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Abstract: The common bean (Phaseolus vulgaris L.) pod wall is essential for seed formation and to
protect seeds. To address the effect of water restriction on sugar metabolism in fruits differing in
sink strength under light–dark cycles, we used plants of cv. OTI at 100% field capacity (FC) and at
50% FC over 10 days at the beginning of pod filling. Water restriction intensified the symptoms of
leaf senescence. However, pods maintained a green color for several days longer than leaves did.
In addition, the functionality of pods of the same raceme was anatomically demonstrated, and no
differences were observed between water regimes. The glucose and starch concentrations were
lower than those of sucrose, independent of pod wall size. Remarkably, the fructose concentration
decreased only under water restriction. The cell wall invertase activity was twofold higher in the walls
of small pods than in those of large ones in both water regimes; similar differences were not evident
for cytosolic or vacuolar invertase. Using bioinformatics tools, six sequences of invertase genes
were identified in the P. vulgaris genome. The PvINVCW4 protein sequence contains substitutions
for conserved residues in the sucrose-binding site, while qPCR showed that transcript levels were
induced in the walls of small pods under stress. The findings support a promising strategy for
addressing sink strength under water restriction.

Keywords: Phaseolus vulgaris; water restriction; raceme fruit; pod wall; sucrose; cell wall invertase

1. Introduction

Pod set and filling in common bean (Phaseolus vulgaris L.) occur by the transportation
of photoassimilates from leaves to fruits [1]. Qualitative studies on temporal and spatial
aspects of flowering and fruiting have indicated that flower number and pod set vary
with environmental conditions and gene pool [2,3]. It is well known that in the phloem,
drought induces sugar limitation and leads to fruit and seed abortion [4,5], to the detriment
of seed yield [6]. This effect strongly depends on carbon partitioning mechanisms that
must adapt to energy demands and modify the genetic architecture of photosynthate
allocation for multiple sinks [1]. In addition to all the negative effects induced by drought,
the evidence indicates that although the seed number is significantly reduced during
drought, seed filling is maintained at levels similar to those of seeds developing under
optimal conditions [1,7]. This indicates that the accumulation of seed weight remains linear
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under low water availability, even when the source:sink ratios change. The pod wall plays
a crucial role in regulating carbon partitioning during seed filling under stress and under
conditions without stress [1,7,8]. However, when leaf photosynthesis is potentially limited,
carbohydrate partitioning is shifted from pod walls toward seeds [9,10]. Several lines of
evidence have demonstrated that the legume pod wall can photosynthesize and makes
an important contribution to seed yield in species, including alfalfa (Medicago sativa) [11],
chickpea (Cicer arietinum) [12], soybean (Glycine max) [13], and lentil (Lens culinaris L.) [14].
Thus, the physiological responses to drought in the pod wall may be due to the adjustment
of metabolism to maintain homeostasis and seed filling. Further studies have demonstrated
that the pod wall accumulates starch during the early stages of pod development [15].
For instance, [16] reported that pods accumulate starch in response to drought stress.
However, the functions of some important starch-degrading enzymes during drought
stress remain to be investigated. Experimental evidence indicates that changes in the levels
of sugars, including fructose, glucose, and sucrose, in pods are more noticeable during the
early stages of pod development in response to drought stress [17]. Sucrose degradation is
a well-known factor in responses to abiotic stresses when phloem-unloaded sucrose must
be degraded into glucose and fructose or their derivatives by invertase (INV, EC 3.2.1.26) or
sucrose synthase (SUS, EC 2.4.1.13) [18]. The functional characterization of invertases (INVs)
and their regulatory mechanisms have been identified in crops under abiotic stress [19,20].
In particular, cell wall invertase (CWIN) is a key enzyme in sucrose metabolism that
catalyzes the breakdown of sucrose into glucose and fructose, which serve to prevent
programmed cell death (PCD) by scavenging reactive oxygen species (ROS) [21,22]. These
findings indicate that the role CWIN activity could be vital for fruit set under abiotic stress
due to higher rate of sucrose import into young fruit [23]. In this regard, some isoforms
could modify the control of sucrose metabolism in a highly specific manner. Recently,
the use of bioinformatic analysis provided the identification of 18 transcription factors as
putative regulators of the expression of AtCWIN2 and AtCWIN4 that are predominantly
expressed in Arabidopsis reproductive organs [24].

Here, we hypothesized that the water restriction differentially alters the distribution
and accumulation of photoassimilates between pod wall when the foliage is severely af-
fected. The identification of CWIN gene expression in reproductive organs of common bean
represents a significant advancement to understand the mechanism in sucrose partitioning
and metabolism. In this study, we demonstrated the possible links between cell wall inver-
tase activity and encoding PvINVCW4 gene identified by a genome-wide analysis within
the latest genome annotation. The results provided evidence for a possible physiological of
pod wall in the context of sucrose metabolic under water restriction stress.

2. Results
2.1. Substrate Moisture

The soil moisture level at 100% FC showed variable daily losses, and they were
recovered by applying a 0.24–0.43 mL water g−1 substrate. At 50% FC, soil water moisture
decreased quickly after 4 days (Figure S2). To avoid excessive stress, water was replenished
daily to 50% FC (0.22 mL water g−1) for 10 days.

2.2. Analysis of Senescence by Color Segmentation on Visible RGB Images

Plants at 100% FC maintained 100% green color throughout the 10-d evaluation
(Figure 1A,B). In contrast, water restriction significantly modified the green–yellow–brown
color components between 40–60% (Figure 1A). The leaves of stressed plants showed
strong symptoms of senescence, and significant necrosis was even observed. Images of
stressed plants clearly show that the fruits were permanently green in comparison with the
yellowish and necrotic leaves (Figure 1B).
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analyzed by LemnaGrid Software. Foreground and background separation of the images and re-
sulting binary images (I–III,V–VII). Objects were separated according to color classification (IV–
VIII). (B) Percentage (± S.E.) of color in green (healthy), yellow (senescent), and brown (necrotic) 
plants, n = 5. Boxes marked with a different letter were significantly different (p < 0.05) by Student’s 
t test. 

2.3. Morphological and Anatomical Analysis 
The racemes of 26–29 DDA were harvested after 10 days of stress and images were 

acquired (Figure 2A). The racemes’ shape and morphology strongly indicated that all ra-
cemes with large and small green fruits were able to maintain metabolic activity, i.e., pho-
tosynthesis, compared with other plant tissues. In addition, the anatomical analysis 
showed that the external layer (exocarp) and sclereid hypodermis were similar between 
both treatments (Figure 2BI–BIV). In addition, the cells of the parenchyma (mesocarp) 
showed no differences in the number or shape of the cells. Moreover, starch grains were 
present in the pod wall of the large and small pods of both treatments, but they were only 
in the cells of parenchyma (Figure 2BV–BVIII). 

Seed and raceme production at 50% FC fell 30%, while seed production decreased 
from 15–20% (Figure 2C). Remarkably, no significant differences in individual seed 
weight were found at 50% FC with respect to the control, indicating that despite water 
restriction, the fruits were able to complete grain development (Figure 2C). 

Figure 1. (A) Color segmentation of RGB images of common bean plants of cv. OTI in soil with
100% field capacity (FC) and after 10 d at 50% FC. The images were obtained with a Scanalyzer
PL and analyzed by LemnaGrid Software. Foreground and background separation of the images
and resulting binary images (I–III,V–VII). Objects were separated according to color classification
(IV–VIII). (B) Percentage (± S.E.) of color in green (healthy), yellow (senescent), and brown (necrotic)
plants, n = 5. Boxes marked with a different letter were significantly different (p < 0.05) by Student’s
t test.

2.3. Morphological and Anatomical Analysis

The racemes of 26–29 DDA were harvested after 10 days of stress and images were
acquired (Figure 2A). The racemes’ shape and morphology strongly indicated that all
racemes with large and small green fruits were able to maintain metabolic activity, i.e.,
photosynthesis, compared with other plant tissues. In addition, the anatomical analysis
showed that the external layer (exocarp) and sclereid hypodermis were similar between
both treatments (Figure 2BI–BIV). In addition, the cells of the parenchyma (mesocarp)
showed no differences in the number or shape of the cells. Moreover, starch grains were
present in the pod wall of the large and small pods of both treatments, but they were only
in the cells of parenchyma (Figure 2BV–BVIII).

Seed and raceme production at 50% FC fell 30%, while seed production decreased
from 15–20% (Figure 2C). Remarkably, no significant differences in individual seed weight
were found at 50% FC with respect to the control, indicating that despite water restriction,
the fruits were able to complete grain development (Figure 2C).
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Figure 2. (A) Examples of pod racemes with large and small fruits from plants at 100% field capacity 
(FC) and under water restriction (50% FC) for 10 d. (B) Anatomical characteristics of walls of large 
and small pods developed in common bean plants with soil at 100% field capacity (FC) and after 10 
days at 50% FC. (I–IV): pericarp cross-sections (10× objetive); ((V–VIII); light micrographs (40× ob-
jetive) showing starch granules in parenchyma (P) (red arrows). Epidermis (EP), sclereid hypoder-
mis (SCH), vascular bundles (VB). (C) Racemes per plant harvested after 10 d; n = 10. Left graph. 
Seed weight (±S.E.) distribution in large and small pods. Right graph, from plants at 100% FC (gray) 
and 50% FC (orange); n = 5. Boxes marked with a different letter were significantly different (p < 
0.05) when analyzed by Student’s t test. n.s = not significant. 

2.4. Diel Variation in Soluble Sugars and Starch in the Pod Wall 
The diel range of glucose concentration (10–18 µmol g−1) in the pod walls was the 

lowest among the soluble sugars in both treatments. In contrast, the fructose concentra-
tions showed peaks as high as 99 µmol g−1 in the walls of large and small pods at 100% FC 
during daylight. Fructose concentrations were not so high at 50% FC in pod walls of either 
size, with the concentrations of this monosaccharide reduced by half. Slight diel changes 
in sucrose concentration were observed in the walls of large pods at 100% FC. Under water 

Figure 2. (A) Examples of pod racemes with large and small fruits from plants at 100% field capacity
(FC) and under water restriction (50% FC) for 10 d. (B) Anatomical characteristics of walls of large and
small pods developed in common bean plants with soil at 100% field capacity (FC) and after 10 days
at 50% FC. (I–IV): pericarp cross-sections (10× objetive); ((V–VIII); light micrographs (40× objetive)
showing starch granules in parenchyma (P) (red arrows). Epidermis (EP), sclereid hypodermis (SCH),
vascular bundles (VB). (C) Racemes per plant harvested after 10 d; n = 10. Left graph. Seed weight
(±S.E.) distribution in large and small pods. Right graph, from plants at 100% FC (gray) and 50%
FC (orange); n = 5. Boxes marked with a different letter were significantly different (p < 0.05) when
analyzed by Student’s t test. n.s = not significant.
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2.4. Diel Variation in Soluble Sugars and Starch in the Pod Wall

The diel range of glucose concentration (10–18 µmol g−1) in the pod walls was the
lowest among the soluble sugars in both treatments. In contrast, the fructose concentrations
showed peaks as high as 99 µmol g−1 in the walls of large and small pods at 100% FC
during daylight. Fructose concentrations were not so high at 50% FC in pod walls of either
size, with the concentrations of this monosaccharide reduced by half. Slight diel changes in
sucrose concentration were observed in the walls of large pods at 100% FC. Under water
restriction, sucrose concentrations were maintained without changes (55–65 µmol g−1).
Changes in starch concentrations (16–25 µmol g−1) were proportionally lower than those
of sucrose (Figure 3).
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Figure 3. Concentrations ± SE of glucose, fructose, sucrose, and starch in pericarps of large (triangle)
and small (circle) pods of racemes of common bean plants at 100% field capacity (FC) over 10 days.
Racemes were sampled at sunset (6:00 p.m.), midnight (12:00 p.m.), sunrise (6:00 a.m.), and noon
(12:00 p.m.), n = 4. The same letters on the boxes indicate similarity between treatments (Student’s
t test, p < 0.05).
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2.5. Diel Variation in Invertase Activity in the Pod Wall

Diel light/dark variation in CWIN activity was significantly higher (0.67–0.72 µmol
suc g−1 DW min −1) in the walls of small pods than in those of large ones (0.31–0.48 µmol
suc g−1 DW min −1) in both treatments. The difference represents 35–40% of CWIN activity
(Figure 4). In contrast, CIN and VIN activity was lower (0.15–25 µmol suc g−1 DW min −1)
than that of VIN; however, the activity of VIN was slightly higher in the walls of small
pods at 50% FC (Figure 4).
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Figure 4. Activities ± SE of cell wall invertase, cytosolic invertase, and vacuole invertase in pericarp
from pod sets (large and small) at 100% FC and over 10 d at 50% FC. The pod sets were sampled at
sunset (6:00 p.m.), midnight (12:00 a.m.), dawn (6:00 a.m.), and noon (12:00 p.m.); n = 4. The same
letters on the boxes indicate similarity between treatments (Student’s t test, p < 0.05).

2.6. INVCW Isoforms within the P. vulgaris Genome

A search was conducted for all possible CWIN-like genes from the list of 38 INVCW
gene sequences (Table S2), and these CWIN-like genes were then curated. The Table S2
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shows the IDs and chromosome locations. All gene sequences were grouped into the
glycoside hydrolase family GH32. Through alignment of all gene sequences, the genome
of P. vulgaris was unloaded in Phytozone V.13. Extensive analysis via iterative BLASTs at
the protein level was performed; we determined the percentage similarity values for the
38 INVCW gene sequences (Table S3).

From this analysis, six INVCW sequences were selected using a threshold similarity
> 78% and experimentally studied (Table S4). Thus, we propose a standardized gene
nomenclature for INVCW isozyme entries, and through ProtParam software (https://web.
expasy.org/protparam/, accessed on 20 February 2022), we obtained characteristics such as
the ORF lengths, the numbers of amino acids, the isoelectric points (pI), molecular weights,
and signal peptides, which were predicted (Table 1). As shown, the nucleotide sequence
lengths ranged from 1524 to 1926 bps, deduced protein sequence lengths varied from 575
to 652 amino acids, and the corresponding pIs were predicted to be between 5.05 and 9.82.

Table 1. Characteristics and properties of INVCWs isoforms in Phaseolus vulgaris L.

Name in This
Work Subcellular Location DNA

Length (bp)
mRNA

Length (bp)
CDS Length

(bp)
Protein

Length a.a.
Molecular

Weight (Kda) pI

PvINVCW1 Chr03:44577343..44581434 reverse 4091 2448 1956 652 72.63 6.47
PvINVCW2 Chr10:42023601..42028333 reverse 4732 1823 1689 563 63.51 9.82
PvINVCW3 Chr07:35070399..35075678 forward 5279 1922 1764 588 58.65 9.47
PvINVCW4 Chr01:3435432..3438180 reverse 2748 1859 1686 562 64.12 5.05
PvINVCW5 Chr01:45038437..45040759 forward 2322 1850 1524 508 64.83 8.98
PvINVCW6 Chr05:38694474..38697361 reverse 2887 2007 1725 575 64.65 8.42

The organization of exon/intron of the PvINVCW genes are illustrated in Figure S3.
All PvINVCW genes showed the presence of exons, PvINVCW1, PvINVCW2, and PvIN-
VCW3 genes contained 6–7 exons, while PvINVCW4, PvINVCW5, and PvINVCW6 contained
5–6 exons.

2.7. Analysis of Conserved Domains in the INVCW Sequences

The alignment of six invertase sequences indicated 141 conserved amino acids, shown
as blue boxes in Figure 5. The three conserved motifs NDPNG (β-fructosidase motif), RDP,
and WECP, which perform a crucial function in the hydrolysis of sucrose into glucose
and fructose, were found in PvINVCW2 and PvINVCW3. Irregular substitution in the
NDPNG domain of an A residue for a single G residue was detected in the PvINVCW4 and
PvINVCW6 sequences. Similarly, the WECP domain showed substitution of an aliphatic W
residue with a C residue in the PvINVCW4 sequences, while in the PVINVCW1 sequence,
a P residue was replaced by V (Figure 5).

2.8. Phylogenetic Analysis of PvINVs

To understand the phylogenetic relationships among the INVCWs in P. vulgaris, a
phylogenetic tree was constructed. In this case, the conserved sequences of 15 members of
the INV family in dicots and 25 in monocots, as well as one sequence from the bacterium
Bacillus subtilis subsp. as an outgroup, from the https://www.ncbi.nlm.nih.gov, accessed
on 5 February 2022) database were used. Accession numbers for all sequences used in the
analysis are in Table S1.

All plant invertases that are catalytically active share the common feature of being
relatively large proteins with >500 aa, compared to the median size of ~363 aa for plant
proteins [25]. Our phylogenetic study covering both dicot and monocot species confirmed
that the INV family comprises many members within a species and that they are divided
into two main groups, one containing sequences classified as cell wall invertases in mono-
cots and the other in dicots with the distant bacterial sequence, reflecting independent
evolutionary origin (Figure 6).

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://www.ncbi.nlm.nih.gov
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This indicated that the PvINVCWs could be divided into three groups: PvINVCW1
has a close relationship with PvINVCW2 and PvINVCW6, while PvINVCW3 is closest
to PvINVCW5. PvINVCW4 was clustered into the subgroup closest to PvINVCW2 and
PvINVCW6.

The PvINVCW genes were distributed within five out of eleven common bean chromo-
somes. An extensive analysis at the protein level allowed us to propose a standardized gene
nomenclature of all P. vulgaris isozymes (Table 1). The genes were grouped into different
categories based on the structural features (Figure 6) and the phylogenetic tree (Figure 6).

2.9. Analysis of the Expression of Two P. vulgaris Invertases

To increase data precision on the expression levels of INVCW genes, we selected the
PvINVCW3 and PvINVCW4 genes to carry out qRT–PCR based on their high-percentage
sequence similarity values (Table S4). In the samples from walls of large pods, expression
of PvINVCW3 and PvINVCW4 was not significantly different than at 100% FC (Figure 7).
In the walls of small pods, PvINVCW3 gene expression was not different from that in plants
at 100% FC. In contrast, PvINVCW4 gene expression was approximately 2-fold higher than
that in walls of small pods at 100% FC (Figure 7).
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dicotyledonous (Dicot) plants and including cell wall invertases of the bacterium B. subtilis as an out
group. Accession numbers are in Table 1.
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letters on bars indicate similarity between treatments (Student’s t test, p < 0.05).

3. Discussion

As much as 80% of the CO2 assimilated during photosynthesis is channeled into the
synthesis of sucrose [26]. Under heat and drought, sugar limitation is a well-known factor
leading to the abortion of fruit and seed [27]. In the common bean, plants initiate many
more reproductive structures than can be carried to full seed maturity [28,29]. Pods can
be developed in any raceme along the plant [30]. Recent evidence indicates that under
water restriction, the carbon allocation in the pod wall changes over time, and 14C labelling
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shows that under water restriction, the seeds increase 14C label accumulation with fruit
aging and decrease 14C accumulation with increasing moisture level [17].

In the present study, we evaluated the effect of water restriction on raceme fruits
with different numbers of seeds (Figure 2A). First, we demonstrated that despite strong
symptoms of senescence, racemes remained green (Figure 1). This allows us to suggest that
pods probably maintain active photosynthetic machinery. In this regard, various studies
have recognized the green color permanence in plants, which is known as “Stay Green”,
an agronomic character [31]. In common bean, it has been demonstrated that the green color
permanence in pods varies among cultivars [32]. To confirm whether pod greenness is re-
lated to cellular structural integrity, the anatomy was analyzed in cross-sections of long and
small pods of the plants with and without water restriction (Figure 2B). Pod walls did not
show alterations in the epidermis (exocarp), hypodermis, or internal (mesocarp) or external
parenchyma (endocarp) (Figure 2(BI–BIV)), or in the starch granules (Figure 2(BV–BVIII)).
Altogether, these results indicate that even if plants are under water restriction, their fruits
maintain cellular integrity similar to those at 100% FC. These observations are consistent
with findings on the pods of alfalfa [33], chickpea [34], and some species of Brassica [35].
Additionally, it has been shown that the pod provides carbon to the seeds even when
growth conditions are adverse; it is a selection criterion for bean cultivars under water
restriction conditions [8].

In addition, biomass distribution in pod racemes was evaluated, as was seed yield
per plant, in both treatments. The stress generated significant pod abscission (Figure 2C),
and the differences in fruit size and number of seeds per pod were affected by water restric-
tion (5–6 seeds per pod to 3–4 seeds per pod) (Figure 2A). Studies with 14C have revealed
that, under moderate and severe water restriction, fruits in intermediate developmental
stages show significant differences in sucrose and starch concentrations with respect to the
initial (elongation) and advanced (mature) stages [17]. Our results confirm that between
26 and 29 DAA, common bean pods show active carbon metabolism despite the absence
of photosynthetic activity in leaves. The present study suggests that the pod walls are
metabolically active structures in racemes with large and small pods. Hence, pod anatomy
showed that the cellular integrity was maintained similarly in pod walls despite 10 days
of water restriction (Figure 2B). Regarding the weights of the seeds, the results showed
that water restriction reduced the fruit number per plant, but individual seed weight was
not affected (Figure 2C). This indicates that the seeds complete development despite the
stress and the limited, or totally suspended, assimilation of photoassimilates from the
leaves. This is consistent with findings of the study that evaluated the genic base of seed
formation, which demonstrated that in crops, seed size is a genetically marked trait [36].
In another approach, Ref. [1] evaluated the role of pods in the determination of seed yield
under drought and found that the number of seeds per pod was also correlated with the
pod harvest index (PHI), suggesting that sink strength due to the seed number is higher
than sink strength based on seed size.

Additionally, we explored the effect of the day–night cycle on the levels of soluble
sugars and starch in pod walls of large and small fruits (Figure 3). We found that glucose
concentrations remained low in walls of both pod sizes regardless of moisture level or time
of day. In contrast, the fructose concentration in the pod walls at 100% FC varied between
conditions with natural light and darkness. Walls of large and small pods accumulated
less fructose at the end of the day and throughout the night, with maximum accumulation
occurring at noon (Figure 3). In contrast to 100% FC, water restriction kept fructose
concentrations in pods at low levels (Figure 3). These results indicate that the glucose and
fructose used in the pods are metabolically different. It is well known that in plants, hexoses
(glucose and fructose) are generated by invertase activity. The elevated levels of fructose
in bean pod walls were consistent with those documented in response to moisture deficit
stress [17] and during the process of chloroplast formation during seed development [37].

Elucidating the metabolic and signaling roles of these sugars can be complex, since
they are rapidly metabolized and are substrates for the synthesis of other molecules.
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However, fructokinase, which catalyzes the same reaction as hexokinase (HXK), is involved
in plant growth modulation and the use of fructose as a regulator of 1,6-fructokinase [38].
The findings of the current study have not ruled out the possibility that fructose is involved
in fruit growth regulation, which generates new questions. The significant diel changes in
sucrose levels in walls of long and small pods (Figure 3) suggest that under water restriction
stress, sucrose accumulates via discharge from the phloem or is synthesized from triose
phosphate produced by photosynthesis in the pod walls. Sucrose is indispensable to the
development of reproductive structures such as flowers and seeds [4,17,39]. For example,
in flowers of cotton (especially), sucrose is the major nutrient and energy source [40].
In maize, sucrose applied to the stem has been found to restore ovary abortion in plants
subjected to drought [41]. Walls of long and small pods did not show significant differences
in starch concentration between treatments or during the light–dark cycle (Figure 3). These
results are consistent with those obtained by [15], in which pods of common bean in the
early stages of development showed lower starch concentration than did those in the
advanced developmental stage. In contrast, Ref. [16] reported that starch levels in the
pod wall increased in response to drought in a drought-tolerant cultivar, showing that the
starch concentration varies among cultivars. However, further investigation is needed to
address the issue of how the pod wall regulates sugar export products resulting from starch
degradation, such as soluble sugars and maltose [42].

To gain additional insight into the sucrose:hexose ratio in pod walls, we evaluated the
activity of invertase in the pod racemes of plants in both treatments. The results showed that
vacuolar and cytosolic invertase activity did not differ significantly (Figure 4). In contrast,
cell wall invertase activity (INVCW) was statistically higher in the walls of small pods
with and without water restriction but lower in walls of large pods at both moisture levels
(Figure 4). These results suggest that cell wall invertase activity increases in tissues where
sink strength is higher, regardless of the plant stress level. Currently, specialists know that
cell wall invertase (INVCW) controls growth and development, mainly in reproductive
tissues in broad bean (Vicia faba) [39], corn (Zea mays) [4], and carrot (Daucus carota) [43].
The evidence indicates that in these tissues, photoassimilates are unloaded from the phloem
and sucrose degradation by cell wall invertase produces hexoses that are incorporated by
H+/symport-type transporters (STPs) [44]. However, the presence of six INVCW genes
and fourteen STPs in Arabidopsis has made research difficult due to the redundancy among
isoforms [45].

In common bean pods and other legumes, the role of invertases is poorly understood.
In asparagus bean (Vigna unguiculata ssp. sesquipedialis), the cell wall invertase activity in
the pod wall has been found to differ between two genotypes; this result indicates that the
products of sucrose degradation, glucose, and fructose participate in seed development [46].

The results of the present study indicate that the high activity of INVCW in pod walls
of small fruits of plants in both treatments was due to the greater sink strength during seed
development (Figure 4).

To determine the number of sequences that encode cell wall invertases in the bean
genome, the genome sequence of P. vulgaris was downloaded from the free Phytozome V.13
site. After sequence comparison (Table S2), six sequences with a minimum similarity of 78%
were identified. With the gene sequences identified in the common bean genome, amino
acid sequences were obtained, which were used to carry out the alignments. The analysis
showed high similarity among the sequences (Figure 5). However, an intron/exon structure
of some fructosyltransferases and invertases includes the presence of a 9-bp mini-exon
encoding three amino acids (DNP), which constitutes part of the WMNDPNG motif that
determines substrate specificity [47]; in the PvINVCW4 sequence, this mini-exon showed an
A substitution in the G motif (Figure 5). This mini-exon has been found to show alternative
splicing in potato plants under cold stress [48], and a splice variant with different exons
and introns has been observed in cotton [40]. Similarly, the results showed other identical
RPD and EC motifs in the six sequences identified in beans. Additionally, in the present
study, the WECP motif, which has been reported near the terminal carboxyl end [47], was
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observed in the common bean sequences, with a substitution of C for W. This motif has
been identified as the fructofuranoside motif.

The evolutionary distance between them shows that the sequences of PvINVCW3 and
PvINVCW5 are distant from those of PvINVCW1, and PvINVCW2 and PvINVCW6 are
distant from PvINVCW4 (Figure 6).

For analysis of transcript levels of PvINVCW genes, we assessed, by RT–qPCR, the ex-
pression of PvINVCW3 and PvINVCW4 genes based on the criterion of percentage amino
acid similarly ≥ 80% to gene family members of INVCW-like genes (Table S4). The results
showed that expression of the PvINVCW3 gene did not differ significantly between small
and long pods, while the levels of PvINVCW4 gene transcripts were higher in small pods
(Figure 7). Recently, Ref. [24] identified five transcription factors (TFs) in reproductive
tissues of Arabidopsis that differentially regulate the transcriptional activity of two isoforms
of cell wall invertase genes, suggesting that TFs participate upstream in different isoforms.

Based on these findings, we conclude that in racemes, multiple pathways of carbon
metabolism are affected by the demand in small pods, maintaining the stable morphological
and anatomical characteristics under water restriction (Figure 8). Our results pointed to
the changes in glucose and fructose that may be associated with cell wall invertase activity
(INVCW), and according to the genome reported in Phytozome, six sequences encode
INVCW. In this regard, future studies to identify the regulatory factors that can coregulate
CWIN and additional carbon routes could contribute.
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Figure 8. Representative model showing multiple pathways of carbon metabolism during grain
filling in racemes at 100% FC and 50% FC. First, the pod wall could perform photosynthesis for starch
and sucrose synthesis. Second, products of starch hydrolysis (maltose and hexose) could be used for
carbon metabolism in seeds. Third, sucrose could be transported to the peduncle and distributed
in large and small pods via funicule to seed. Then, it is degraded by cell wall invertase (INVCW),
and hexoses are probably used for grain filling. The activity of INVCW increased in the walls of small
pods independent of the water regime, but fructose levels decreased in the walls of large and small
pods under water restriction. The mRNA transcript levels of the PvINVCW4 gene were consistent
with high enzymatic activity in small pericarps at 50% FC, but this increase was not mimicked in
walls of large pods. These findings suggest that an additional isoform of INVCW could participate in
sucrose degradation.
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4. Materials and Methods
4.1. Plant Material and Growth Conditions

Common bean plants of cv. OTI were grown in a tunnel greenhouse of the Cole-
gio de Postgraduados, Campus Montecillo, at Texcoco, Estado de México (19◦27′40′′ N,
98◦54′19′′ W and altitude of 2353 m). Plants were distributed in a completely randomized
manner and individually maintained in 5-L pots containing 4 kg of agricultural soil at
100% FC until the onset of pod filling at the beginning of the R8 stage. The plants were
then separated into two groups: one group was kept at 100% FC (control), and the second
group was maintained for 10 days at 50% FC (moisture deficit) (Figure S1). Moisture loss
was determined using the gravimetric method by recording the weight of each pot daily
at 8:30 a.m. Due to fluctuations in moisture loss during the day, the pots were brought
to their respective field capacity (Figure S2). All flowers on each plant were labeled daily
and quantified in both treatments, and raceme formation was registered. The racemes
at 26–29 days after anthesis (DAA) (R8 stage) were selected for evaluation. The labeled
racemes were collected at sunset (6 p.m.), midnight (12 a.m.), dawn (6 a.m.), and noon
(12 p.m.) to quantify glucose, fructose, sucrose, and starch concentrations in pod walls
(Figure S1).

4.2. Phenotyping Analysis

Nine days before collecting pod racemes, lateral RGB (red, green, and blue) images
were obtained in one plane of orientation using the Scanalyzer PL phenotyping platform
(LemnaTec GmbH, Aachem, Germany). The resolution of the digital camera (Baster AG,
Ahrensburg, Germany) was 1628 × 1236 pixels using light in the RGB (400–700 nm) visible
spectrum with a pixel size of 4.4 µm × 4.4 µm. The plants were imaged and analyzed
with LemnaGrid software, and each image was segmented into green (healthy), yellow
(senescent), and brown (necrotic) colors related to the physiology and phenology of the
tissues [32].

4.3. Anatomical Analysis

Thick sections (0.5 cm) of large and small pod wall, of control (100 % FC) and stressed
(50% FC) plants, harvested at 26–29 DAA, were dissected. These were fixed with FAA
(formaldehyde, 37% glacial acetic acid, 95% ethanol 95% and distilled water: Ruzin 1999).
Then, the sections were dehydrated gradually with alcohol at 30%, 50%, and 70% and with
butilic alcohol in a gradient from 10% to 100% in a tissue processor (Leica, TP1020, Deer
Park, IL, USA) These samples were included in Paraplast®. Ultrathin sections (thickness
12 µm) were obtained with a microtom (Leica, RM2125RT). Deer Park, IL, USA). The ul-
trathin sections were stained with safranin and fast green and mounted in synthetic resin.
Descriptions were visualized with an Olympus BX51 microscope.

4.4. Pod and Seed Production

The flowers were labeled and quantified daily in both treatments. The total pod
raceme developed during 26–29 DDA was quantified, and the seeds mass produced was
determined in an electronic balance (Hongzuan HZ-2003).

4.5. Soluble Sugar and Starch Measurements

Soluble sugar and starch were quantified in the pod walls of large and small pods of
racemes, harvested after 26–29 DDA, four times in the 24 h cycle. Sucrose, glucose, fructose,
and starch were enzymatically quantified following the methods described by [49,50].

4.6. Invertase Activity Assay

The invertase activity of cell wall (INVCW), citosolic (CInv), and vacuolar (VInv)
were assayed in lyophilized tissue from pod walls of large and small pods harvested at
26–29 DAA. The samples were triturated with a mortar and pestle. For enzyme assays,
of triturated samples (50 mg) were homogenized in ice-cold 50 mM HEPES-KOH buffer
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(pH 8.0), containing 5 mM EDTA, 5 mM MgCl2, 1 mM MnCl2, 1 mM CaCl2, 1 mM DTT,
and Coktail of proteases (Sigma-Aldrich, St. Louis, Mo, USA). Then, the samples were
vigorously vortexed and centrifuged (10,000× g) for 10 min at 4 ◦C. Assays were performed
using the supernatant for soluble invertases, including vacuolar invertases, and in the
pellet the acid invertase activity was assayed according to [51].

4.7. Identification of PvINVCW Genes in P. vulgaris
4.7.1. Database Search

Gene family members of INVCW-like genes were searched from the most likely se-
quenced genomes and gene annotations in homologous species: Zea mays L. [52] and
isoforms of Oryza sativa L. [53], Brachypodium distachyon [54], Arabidopsis thaliana L. [55],
Carica papaya [56], Populus trichocarpa [57], and bacterial Bacillus subtilis as the sequence ex-
ternal group (https://www.ncbi.nlm.nih.gov/gene/938745, accessed on 30 January 2022).
The sequences were BLASTED by iterative searches at the protein level with high similar-
ity using a threshold >78% against the genome of P. vulgaris available Phytozome web-
site version v13. (https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1, accessed on
6 February 2022) [58]. To validate the genes selected, paralogs and orthologs of INVCW
from other plant genomes, were searched in GenBank. The exon/intron structure of indi-
vidual genes was illustrated using the Gene Structure Display Server (GSDS) software [59].

4.7.2. Phylogenetic Analysis

To perform the phylogenetic analysis, we used invertase amino acid sequences of
15 dicots, 25 monocots (Table 1) and selected P. vulgaris INVCW entries. Multiple sequence
alignments were performed with Clustal X software [60]. Phylogenetic reconstruction
was carried out using maximum likelihood (ML) constructed using MEGA X with 1000
according to the amino acid sequence with 1000 bootstrap replicates. The evolution model
was selected under the Akaike criterion using the MEGA X program [61]. Additionally, one
bacterial sequence was used as an external species.

4.7.3. Bioinformatic Analysis

The molecular weight (MW) and isoelectric point (pI) were calculated using ProtParam
(https://web.expasy.org/protparam/, accessed on 10 February 2022) [62]. dbCAN-seq:
a database of carbohydrate-active enzyme (CAZyme, http://www.cazy.org/Home.html, ac-
cessed on 10 February 2022) sequences and annotations [63]. Carbohydrate-active enzymes
(CAZymes) catalyze the assembly and breakdown of glycans and glycoconjugates [64].
SignalP 4.1 predicts the presence and location of signal peptide cleavage sites in amino
acid sequences (https://services.healthtech.dtu.dk/service.php?SignalP-4.1, accessed on
11 February 2022).

4.7.4. Reverse Transcription-Quantitative Polymerase Chain Reaction RT–qPCR

Total RNA was isolated from pod sets (large and small pod walls) harvested at 12 p.m.
using the TRIzol® reagent (Invitrogen) based on the method of [65] with minor modifi-
cations. cDNA templates for qRT–PCR amplification were prepared from pooled RNA
from the three individual pod wall of both treatments by using specific primers (Table S1)
and SuperScript™ III reverse transcriptase (Invitrogen) according to the manufacturer’s
instructions. The PCR cycle was 3 min at 95 ◦C, followed by 40 cycles of 95 ◦C for 15 s and
60 ◦C for 45 s. The specificity of the individual PCR amplification was checked using a heat
dissociation protocol from 65 to 95 ◦C following the final cycle of the PCR. Each reaction
contained 20 µg cDNA template obtained from ∼30 µg total RNA, 1× SYBR Green PCR
Master Mix (Applied Biosystems, Waltham, MA, USA) and 500 nM forward and reverse
primers. Real-time PCR was performed in an ABI PRISM 7500 sequence detection system
(Applied Biosystems). Relative transcript abundance was calculated and normalized with
respect to actin11 mRNA levels to minimize variation in cDNA template levels and was
used as an internal control to normalize gene expression values. The relative expression

https://www.ncbi.nlm.nih.gov/gene/938745
https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1
https://web.expasy.org/protparam/
http://www.cazy.org/Home.html
https://services.healthtech.dtu.dk/service.php?SignalP-4.1
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was calculated based on the increases in pods under humidity restriction with respect to
those determined under irrigation. The data shown are the mean values obtained from
at least three independent reactions. All calculations and analyses were performed using
7500 Software v2.0.1 (Applied Biosystems, Waltham, MA, USA) and the 2−∆∆Ct method
with a relative quantification (RQ) confidence set at 95% [66]. The amplification efficiency
(97.4 % to 100 %) for the primer sets was determined by amplification of a cDNA dilution
series (1:5). The specificity of the RT–PCR products was determined by a melting curve
analysis with continual fluorescence data acquisition during the 65–95 ◦C melt.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11131622/s1, Figure S1: A representation of the experimental
layout and phenological stages of common bean var. OTI plants. VF: vegetative stages and RF:
reproductive stages. Plants in R8 were maintained at 100% FC (field capacity) or kept for 10 d at
50% FC. Pod sets were sampled at sunset (6:00 p.m.), midnight (12:00 a.m.), dawn (6:00 a.m.) and
noon (12:00 p.m.); Figure S2. Water lost ± SE from substrate per pot registered daily at 8:30 a.m.;
water was added to reach 100% FC (blue squares) and 50% FC (red squares). n = 10. Figure S3.
Schematic representation of the structure of the six cell wall invertases genes identified in Phaseolus
vulgaris genome. The blue box represent the exons, grey box the untranslated regions (UTRs) and
grey lines between boxes represent introns. Table S1. Gene specific primers of INVs used for qPCR
amplification; Table S2. List of functionally characterized gene family members of INVCW-like genes
searched from the most probable sequenced genomes and gene annotations in homologs species;
Table S3. Percentage of similarity obtained by BLAST iterative searches at the protein level against the
genome of Phaseolus vulgaris available Phytozome website version v12. Table S4. Details of PvINVCW
genes obtained from the list of functionally characterized gene family members of INVCW-like genes
(Table S2) and percentage amino acid similarity >78%.
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