dependent; in general, the more compute-
intensive tasks are available at each level of the hierarchy, the better performance
will scale. Therefore, two different models are considered for evaluation: one con-
taining only a few tasks and another with many more compute-intensive tasks.
While parallelization adds overhead introduced by inter-processor communica-
tion, overall run time decreases in both cases.

The remainder of this paper is structured as follows. Section2 references
related work. Section3 discusses hierarchical models, their structure in the
dataflow graph representation and the relationship with conditional indepen-
dence. Section4 describes the parallelization approach. Section 5 discusses per-
formance results. Section 6 provides future work directions and concludes the

paper.

From Conditional Independence to Parallel Execution in Hierarchical Models 163

2 Related Work

The input to the optimization routines or sampling algorithms is a function that
evaluates a model and returns a score that reflects the quality of the parame-
ters. In this paper, the input is a model description specified similarly to the
probabilistic languages used in Turing [11], Stan [5] and WinBUGS [19].

The Turing system [11] relies on explicit vectorization syntax to gain per-
formance. The presented approach relies on the message passing model [16] for
parallelism and vectorization is an extension that is left as future work.

Stan [5] is a platform for statistical modeling and high-performance statis-
tical computation. Recently, an extension to its modeling language has been
proposed for parallelization [22], but use requires changing the model descrip-
tion. In contrast, the parallelization outlined below does not require the user to
specify additional input signifying how computation should be scheduled on the
hardware, but the downside is that it can be too aggressive causing performance
to degrade in some cases.

Gibbs sampling [6] draws samples from the marginal target distribution by
combining samples taken from conditional distributions. The concept of a graph-
ical model is fundamental for Bayesian inference Using Gibbs Sampling (BUGS),
implemented in WinBUGS [19]. MultiBUGS [12] has added parallel execution to
WinBUGS by working directly on the graphical model from which conditionally
independent parts are identified and scheduled to parallel processors only when
deemed beneficial by a heuristic. Execution of Gibbs Sampling requires synchro-
nization between phases more closely resembling the BSP model. The difference
with the work presented below is that the graphical model is used indirectly to
detect parallel parts of the dataflow graph. Since the posterior is evaluated as
a whole with less synchronization instead of being separated into smaller con-
ditional densities, the applicability is not limited to Gibbs sampling. Another
difference is that MultiBUGS ignores load imbalance by explicitly assuming that
tasks have the same running time.

Even if the outlined approach is applied in a Gibbs setting, the paralleliza-
tion within a single phase is different. For example, given a posterior p(6|D),
if p(6;]...) and p(6]...) are assigned to one Gibbs phase, computation shared
between these two conditional distributions can be executed only once even
without blocking, a technique that affects convergence properties of Gibbs sam-
pling [25].

Nemeth et al. [20] uses an Evolutionary Algorithm (EA) to parallelize the
evaluation of probabilistic models by optimizing schedules through simulation of
a parallel system with communication overhead. The downside is that searching
for a schedule can become prohibitively slow, even though, at least in theory,
the optimal schedule could be found. In contrast, using the graphical model is
a simpler strategy as only tasks assigned to phases can be executed in paral-
lel. However, it turns out that such an approach already yields well-performing
schedules. Another difference is that the EA approach yields a static schedule
in which both the execution order and the assignment of tasks to processors are

164 B. Nemeth et al.

fixed while the tasks that have been identified from the graphical model can be
re-assigned depending on load imbalance changes.

An extensive survey for the well researched task graph scheduling problem
is provided by Yu-Kwong et al. [17]. The main difference with conventional
scheduling approaches is that the target domain is rather specific. The dataflow
graph of a generative model specification always obeys a specific template. From
this observation, a mapping can be formulated from which the parallelism is
extracted directly.

3 Hierarchical Models and Conditional Independence

The main goal of this paper is to show how model descriptions can be parallelized
by relying on information from the graphical model. This section introduces
the notion of a model description, its dataflow graph, and its graphical model.
To distinguish between the structure of the two representations, “layers” refers
to candidates for parallelism in the former and “levels” refers to the depth of
variables in the latter.

From a Bayesian perspective [23], a model description defines a posterior
p(0]D). The numeric value of the posterior determines the quality of a chosen
set of parameters # while taking into account evidence D. In what follows, 6;
denotes a component of the § vector and y; € D denotes a data entry.

The description consists of likelihood expressions y; ~ p(.|pa(y;)) and prior
expressions of the form 60; ~ p(.|pa(f;)) where pa(.) is the set of random variables
conditioned upon. These expressions will be generalized to 7; ~ p(.|pa(y;)) for
convenience. As an example, consider the model shown by Fig.1 on the left
describing both pharmacokinetics (PK) and pharmacodynamics (PD) of a drug
for type-2 diabetes treatment [24].

To convert a model description into an executable function f(6, D), prior and
likelihood expressions are replaced by probability density function evaluations of
the density p(.| .. .) at 7;, denoted by a call to pdf () to which the distribution and
the position are passed. Finally, the product of the resulting probability densi-
ties is returned while the remaining expressions are left untouched. The resulting
function is then converted into a dataflow graph [1,8]. In contrast to the typical
controlflow style reasoning, a dataflow graph is an alternative model of computa-
tion where instead of executing operations on data, data flows through operators.
This representation of computation lends itself well to parallelization [16]. The
dataflow graph G = (V, E) represents the set of computational tasks V and
specifies how data flows between the tasks with edges E.

In general, the dataflow graph of a function f(#, D) for a hierarchical model
has the structure shown in Fig. 2. The inputs # and D are shown at the top and
the product over densities is shown at the bottom. These are connected with
the central portion of the graph, shown by dashed lines. Considering only the
part with solid lines, the relationship with the graphical model is revealed. Each
level depends on any of the previous levels through density evaluation nodes
in V. In the example shown, the connections are less dense; for example, the

From Conditional Independence to Parallel Execution in Hierarchical Models 165

foriinl,...,N “3 @ @

¢i,1 ~ Lognormal(puz, o1)
¢i,2 ~ Lognormal(us, o2)
p = hi(u1, pa, ps, i1, ¢i2, pki)
iv = [0.0, 0.0, 0.0, h2(y)]
9 = int_ode(t;, 0, iv, dose;, p)
for jinl,...,n;
sdv = h3(y;)
yis ~ N(sdv,)
end
end

P

Fig. 1. The Canagliflozin model on the left and its graphical model on the right. A
PK/PD model, used to describe the compound concentration over time for N individu-
als in a population, is numerically integrated by int_ode. The number of measurements
for the i*" individual is given by n;, and hi, h2 and h3 are helper functions.

first level is only connected to the second and fourth level and not to the third
level. However, it is easy to see how the structure generalizes to any hierarchical
model.

The model from Fig.1 is even less dense. Part of the first layer, us, o1, ug
and o2 are connected with the second layer with variables ¢; 1 and ¢; 2 and all
variables in the second layer together with the remaining part of the first layer
are connected with the third layer with variables y; ;.

One simplification made here is that an edge in Fig. 2 can represent a sequence
of operations that transform random variables between layers or parts of layers
like h1, h2, h3 and int_ode in Fig. 1. It is important to keep this in mind for the
discussion in Sect. 4.

A graphical model H = (R, F), is a representation of the conditional inde-
pendence between variables. Figure 1 shows the graphical model on the right for
the Canagliflozin model. For brevity, it is conventional to summarize similar vari-
ables with the plate notation by placing them into boxes with the range of iter-
ated indices specified at the bottom [12]. For hierarchical models, H is a Directed
Acyclic Graph (DAG), where the set of nodes R represents the random variables
in the hierarchical model and their priors, and the edges F' C R x R denote how
the posterior can be factorized, i.e. p(0|D) x p(0,D) = p(v) = [I; p(vilpa(i)).
An edge from «; to ; is placed in F' if v; € pa(y;).

To convert a dataflow graph G into a graphical model H, the nodes R and
edges F need to be defined in terms of V and E. All nodes with input parameters
in G, i.e. 6; and y; at the top of Fig. 2, form R. The edges F' are defined by the
density evaluation nodes. By traversing the edges in E in the opposite direction
starting at the node that provides the density input, the variables pa(y;) can
be found. Similarly, following the other input, v; can be found. This mapping
introduces a function m from R to V where m(r) is either the correspond-
ing probability evaluation node if it exists, or the input node of that variable.

166 B. Nemeth et al.

Fig. 2. Simplification of the structure of the dataflow graph of a function f(6,D)
built from a hierarchical model with four layers the last of which is the data layer.
The structure generalizes to any generative specification of a hierarchical models with
arbitrary interconnected layers. (Color figure online)

The set pa(v;) and +; for the red node in Fig.2 can be found by following the
green edges and the blue edges respectively.

4 Extracting Parallelism from the Graphical Model

Since the dataflow representation naturally exposes parallelism in a model it
is possible to execute the dataflow graph by starting execution of each node
when all its inputs become available. It is well known that scheduling such a
computational DAG is hard to solve optimally, but many heuristics exist [3].

Scheduling each node separately is prohibitively expensive in practice due to
the amount of overhead introduced on a contemporary system; not only is over-
head introduced by starting a function compiled from the expression in a node,
but also by tracking and storing its inputs and outputs. To reduce overhead, sets
of nodes can be grouped into larger tasks and treated as a single unit at the cost
of potentially reducing parallelism. It is possible to find satisfactory assignments
of tasks to processors by considering the dataflow graph and the characteristics
of the underlying parallel system directly [20], but this search can be slow in
practice, especially with graphs that have on the order of 10* nodes or more.
Such graphs are not uncommon for typical pharmacometrics (PMX) models.
Assuming that the order of tasks is not fixed, there are nP possible assignments
to consider with p processors. Parallelization based on the graphical model is
more tractable, although less detailed.

From Conditional Independence to Parallel Execution in Hierarchical Models 167

Since the posterior can be seen as a product of conditional densities as dis-
cussed in Sect. 3, the most basic approach is to create one task for each con-
ditional density from the dataflow graph. This is accomplished by traversing
the dataflow graph backwards from each node c¢ that contains the expression
pdf(p(.]...),7;) and selecting all reachable nodes, denoted by the set pred(c).
The procedure pred(c) extends naturally to sets of random variables as well.

While this leads to an embarrassingly parallel solution since each task can be
computed independently, the downside is that many nodes will be recomputed
due to the similarities. More formally, for two density evaluation nodes ¢; and cs,
pred(c;) Npred(cy) # (). For example, suppose that one of the input parameters
7; is first transformed to g(y;) and there are multiple ~; such that ~; € pa(y;).
Then, to compute each conditional density p(v;|g(vi),--.), g(vi) will need to
be recomputed for every conditional density, a situation that is undesirable if a
significant portion of computation effort is spent in g.

Therefore, this paper proposes to use the conditional independence to find
similarities between conditional densities. Computationally, conditionally inde-
pendence of two random variables 7; and 7y; given <, means not only that
p(Vi, vilve) = p(vilve) - p(vi1vk) holds, but also that some of the tasks related
to «; and ; are to be executed after some of the tasks related to . In addi-
tion, there might be some similarity between the computation related to ~;
and vy;, but there will also be some differences. If this was not the case, then
p(yilwk) = p(jlw)-

Computational similarities can be captured by introducing deterministic vari-
ables 3 so that p(vi|5,v&) = p(v:|8) and p(v;18, &) = p(7;|8). Probabilistically,
after marginalizing the deterministic variables 3, Eq. (1) holds.

(v, vilve) = p(vilB) - (v;18) - p(BlYk) (1)

Once p(B|yx) has been computed, both p(v;|5) and p(;]8) can be computed
sharing as little information as possible. If no information is shared, they can be
computed in parallel. Algorithm 1 shows how to accomplish this by processing
random variables in the graphical model.

The end goal is to assign random variables to layers and to construct tasks
from the variables in these layers. The assumption is that tasks constructed
from a layer are independent. In the extreme, when a deterministic variable is
introduced for each node in the dataflow graph, all tasks will be independent
given their predecessors. Note however that Algorithm 1 introduces only a lim-
ited number of deterministic variables. Therefore, the predecessor relationship
imposed by E will still need to be respected since there might still be some
dependencies. The rationale behind this is that variables in the same layer tend
to share computation through their connection with previous layers, on a layer
by layer basis, while little or no computation is shared within a layer.

First, following the depth definition from MultiBUGS [12], the level d(r)
is computed for r € R. If pa(r) = 0, then d(r) = 1. Otherwise, d(r) = 1 +
maX,epa(r) d(p). In Fig. 1 the depth is 1 for all p and o variables, 2 for all ¢

168 B. Nemeth et al.

Algorithm 1. Extracting layers to construct parallel tasks.
procedure EXTRACTLAYERS(G, H, m) > G, H and m defined in Section 3
Compute d(r) for r € R as in MultiBUGS [12]
fori=1,...,D do
Lii = {{m(r)}Ir € Ri}

P; = Uyer,;pa(r) > All direct parents of level %
for j=1,...,i—1do
P ;=P NR; > Direct parents in level j < ¢
L; ; = {lcpred(ch(p) N R;)|p € P, ;} > Find computational similarities
end for
end for
return Ly :...,Lpp

s

end procedure

variables, and 3 for the data variables ¥; ;. The levels of the random variables
partition R into sets Ri,..., Rp. Here, R; contains all the random variables at
level i.

It might seem that D layers can now be constructed, one for each set of
variables R;. However, this does not expose computational similarities present
between layers. Instead, multiple layers will be introduced for each level 7, rep-
resented by L; ;. The elements of layer L; ; are sets of dataflow graph nodes.

For a level i, the deepest layer L;; contains the dataflow graph node asso-
ciated with the random variables r € R; as singletons. Next, the directly
reachable parents of the variables in R; are collected in P;. For each j < i,
|Li ;| = |P;,;| where P, ; C P; are the direct parents on level j. Each element
of L;; is given by the last common predecessors of the children of p € P;; in
R;, denoted by lcpred(ch(p) N R;). For a set of nodes S C R, lcpred(S) is com-
puted by taking the nodes in N.cgpred(m(c)) for which edges lead to nodes in
Ueespred(m(c)) \ Neespred(m(c)). The expressions from the dataflow graph in
each set in L; ; with j < ¢ constitute the computational similarities of random
variables with depth ¢ with respect to parents at depth j. These similarities
correspond to deterministic variables like (.

For the model from Fig.1, L, ; contains singletons for the random variables
at depth 1 like {m (1)} and {m(o2)}. Analogously, Ly and L33 contains sin-
gletons for the random variables ¢ and the data entries y respectively. The
direct parents of the variables with depth 3 are p1, po, pts, 91 and ¢; 2. Since
d(gi1) = d(¢i2) =2 and d(p1) = d(p2) = d(us) = 1, two additional layers Lj o
and L3 ; will be introduced. Here, among others lcpred(ch(¢;,1) N R2) contains
calls to int_ode, and lepred(ch(¢; 1) N R2) contains calls to h2.

Finally, to turn the constructed layers L; ; into a partitioning of V, they are
processed from shallowest to deepest while assigning all nodes in V. Each set
S" € L; ; is replaced by nodes in Usc g pred(s) except for those that have already
been assigned. The resulting sets form the final tasks.

From Conditional Independence to Parallel Execution in Hierarchical Models 169

While it might seem that annotating the for-loops in the model description
like the one given in Fig. 1 to specify that these should be parallelized is straight-
forward, the parallelization described here will not only automatically detect
this, but it will also work for more arbitrarily interrelated models in which loops
need not necessarily match the levels of the hierarchy.

The tasks within each layer can be scheduled to run in parallel. To maxi-
mize parallel efficiency [13], idle times need to be kept to a minimum. The only
heuristic considered during performance evaluation is LPT [9] although other
heuristics could be used as well. The focus is not so much on scheduling, but on
presenting a mapping between two representations of a model to identify parallel
parts.

Since subsequent posterior evaluations occur at similar positions in the
parameter space, i.e. 8¢ = #'T1 it turns out that the execution time for each
task changes only gradually. For this reason, after running one iteration with
tasks scheduled using a round-robin (RR) strategy, subsequent rounds can be
scheduled with LPT using the execution time measured during evaluation of the
previous candidate parameter 6.

5 Performance Evaluation

PMX models are key computational components leveraged for decision making
during drug development. Here, only a limited amount of data is available [4].
The data includes the compound concentration in the blood of subjects, a costly
measurement to make. In contrast to more classical models where all data is
“independent and identically distributed”, the data also specifies from which
patient each measurement is taken creating a hierarchy as discussed above.

In this section, the performance of the proposed method is evaluated using
two models from PMX. The first model, called the Nimotuzumab model,
describes a humanized monoclonal antibody mAb, in patients with advanced
breast cancer [21]. The second model is the Canagliflozin model used as the
example in Sect. 3.

The structure is similar in both models; it consists of a population layer in
which a set of patients that have taken part in the clinical trial are each modeled
separately. However, it is important to note that the parallelization outlined in
this paper can be applied to models with more layers assuming that there are
enough computationally intensive tasks in each layer.

The data for the Nimotuzumab model contains measurements of 12 patients
resulting in limited amount of parallelization. On the other hand, the data for the
Canagliflozin model consists of measurements of 1144 patients. For this model,
it is important to note that some patients in the placebo group are not given the
compound, while others are given the compound for either a shorter or longer
period. Therefore, the time required to simulate PK and PD for each patient
varies drastically [14]. For example, execution time of numeric integration varies
up to 100x across patients for Canagliflozin.

If all expressions are compiled separately, respectively 6643 and 46261 tasks
are created for the two models. The overhead of running these tasks separately,

170 B. Nemeth et al.

estimated by a run on a single system, slows down execution time by a few
orders of magnitude. By applying the steps outlined in Sect.4, the number of
tasks drops to 375 and 9080 reducing task management overhead.

Table 1. The number of tasks per layer and the percentage of time in each layer for the
two test models. Most of the time is spent in the fifth layer, where tasks that perform
the numeric integration are concentrated. The final layer, with the most tasks, contains
likelihood evaluations.

Model Metric Liyn | L2y |La2 |L3i |Lse L33

Nimotuzumab | Tasks (#) 1 3 36 1 12 321
Coverage (%) | 0.00% | 0.09% | 1.43% | 0.03% | 90.35% | 8.10%

Canagliflozin | Tasks (#) 1 2 2694 |1 1144 | 5237
Coverage (%) | 0.00% | 0.01% | 0.03% | 0.00% | 99.90% | 0.06%

The distribution of tasks across layers is shown in Table 1. Most of the com-
putation time, 90% and 99% respectively, is spent in the numeric integration
of the PK and PD equations. The tasks that perform this integration are cap-
tured in a single layer. Both models compile to 5 layers with the most tasks in
the last layer containing likelihood evaluations. Since likelihood evaluations in
these models are lightweight, they also serve to demonstrate that the presented
parallelization can be too aggressive as all layers are parallelized while man-
ual parallelization would only assign more resources in the layer that captures
numeric integration tasks.

The number of messages exchanged between processors depends on how tasks
are scheduled, and varies at runtime for each evaluation when the scheduling step
reassigns tasks. It is important to note that the LPT heuristic has a local view.
Tasks in each layer are scheduled without considering the assignment of tasks in
other layers.

Figure 3 compares performance when tasks in a phase are scheduled using
a RR strategy or by using the LPT heuristic on a single Haswell system with
2 Xeon E5-2699 v3 @ 2.30 GHz CPUs, each with 18 physical cores for a total
of 36 cores. The parallelization was implemented in the Julia programming lan-
guage [2]. For the sake of stability of the results, frequency scaling was dis-
abled. While other custom message passing implementations were also tested,
the results are reported for an implementation relying on Intel MPI Version
2018 as it is widely available. Preparing and copying messages adds overhead,
but note that since the results are for a single system, this could be avoided by
using threads instead. Nevertheless, the mapping between the two representa-
tions with this overhead still shows promising performance scalability. It is also
applicable to larger systems with a higher latency interconnect as long as the
tasks are sufficiently compute intensive.

Since the outlined approach uses the message passing model for parallel exe-
cution, the more general term “processor” is used here [13]. The comparison is

From Conditional Independence to Parallel Execution in Hierarchical Models 171

made in terms of the speedup achieved by running on p processors, denoted by
Sp and given by the ratio between the execution time with one processor and p
processors, i.e. T1 /T),. As both T} and T}, are stochastic due to noise in the sys-
tem [15,18], execution time is measured 200 times for each choice of p to obtain
stable results. Samples for 77 are paired with T}, to generate samples for .S,. The
5" and 95" quantiles are shown to quantify the spread of Sp.

5 30 | —RR
—— LPT
o
=
3 , 20
o ——RR
——LPT 10
1
10 20 30 10 20 30
Number of processors p Number of processors p

Fig. 3. Mean scalability of the Nimotuzumab model on the left and the Canagliflozin
model on the right with the shaded regions showing the uncertainty range for the 5
and 95" quantile of the speedup. The efficacy of the parallelization approach is model
dependent, but performance improves for both models.

The limited number of patients in the Nimotuzumab model causes execution
time not to scale past approximately 10 processors. Note also that performance
does not reach 10x with respect to baseline. Through profiling, it became appar-
ent that this is not only due to the varying computational requirements between
tasks associated with different patients, but also due to communication over-
head. With the relatively small amount of available parallelism, this cannot be
neglected, and it causes performance to degrade past 10 processors.

Note that the LPT heuristic results in slightly slower performance when
compared to RR. This is due to the increase in the time spent communicating
between some cores in some layers, an aspect not taken into account by the
heuristic while in RR communication cost is spread more evenly.

Note also that initially, there is little to no difference between the two strate-
gies. This is due to the two strategies behaving similarly when a few processors
are used. As the number of processors increases, the performance of the two
strategies diverges.

The Canagliflozin model scales better since there is a much larger opportunity
for parallelization. Due to the amount of imbalance between patients, the LPT
scheduling heuristic further improves performance by about 8%. Around 10% is
lost due to overhead introduced by communication between processors and task
management. This is verified by comparing to theoretically computed execution
time where this overhead is ignored. Note that efficiency, computed by comparing
actual scalability with linear scalability, stays above 90%. From this, it can be
concluded that most of the available parallelism is exploited.

172 B. Nemeth et al.

Since multiple processors are employed in each layer of the hierarchy, it only
improves performance in layers with tasks that take a sufficient amount of com-
putation to dwarf communication overhead. For layers with small tasks, the
benefits of parallel execution will be outweighed by the overhead introduced by
communication. In this case, overall performance will improve only when other
compute-intensive layers make the overhead for layers with many small tasks
negligible.

6 Future Work and Conclusion

This paper introduces a novel way to parallelize evaluation of hierarchical models
by observing that conditional independence in a graphical model representation
can be mapped to the dataflow graph. The presented method has been shown
to work for two characteristic models from PMX. Note that it is not limited to
this domain. The efficacy of the model depends on the amount of parallelism
inherent in the input models and the computational size of its tasks. The results
show that by using a simple well-known scheduling heuristic within each layer,
performance can further improve in case execution time varies between tasks.

One drawback of the presented method is that all layers are parallelized.
As long as there are enough layers with many compute-intensive tasks, the pre-
sented approach results in high utilization of parallel resources. However, the
communication introduced in layers with small, but numerous, tasks can degrade
performance. Therefore, future work will explore how to disable parallelization
selectively if communication overhead is high relative compared to the amount
of computation.

The scheduling heuristic relies on the measured execution time of tasks during
previous model evaluations. As long as the assumption holds that the execution
time of tasks changes gradually while the encompassing sampling algorithm or
optimization routine takes small steps in the parameter space, such an approach
will suffice. There is additional overhead introduced by measuring and collecting
the execution time of each task. Therefore, future work will study the trade-off
of occasionally disabling these measurements while the scheduling heuristic uses
less up-to-date measurements.

The current results were limited to a single system with communication
between processors accomplished through memory. Another aspect that will be
explored next is how to mitigate the latency of contemporary interconnects.

Finally, while the partitioning of nodes is used in this paper to construct
tasks, using the resulting assignments for initializing more complex heuristics as
those used in other work [20] to speed up convergence will be studied next.

Acknowledgments. Part of the work presented in this paper was funded by Johnson
& Johnson.

From Conditional Independence to Parallel Execution in Hierarchical Models 173

References

1.

2.

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Beck, M., Pingali, K.: From control flow to dataflow. Cornell University, Technical
report (1989)

Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to
numerical computing. SIAM Rev. 59(1), 65-98 (2017). https://doi.org/10.1137/
141000671

Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on
Scheduling: From Theory to Applications. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-32220-7

Carey, V., Wang, Y.G.: Mixed-Effects Models in S and S-PLUS. Springer, New
York (2001). https://doi.org/10.1007/Hb98882

Carpenter, B., et al.: Stan: a probabilistic programming language. J. Stat. Softw.
76(1), (2017)

Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167-174
(1992)

Chakravarthi, V.S.: SOC Physical Design. A Practical Approach to VLSI System
on Chip (SoC) Design, pp. 173-199. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-23049-4_9

Culler, D.E.: Dataflow architectures. Annu. Rev. Comput. Sci. 1(1), 225-253 (1986)
Della Croce, F., Scatamacchia, R.: The longest processing time rule for identical
parallel machines revisited. J. Sched. 23(2), 163176 (2018). https://doi.org/10.
1007/s10951-018-0597-6

Eijkhout, V.: Introduction to High Performance Scientific Computing. Lulu press,
Morrisville (2012)

Ge, H., Xu, K., Ghahramani, Z.: Turing: a language for flexible probabilistic infer-
ence. In: International Conference on Artificial Intelligence and Statistics, pp.
1682-1690 (2018)

Goudie, R.J., Turner, R.M., De Angelis, D., Thomas, A.: Multibugs: a parallel
implementation of the bugs modelling framework for faster Bayesian inference.
arXiv preprint arXiv:1704.03216 (2017)

Grama, A., Kumar, V., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing. Pearson Education, London (2003)

Haber, T., van Reeth, F.: Improving the runtime performance of non-linear mixed-
effects model estimation. In: Schwardmann, U., et al. (eds.) Euro-Par 2019: Parallel
Processing Workshops, Euro-Par 2019. Lecture Notes in Computer Science, vol.
11997. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48340-1_43
Hoefler, T, Belli, R.: Scientific benchmarking of parallel computing systems: twelve
ways to tell the masses when reporting performance results. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1-12 (2015)

Kessler, C., Keller, J.: Models for parallel computing: review and perspectives.
Mitteilungen-Gesellschaft fiir Informatik eV, Parallel-Algorithmen und Rechner-
strukturen 24, 13-29 (2007)

Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. (CSUR) 31(4), 406-471 (1999)
Lameter, C.: Shoot first and stop the OS noise. In: Linux Symposium, p. 159.
Citeseer (2009)

Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: Winbugs-a Bayesian modelling
framework: concepts, structure, and extensibility. Stat. Comput. 10(4), 325-337
(2000). https://doi.org/10.1023/A:1008929526011

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1007/978-3-540-32220-7
https://doi.org/10.1007/978-3-540-32220-7
https://doi.org/10.1007/b98882
https://doi.org/10.1007/978-3-030-23049-4_9
https://doi.org/10.1007/978-3-030-23049-4_9
https://doi.org/10.1007/s10951-018-0597-6
https://doi.org/10.1007/s10951-018-0597-6
http://arxiv.org/abs/1704.03216
https://doi.org/10.1007/978-3-030-48340-1_43
https://doi.org/10.1023/A:1008929526011

174

20.

21.

22.

23.

24.

25.

B. Nemeth et al.

Nemeth, B., Haber, T., Liesenborgs, J., Lamotte, W.: Automatic parallelization of
probabilistic models with varying load imbalance. In: International Symposium on
Cluster, Cloud and Grid Computing (CCGRID) Workshop on High Performance
Machine Learning Workshop (2020)

Rodriguez-Vera, L., et al.: Semimechanistic model to characterize nonlinear phar-
macokinetics of nimotuzumab in patients with advanced breast cancer. J. Clin.
Pharmacol. 55(8), 888-898 (2015)

Saintes, F.: [-56 sebastian weber supporting drug development as a Bayesian in
due time?!. In: Euro-Par, vol. 2020 (2019)

Sivia, D., Skilling, J.: Data Analysis: A Bayesian Tutorial. OUP Oxford, Oxford
(2006)

de Winter, W., et al.: Dynamic population pharmacokinetic-pharmacodynamic
modelling and simulation supports similar efficacy in glycosylated haemoglobin
response with once or twice-daily dosing of canagliflozin. Br. J. Clin. Pharmacol.
83(5), 1072-1081 (2017)

Yildirim, I.: Bayesian Inference: Gibbs Sampling. MIT Press, New York (2012)

	From Conditional Independence to Parallel Execution in Hierarchical Models
	1 Introduction
	2 Related Work
	3 Hierarchical Models and Conditional Independence
	4 Extracting Parallelism from the Graphical Model
	5 Performance Evaluation
	6 Future Work and Conclusion
	References

