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Abstract 

The role of non‑invasive respiratory support (high‑flow nasal oxygen and noninvasive ventilation) in the manage‑
ment of acute hypoxemic respiratory failure and acute respiratory distress syndrome is debated. The oxygenation 
improvement coupled with lung and diaphragm protection produced by non‑invasive support may help to avoid 
endotracheal intubation, which prevents the complications of sedation and invasive mechanical ventilation. However, 
spontaneous breathing in patients with lung injury carries the risk that vigorous inspiratory effort, combined or not 
with mechanical increases in inspiratory airway pressure, produces high transpulmonary pressure swings and local 
lung overstretch. This ultimately results in additional lung damage (patient self‑inflicted lung injury), so that patients 
intubated after a trial of noninvasive support are burdened by increased mortality. Reducing inspiratory effort by 
high‑flow nasal oxygen or delivery of sustained positive end‑expiratory pressure through the helmet interface may 
reduce these risks. In this physiology‑to‑bedside review, we provide an updated overview about the role of nonin‑
vasive respiratory support strategies as early treatment of hypoxemic respiratory failure in the intensive care unit. 
Noninvasive strategies appear safe and effective in mild‑to‑moderate hypoxemia  (PaO2/FiO2 > 150 mmHg), while 
they can yield delayed intubation with increased mortality in a significant proportion of moderate‑to‑severe  (PaO2/
FiO2 ≤ 150 mmHg) cases. High‑flow nasal oxygen and helmet noninvasive ventilation represent the most promising 
techniques for first‑line treatment of severe patients. However, no conclusive evidence allows to recommend a single 
approach over the others in case of moderate‑to‑severe hypoxemia. During any treatment, strict physiological moni‑
toring remains of paramount importance to promptly detect the need for endotracheal intubation and not delay 
protective ventilation.
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Introduction

Acute hypoxemic respiratory failure (AHRF) accounts for 
a prominent number of intensive care unit (ICU) admis-
sions worldwide [1], as dramatically highlighted by the 
ongoing novel coronavirus disease 2019 (COVID-19) 
pandemic [2–4]. Direct or indirect lung injury accounts 
for essentially all causes of acute hypoxemic respira-
tory failure through different pathophysiological path-
ways. All AHRF causes, however, lead to pulmonary 
edema caused by lung inflammation that yields aeration 
loss with hypoxemia, altered respiratory mechanics and 
increased respiratory drive.

Acute respiratory distress syndrome (ARDS) is a subset 
of AHRF. ARDS definition requires the presence of bilat-
eral pulmonary infiltrates on chest imaging, with hypox-
emia not fully explained by fluid overload or cardiac 
dysfunction and assessed under positive pressure venti-
lation with at least 5  cmH2O of positive end-expiratory 
pressure (PEEP) [5]. Hypoxemia severity is classified by 
the ratio of arterial partial pressure of oxygen  (PaO2) to 
inspired oxygen fraction  (FiO2), as mild  (PaO2/FiO2 ratio 
of 201–300 mmHg), moderate  (PaO2/FiO2 ratio of 101–
200  mmHg) and severe  (PaO2/FiO2 ratio ≤ 100  mmHg). 
ARDS has clinical outcomes comparable to AHRF with 
similar oxygenation impairment and equal number of 
involved lung quadrants [6]. Hence, AHRF and ARDS 
appear to belong to the same disease spectrum portrayed 
by lung injury, hypoxemia, altered respiratory mechanics 
and alveolar dead space fraction, and increased respira-
tory drive. Robust evidence indicates a direct relationship 
between the degree of hypoxemia and increased mortal-
ity [1, 5, 7], and preliminary data suggest that also the 
entity of dysregulated respiratory drive may be associated 
to worse outcome [8–10].

Non-invasive oxygenation strategies (high-flow nasal 
oxygen, helmet or face mask noninvasive ventilation and 
continuous positive airway pressure) compared with 
standard oxygen therapy have been shown to be capa-
ble of preventing endotracheal intubation in patients 
with mild hypoxemia [11]. However, the role of nonin-
vasive oxygenation strategies in patients with moderate-
to-severe hypoxemia remains unclear. Clinical outcome 
improves when non-invasive support successfully per-
mits to avoid endotracheal intubation. Differently, if 
intubation is needed after a failing trial of non-invasive 
support, mortality is increased, possibly due to the pro-
longed exposure of injured lungs to the additional dam-
age caused by the increased respiratory effort [12]. 
Current clinical practice guidelines have been unable 
to provide clear recommendations regarding the role of 
non-invasive respiratory support strategies in AHRF/
ARDS [13]. Notwithstanding that, the use of non-invasive 

support is common also in moderate-to-severe cases, 
especially during the COVID-19 pandemic [14–20], as 
the shortage of equipment, ventilators and personnel has 
posed stress on healthcare systems worldwide.

We hereby report a physiology-to-bedside state-of-
the art review about the role of noninvasive support in 
AHRF/ARDS. Our aim is to provide ICU physicians 
and researchers with an updated overview of the physi-
ological mechanisms underlying the benefits and harms 
of non-invasive respiratory support, with the final pur-
pose of allowing clinicians to best tailor interventions on 
patients’ individual requirements.

A summary of several clinical trials on non-invasive 
respiratory support in AHRF/ARDS is shown in Table 1.

Benefits of maintaining spontaneous breathing 
with non‑invasive support
Non-invasive respiratory support includes high-flow 
nasal oxygen (HFNO) and non-invasive ventilation (NIV) 
or continuous positive airway pressure (CPAP) delivered 
through facemasks or helmet. These devices are applied 
externally, and pressure and flow are delivered to upper 
airways with minimal invasiveness (Fig. 2).

Use of non-invasive oxygenation strategies preserves 
physiological pathways of airway protection (e.g. cough 
and clearance of secretions) [21, 22] and may directly 
reduce the complications related to endotracheal intu-
bation (e.g. laryngeal and tracheal trauma) and invasive 
mechanical ventilation [11]. These include ventilator-
induced lung injury [23], ventilator-associated pneumo-
nia, sedation [24] and neuromuscular paralysis [25]. By 
preserving patients’ alertness and interaction with the 
environment, use of non-invasive support reduces the 
risk of discomfort and delirium.

Maintenance of spontaneous breathing has further 
benefits related to lung, heart and diaphragm physiology. 
Specifically, spontaneous breathing prevents diaphragm 
dysfunction and atrophy [26, 27], allows maintenance 
of cardiac pre-loading and cardiac output [28, 29], and 
yields increased aeration of the dependent lung, which 
minimizes ventilation/perfusion mismatch [30–32]. As 

Take‑home message 

In hypoxemic patients, non‑invasive support may help avoid 
invasive mechanical ventilation but carries the risk of patient self‑
inflicted lung injury and delayed intubation that detrimentally affect 
clinical outcome. High‑flow nasal cannula and high‑PEEP noninva‑
sive ventilation delivered through the helmet interface are the most 
promising tools for making spontaneous breathing less injurious 
and increase the likelihood of treatment success. Careful physi‑
ological monitoring remains mandatory during any treatment to 
promptly detect the need for endotracheal intubation and provide 
protective ventilation
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such, non-invasive respiratory support is the less invasive 
strategy to improve hypoxemia in case of failure of con-
ventional oxygen therapy [22, 33–35].

Nevertheless, maintenance of spontaneous breath-
ing during moderate-to-severe AHRF and ARDS carries 
inherent risks, and the unwise use of noninvasive support 
may prolong the exposure of injured lungs to the harm-
ful effects of increased respiratory drive, ultimately lead-
ing to delayed endotracheal intubation and worse clinical 
outcome.

Harms of spontaneous breathing
The potential harms of spontaneous breathing in non-
intubated AHRF and ARDS patients derive from the 
vicious circle generated by hypoxemia, dysregulated 
inspiratory effort, altered respiratory mechanics and 
inhomogeneous lung inflation (Fig. 1).

Increased respiratory drive is caused by multiple mech-
anisms: impairment in gas exchange and respiratory 
mechanics, metabolic acidosis, inflammation, fever and 
agitation [36]. These result in intense inspiratory effort, 
high tidal volumes and tachypnea, with or without addi-
tional mechanical support [9, 10, 37, 38]. Injured lungs 
are exposed to higher risk of volu- and baro-trauma, 
which further worsen lung damage in a form similar to 
the ventilator-induced lung injury observed during con-
trolled ventilation [39, 40].

Hyperventilation with intense inspiratory effort, high 
tidal volumes and inspiratory pressures may injure even 
healthy lungs [41]. However, the detrimental effects of 
intense inspiratory effort are magnified by the presence of 
lung injury, which makes the distribution of inspiratory 
forces inhomogeneous across the tissue [39]. The intense 
inspiratory effort (estimated by the inspiratory deflection 
in esophageal pressure-ΔPES) causes the inflation of large 
tidal volumes in an aerated compartment whose size is 
reduced by the edema, alveolar flooding and atelectasis. 
Moreover, the intense inspiratory effort interacts with the 
solid-like behavior of the injured lung, ultimately gen-
erating a vertical gradient in regional transpulmonary 
pressure. This mostly occurs at the beginning of inspira-
tion (before fresh gas flow arrives from the non-invasive 
support) and may shift lung gas from non-dependent 
anterior lung zones to dependent posterior regions: this 
phenomenon is termed pendelluft and causes additional 
regional over-stretch in the dependent lung regions, 
worsening inflammation [42–44]. Finally, the pleural 
pressure negative deflections induced by intense inspira-
tory effort transiently decrease alveolar and lung inter-
stitial pressure. This increases transmural pulmonary 
capillary pressure and facilitates transvascular fluid fil-
tration, which exacerbates interstitial and alveolar edema 
[45].Ta
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Vigorous inspiratory effort can generate inhomogene-
ity and differences in regional strength of the diaphragm, 
which injure the diaphragm itself. Diaphragm injury 
results in sarcolemmal rupture, sarcomeric disarray and 
muscle inflammation. This causes diaphragm weakness, 
which detrimentally affects short- and long-term clinical 
outcome [46–48].

Through all these mechanisms, spontaneous breath-
ing may result in patient self-inflicted lung injury (P-SILI) 
[40, 49, 50] (Fig. 1).

Clinical studies have demonstrated a causal relation-
ship between persistent high respiratory effort and fail-
ure of non-invasive support [9, 10, 37]. Persistently high 
inspiratory effort [9, 10], respiratory rate [51] and tidal 
volume [37, 38] despite noninvasive support are associ-
ated to treatment failure and the need for intubation. 
Inspiratory effort may be proportional to patient’s sever-
ity, and patient’s susceptibility to P-SILI is magnified in 
case of most severe acute respiratory failure [34].

These considerations strengthen the hypothesis that 
increased mortality of patients failing noninvasive sup-
port might be explained by worse severity combined with 
prolonged exposure of injured lungs to the higher respir-
atory drive causing P-SILI [52–54].

Still, some controversy exists about the concept of 
P-SILI itself. Physiological data on endurance-trained 
healthy individuals showed that potentially extreme 

transpulmonary pressure swings (up to 60  cmH2O) and 
tidal volumes (> 3 L) did not result in lung damage [55, 
56]. Accordingly, the mechanisms underlying P-SILI clin-
ical effects remain to be fully elucidated [9, 10, 57], thus 
implying that not all patients may be exposed to the same 
risk of P-SILI.

How to make spontaneous effort non‑injurious 
during non‑invasive support
To limit the risk of P-SILI during noninvasive support, 
research has been focusing on strategies that could ren-
der spontaneous breathing less injurious [46, 58].

First, non-respiratory factors that may increase respira-
tory drive (i.e. pain, discomfort, metabolic acidosis, fever) 
should be assessed and corrected. Afterwards, pharma-
cologic agents to reduce respiratory drive may be used. 
Indeed, only propofol and benzodiazepines have been 
shown to reduce respiratory effort [59, 60], while opioids 
primarily reduce respiratory rate with mixed effects on 
tidal volumes and inspiratory effort [61, 62]. However, 
the use of propofol and benzodiazepines may have rel-
evant side effect, which limit their use to highly selected 
critically ill patients. Opioids may improve dyspnea 
but also increase the risk of apnea and their use should 
always be accompanied by appropriate monitoring [24]. 
Dexmedetomidine seems to exert no direct effect on res-
piratory drive [63].

Fig. 1 Summary of the mechanisms of patient self‑inflicted lung injury
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The application of high PEEP levels also shows prom-
ise for P-SILI prevention. The effect of PEEP on lung 
recruitment and oxygenation is well described [34, 64]. 
Recently, the application of moderate-to-high PEEP 
(10–15   cmH2O) levels during spontaneous breathing 
and ARDS was suggested to improve ventilation homo-
geneity and prevent pendelluft phenomenon through a 
more balanced distribution of negative inspiratory pres-
sure across the lung tissue [65]. Moreover, PEEP exerts 
a direct mechanical effect on the diaphragm by changing 
the force–length relationship of its fibers [66]. This yields 
electromechanical uncoupling, reduces the inspiratory 
effort and lowers tidal volume, finally rendering spon-
taneous breathing less injurious [67]. For these reasons, 
strategies to apply higher PEEP level (i.e. 10–15  cmH2O) 
by means of non-invasive support are gaining growing 
attention for the non-invasive management of AHRF/
ARDS [10, 11, 68].

Techniques
High‑flow nasal oxygen
HFNO is provided by an air–oxygen blender directly 
connected to a flow meter (set up to 60 L/min), by a 
turbine connected to an oxygen flow meter or by a gas-
compressed based ventilator and a heated humidifier. 
Continuous flow of heated and humidified gas with  FiO2 
up to 100% is delivered to the patient through nasal can-
nula [69, 70].

HFNO allows accurate delivery of set  FiO2, provides 
low, variable levels of positive pressure in the airways 
generating a mild PEEP effect, and flushes the upper air-
ways yielding washout of dead space [71–77]. As com-
pared with standard oxygen, HFNO decreases inspiratory 
effort, work of breathing and respiratory rate, improves 
comfort and oxygenation [78–83]. In hypoxemic patients, 
the most beneficial effects are obtained as higher gas flow 
is applied (i.e. 60 L/min) [84].

These physiological effects make HFNO the optimal 
strategy for oxygen therapy in patients with high-flow 
demands, such as those affected by AHRF and ARDS 
[12].

Clinically, a randomized trial comparing HFNO with 
standard oxygen and intermittent sessions of facemask 
NIV showed no effects on the rate of endotracheal intu-
bation in the overall population, but a reduction in the 
intubation rate among the subgroup of patients with 
 PaO2/FiO2 ≤ 200 mmHg treated with HFNO [85].

Concerning the P-SILI risk, physiological data have 
shown that HFNO could be more protective for the lung 
when compared to standard oxygen by favoring a more 
homogeneous distribution of tidal volume [80]. Moreo-
ver, it has been shown that HFNO results in some alveo-
lar recruitment due to PEEP effect: this potentially yields 

reduced lung strain (i.e. ratio of tidal volume to function 
residual capacity, a major determinant of ventilation-
induced lung injury) [80]. Importantly, during HFNO, 
this is accomplished with minimal additional risk of 
barotrauma, since there is no inspiratory assistance for 
tidal breathing.

Non‑invasive ventilation
Mode of ventilation
In most studies and clinical practice, NIV is delivered 
as a means of biphasic positive airway pressure (mainly 
pressure support ventilation [PSV] = pressure sup-
port + PEEP) or continuous positive airway pressure 
(CPAP): unlike PSV, CPAP does not provide any inspira-
tory support. Despite the differences in physiological 
effect and mechanisms of action between CPAP and NIV, 
CPAP is classified as NIV because it is frequently used 
as an alternative to PSV [86, 87]. Although ICU ventila-
tors can administer CPAP-NIV, in order to adequately 
fulfil patients’ flow needs without additional increase in 
work of breathing [88, 89], the use of oxygen/air blend-
ers, turbines or Venturi systems continuously delivering 
high flow are necessary during helmet CPAP, and could 
be encouraged also when facemasks are the chosen inter-
faces [90, 91].

Interfaces
Non-invasive ventilation may be delivered by facemasks 
or helmets. Both interfaces are characterized by peculiar 
features that are elucidated below.

Facemask Noninvasive ventilation
Facemasks (oronasal or full-face) are the most used 

interfaces for NIV. The main difference between oronasal 
and full-face masks is their internal dead space, but this 
difference does not affect carbon dioxide rebreathing, 
minute ventilation, patient’s effort and clinical outcome 
[92]. Oronasal and full-face may be considered inter-
changeable even in the same patient, to optimize comfort 
and tolerance.

Facemask CPAP is usually delivered with pressure set 
between 5 and 8  cmH2O. Noninvasive ventilation is usu-
ally applied in the PSV mode, with PEEP ranging between 
5 and 8  cmH2O and pressure support of 8–14  cmH2O.

Both CPAP and PSV-NIV increase airway pressure, 
ameliorate arterial oxygenation, increase end-expiratory 
lung volume [93–96] and improve cardiac function by 
reducing left ventricular afterload and right ventricu-
lar preload [97, 98]. PSV-NIV also decreases inspiratory 
effort and work of breathing [94, 99].

However, studies conducted in the 2000s showed that 
CPAP is associated with only transient improvements in 
oxygenation and dyspnea, with no effects on intubation 
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rate [100]. Differently, use of PSV-NIV yielded more 
promising results [22]. The results of a recent meta-
analysis that included patients with AHRF showed that 
the use of facemask PSV-NIV may associated with lower 
risk of intubation and mortality, as compared to standard 
oxygen [11].

Nevertheless, facemask NIV prevents endotracheal 
intubation in only 40–60% of the cases, and its failure is 
an independent factor associated to worse survival [53], 
which raises the following concerns about the use of face-
mask NIV: first, facemask NIV can be used only with lower 
PEEP levels (5–8   cmH2O), because of the presence of air 
leaks [87]. This may be insufficient to correct hypoxemia 
[7] or reduce the inspiratory effort. Second, full inspiratory 
synchronization during PSV-NIV may increase transpul-
monary pressure swings and tidal volume [101, 102], 
which may contribute to P-SILI and are associated with 
treatment failure and high mortality [37, 38].

From a clinical standpoint, two recent randomized 
clinical trials showed that facemask PSV-NIV may be 
less effective than HFNO and helmet NIV in prevent-
ing endotracheal intubation during moderate-to-severe 
AHRF [85, 87].

Helmet non-invasive ventilation
Air leaks, discomfort and skin breakdown [103] limit 

the tolerability of facemask NIV, making prolonged treat-
ments with specific settings (i.e. high PEEP) difficult to 
apply [104].

The helmet interface represents an alternative to face-
masks for NIV administration in hypoxemic patients. 
The helmet is a transparent hood that covers the entire 
head, sealed with a soft neck collar. The helmet has the 
advantage of better tolerability and less air leaks, ena-
bling the possibility to deliver prolonged treatments with 
high PEEP [26, 68, 87, 105, 106]. Helmets can be used to 
deliver both PSV-NIV and CPAP.

For helmet CPAP, a continuous fresh gas flow (Ven-
turi systems, gas compressed or turbine generators) is 
connected to the inlet port of the interface and a PEEP 
valve is connected to helmet outlet. Physiological studies 
suggest that a minimum fresh gas flow of 40–60  L/min 
(> 35 L/min) is required to substantially reduce the risk of 
 CO2 rebreathing [107].

In helmet PSV-NIV, pressure support level is usually 
set at 10–14   cmH2O with the shortest pressurization 
time, and PEEP of 10–12   cmH2O. Part of the pressure 
support is dissipated in the helmet and does not neces-
sarily correspond to the pressure inside at airway open-
ing and in the alveoli. These pressure-support settings, 
although sub-optimal for muscle unloading [10, 108, 109] 
and often associated with inspiratory desynchronization 
[101, 102], relieve inspiratory effort and may dampen 

swings in transpulmonary driving pressure, possibly 
reducing the risk of P-SILI. Moreover, the higher levels 
of PEEP improve lung recruitment and gas exchange, and 
may mitigate the risk of P-SILI when compared to HFNO 
and facemask NIV [10, 65, 106].

Patient-ventilator asynchrony may accompany the use 
of helmet PSV-NIV [110]. Trigger and cycling-off delays 
and errors may occur due to increased compliance of 
the helmet in relation to flow [10]. However, the helmet’s 
large internal volume (approximatively 18 L) acts as a res-
ervoir and allows the patient to receive inspiratory flow 
also in case of poor patient-ventilator interaction.

The use of helmet has a learning curve. Importantly, the 
large internal volume of the helmet can expose patients 
to  CO2 rebreathing, which is directly related to patient 
 CO2 production and inversely to the fresh gas flow pass-
ing through the interface [107, 111].

Helmet PSV-NIV with specific settings (10–14  cmH2O 
with the shortest pressurization time, and PEEP of 10–12 
 cmH2O) was shown to improve oxygenation, dyspnea, 
inspiratory effort in comparison to HFNO, particu-
larly in patients with intense baseline inspiratory effort 
and more severe oxygenation impairment  (PaO2/FiO2 
ratio < 150 mmHg) [10].

Given the physiologic effects of helmet PSV-NIV, 
severe AHRF-ARDS patients (e.g. with a  PaO2/FiO2 
ratio < 150) may benefit from the use of this interface 
and may tolerate sustained application of higher PEEP to 
improve oxygenation and reduce inspiratory effort, espe-
cially if the inspiratory effort remains high with HFNO 
[10]. The risk of  CO2 rebreathing necessitates monitor-
ing fresh gas flow rates, adjustment of pressure support 
parameters, and periodic arterial blood sampling.

Monitoring during non‑invasive support
Non-intubated patients with AHRF undergoing a trial of 
non-invasive support must be closely monitored to iden-
tify early signs of failure and avoid delayed intubation [54, 
112]. Impairment in gas exchange, signs of high respira-
tory drive/effort and composite scores are used to assess 
the response to noninvasive support and guide the deci-
sion to intubate (Table 2).

Oxygenation should be continuously monitored by 
pulse oximetry  (SpO2), which however, could overesti-
mate the real arterial oxygen content in the presence of 
low arterial  PaCO2 [113]. Arterial blood gas analysis pro-
vides more accurate although intermittent assessment 
of patient’s oxygenation  (PaO2/FiO2 ratio) [113]. Moder-
ate–severe hypoxia predicts the need for intubation early 
after NIV initiation [37, 38, 114, 115] and low  SpO2/FiO2 
ratio is associated with risk of failure in patients sup-
ported with HFNO [51]. Severe hypoxia may not be per 
se an absolute indication for intubation, while trend over 
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time may be a more sensitive marker: improving oxy-
genation is associated with NIV success [87, 115], likely 
because worsening oxygenation indicates clinical deterio-
ration and/or P-SILI.

Inspiratory effort may be a specific predictor of the 
need for intubation, as it reflects the underlying sever-
ity, and it is the main determinant of P-SILI. Despite 
not being a reliable index of effort [116], respiratory rate 
remains the most used surrogate of respiratory drive 
because of its simplicity to use. Low or decreasing res-
piratory rate is associated with success of noninvasive 
support [117, 118]. During facemask PSV-NIV, expired 
tidal volume > 9–9.5  ml/kg PBW indicates lack of relief 
of inspiratory effort and is a predictor of NIV failure [37, 
38]. Differently, during helmet PSV-NIV, it is not pos-
sible to monitor tidal volume, as the value displayed by 
the ventilator includes the amount of gas needed to dis-
tend the interface. In this case, the volume inhaled by 
the patient cannot be measured or estimated without 
additional equipment, routinely not available at the bed-
side [119]. Precise values of inspiratory effort associated 
with high risk of failure of non-invasive support are not 
defined, although a ΔPES threshold of 15   cmH2O seems 
reasonable [120]. Also, lack of ΔPES reduction over time 
has been shown to be an early and accurate predictor of 
NIV failure in a recent physiologic study [9].

Since the power of a single parameter to predict the 
subsequent need for intubation is low, composite scores 
have been tested. The ROX index, defined as the ratio 
between  SpO2/FiO2 and respiratory rate accurately 

predicted the outcome of HFNO [51]. Repeated assess-
ment of the HACOR scale (which includes heart rate, aci-
dosis, consciousness, oxygenation, and respiratory rate) 
allows dynamic monitoring of the risk of intubation dur-
ing facemask NIV [118]. To date, no validated score exists 
to predict failure during helmet NIV.

Clinical evidence
A summary of the advantages, disadvantages and main 
technical specificities of the discussed non-invasive sup-
port tools is displayed in Figs. 2 and 3. The oxygenation 
improvement generated by non-invasive support may 
help avoid endotracheal intubation and permit main-
tenance of spontaneous breathing. However, sponta-
neous breathing in patients with lung injury carries the 
risk of delayed intubation and P-SILI during the treat-
ment. Non-invasive strategies appear safe, effective and 
essentially equivalent in mild-to-moderate hypoxemia 
 (PaO2/FiO2 > 150  mmHg), while no conclusive evidence 
exists regarding whether and which noninvasive strategy 
should be applied in the management of moderate-to-
severe  (PaO2/FiO2 ≤ 150 mmHg) cases.

In 2015, Frat et  al. [85] showed that patients with 
moderate-to-severe AHRF treated with HFNO were 
burdened by lower risk of intubation compared to those 
receiving facemask NIV. These results may be due to, at 
least in part, the increased comfort and relief of dyspnea 
produced by HFNO.

A clinical comparison between helmet NIV and face-
mask NIV was performed by Patel et al. [87]: a significant 

Table 2 Relevant physiological measures for monitoring of hypoxemic patients on noninvasive respiratory support

PBW predicted body weight, NIV noninvasive ventilation, HFNO high-flow nasal oxygen, DeltaPes inspiratory effort
a The HACOR score is calculated as the sum of the scores for each individual variable, assigned as follows. Heart rate: ≤ 120 beats/min = 0, ≥ 121 beats/min = 1; 
pH: ≥ 7.35 = 0, 7.30–7.34 = 2, 7.25–7.29 = 3, < 7.25 = 4; Glasgow Coma Scale score: 15 = 0, 13–14 = 2, 11–12 = 5, ≤ 10 = 10;  PaO2/FiO2 ratio: ≥ 201 mmHg = 0, 
176–200 mmHg = 2, 151–175 mmHg = 3, 126–150 mmHg = 4, 101–125 mmHg = 5, ≤ 100 mmHg = 6; Respiratory rate: ≤ 30 breaths/min = 0, 31–35 breaths/min = 1, 
36–40 breaths/min = 2, 41–45 breaths/min = 3, ≥ 46 = 4

Parameter Monitoring technique/score calcula‑
tion

Clinical thresholds associated with risk 
of failure

Limitations

SpO2/FiO2 Pulse oximetry  < 120 and/or worsening trend Underestimation of severity with low 
 PaCO2

PaO2/FiO2 Arterial blood gas analysis  < 150–200 mmHg and/or worsening 
trend

Intermittent

Respiratory Rate Clinical examination  > 25–30 and/or not decreasing with 
support

Poorly correlated with effort

Expired tidal volume Ventilator  > 9–9.5 ml/kg PBW Not feasible during HFNO, standard 
helmet NIV

ΔPES Esophageal balloon catheter  > 15  cmH2O and/or reduction < 10 
 cmH2O during NIV

Needs some expertise

ROX (SpO2/FiO2)/Respiratory Rate  < 2.85 at 2 h of HFNO initiation Validated only for HFNO

 < 3.47 at 6 h of HFNO initiation

 < 3.85 at 12 h of HFNO initiation

HACOR  scalea Heart rate, acidosis, consciousness, oxy‑
genation and respiratory  ratea

 > 5 at 1 h of NIV initiation Intermittent, time consuming, validated 
only for NIV



860

Noninvasive respiratory support for acute hypoxemic respiratory failure

Noninvasive ven�la�on: CPAP and Pressure Support Ven�la�on (PSV)

Facemask HelmetHigh-flow nasal oxygen 

Se�ngs
• FiO2: 0.21-1
• Gas flow: 40-60 lpm
• Temperature:  31-37°C

Se�ngs
PSV-requires a ven�lator
• FiO2: 0.21-1
• PEEP: 5-8 cmH2O
• PS: 7-10 cmH2O
CPAP
• Con�nuous flow (>30 L/min) or 

CPAP mode on the ven�lator
• PEEP: 5-8 cmH2O

Use of HME is advisable

Se�ngs
PSV-requires a ven�lator
• FiO2: 0.21-1
• PEEP: 10-12 cmH2O
• PS: 10-12 cmH2O
• No humidifica�on needed
• Fastest pressuriza�on �me
CPAP-requires a flow generator
• Con�nuous flow (>60 L/min)
• PEEP valve: 10-12 cmH2O
• Ac�ve humidifica�on possible

Benefits
• Matches inspiratory flow
• Delivers set FiO2
• Delivers fully condi�oned gas
• Enhances comfort
• Provides posi�ve airway 

pressure (up to 4 cmH2O)
• Washout of nasopharyngeal 

dead space
• Reduces inspiratory effort

Benefits
• Delivers set FiO2
• Delivers fully condi�oned gas
• Provides PEEP to allow alveolar 

recruitment
• Provides PS (only for PSV) to 

unload inspiratory muscles
• Allows to monitor �dal volume 

(only PSV)

Benefits
• Delivers set FiO2
• Provides high PEEP to allow 

alveolar recruitment and 
enhance ven�lator homogeneity

• Con�nuous treatments with 
good tolerability

• Provides PS (only for PSV) to 
reduce inspiratory effort

• Asynchronous PS may prevent 
posi�ve PL swings

Pi�alls
• Small amount of PEEP delivered

Pi�alls
• Skin ulcer
• Air leaks, difficult delivery of 

high PEEP
• Full inspiratory synchroniza�on 

may increase PL swings and �dal 
volume

• Poor tolerability: need for 
treatment interrup�ons

Pi�alls
• Impossibility to measure �dal 

volume
• Upper limbs edema, with 

possible vasal thrombosis

Fig. 2 Benefits and risks of the tools for non‑invasive respiratory support in AHRF/ARDS. PSV pressure support ventilation, CPAP continuous positive 
airway pressure, PS pressure support, PL, transpulmonary pressure, HME heat and moisture exchanger
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reduction in intubation rate and mortality was detected 
in the helmet group. This was probably due to the physi-
ological advantages of helmet, namely delivery of higher 
PEEP in continuous sessions with enhanced comfort.

In a meta-analysis, Ferreyro et  al. showed an aggre-
gate reduced risk of endotracheal intubation and 

mortality with helmet NIV compared to both HFNO 
and facemask NIV, acknowledging however, the lack of 
large-scale conclusive data on the clinical effects of hel-
met NIV [11].

Recently, the first head-to-head randomized trial 
compared first-line continuous treatment with helmet 

Fig. 3 Mechanisms of action of standard oxygen therapy, HFNO, CPAP and PSV‑NIV in a representative patient with AHRF. Tracings of pressure at 
airway opening (PAW, a continuous pressure 3  cmH2O is assumed for HFNO [80]), inspiratory flow, esophageal pressure (PES) and dynamic transpul‑
monary pressure (PL, calculated as PAW − PES) are displayed. PES negative deflection during inspiration is the inspiratory effort (ΔPES). PL positive 
deflection is the dynamic transpulmonary driving pressure (ΔPL), which is an estimate of the static transpulmonary driving pressure [121]
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PSV-NIV with specific settings (PEEP = 12  cmH2O pres-
sure and pressure support = 10–12  cmH2O) vs. HFNO 
alone in patients with moderate-to-severe AHRF. Results 
showed no significant inter-group difference in the days 
free of respiratory support at 28 days, but lower intuba-
tion rate and increased 28-day invasive ventilation-free 
days the helmet group [68].

Conclusions
Because of its simplicity of use, physiological and clinical 
effects recent clinical guidelines suggest HFNO as the opti-
mal first-line intervention in AHRF [12]. Early treatment 
with high-PEEP helmet PSV-NIV may represent a tool to 
further optimize the non-invasive treatment in most severe 
patients, but further adequately powered randomized stud-
ies are warranted to provide conclusive evidence.

The optimal interface for non-invasive support of 
AHRF/ARDS remains a debated topic. Personalized 
treatments based on patients phenotypes [3], clinicians’ 
expertise, optimized interface, control of respiratory 
drive and strict physiological monitoring to promptly 
detect treatment failure represent the wisest approach for 
a safe clinical management.
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