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Abstract

Swarming behavior is common in biology, from cell colonies to insect swarms and bird
flocks. However, the conditions leading to the emergence of such behavior are still subject
to research. Since Reynolds’ boids, many artificial models have reproduced swarming
behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed
leaders. This paper presents a model of evolved artificial agents, able to develop swarming
using only their ability to listen to each other’s signals. The model simulates a population of
agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead
of a centralized algorithm, each agent is controlled by an artificial neural network, whose
weights are encoded in a genotype and adapted by an original asynchronous genetic algo-
rithm. The results demonstrate that agents progressively evolve the ability to use the infor-
mation exchanged between each other via signaling to establish temporary leader-follower
relations. These relations allow agents to form swarming patterns, emerging as a transient
behavior that improves the agents’ ability to forage for the resource. Once they have
acquired the ability to swarm, the individuals are able to outperform the non-swarmers at
finding the resource. The population hence reaches a neutral evolutionary space which
leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarm-
ing not only contributes to shed light on the minimal conditions for the evolution of a swarm-
ing behavior, but also more generally it exemplifies the effect communication can have on
optimal search patterns in collective groups of individuals.

Introduction

The ability of fish schools, insect swarms or starling murmurations to shift shape as one and
coordinate their motion in space has been studied extensively because of their implications for
the evolution of social cognition, collective animal behavior and artificial life [1-6].
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Swarming is the phenomenon in which a large number of individuals organize into a coor-
dinated motion. Using only the information at their disposition in the environment, they are
able to aggregate together, move en masse or migrate towards a common direction.

The movement itself may differ from species to species. For example, fish and insects swarm
in three dimensions, whereas herds of sheep move only in two dimensions. Moreover, the col-
lective motion can have quite diverse dynamics. While birds tend to flock in relatively ordered
formations with constant velocity, fish schools change directions by aligning rapidly and keep-
ing their distances, and most insects swarms (with perhaps exceptions such as locusts [7])
move in a messy and random-looking way [8-10].

Numerous evolutionary hypotheses have been proposed to explain swarming behavior
across species. These include more efficient mating, good environment for learning, combined
search for food resources, and reducing risks of predation [11]. Pitcher and Partridge [12] also
mention energy saving in fish schools by reducing drag.

In an effort to test the multiple theories, the past decades counted several experiments
involving real animals, either inside an experimental setup [13-15] or observed in their own
ecological environment [16]. Those experiments present the inconvenience to be costly to
reproduce. Furthermore, the colossal lapse of evolutionary time needed to evolve swarming
makes it almost impossible to study the emergence of such behavior experimentally.

Computer modeling has recently provided researchers with new, easier ways to test hypoth-
eses on collective behavior. Simulating individuals on machines offers easy modification of
setup conditions and parameters, tremendous data generation, full reproducibility of every
experiment, and easier identification of the underlying dynamics of complex phenomena.

From Reynolds’ boids to recent approaches

Reynolds [17] introduces the boids model simulating 3D swarming of agents called boids con-
trolled only by three simple rules:

o Alignment: move in the same direction as neighbours
o Cohesion: remain close to neighbours
« Separation: avoid collisions with neighbours

These rules can be translated into differential equations based on the velocity of each boid:
- 2 jes, T 2jes (. —7)
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The position of each boid is updated by the computed velocity A_;’i iteratively. The attraction
and repulsion terms are represented by the first and second term, respectively. Each rule has an
interaction range around each agent and is respectively denoted by S, S, and S,. In the equa-
tion, the amplitudes of those interactions are respectively w,, w,, and w,, and the speed ampli-
tude is typically bounded between values v,,;,, and v,y.

Various works have since then reproduced swarming behavior, often by the means of an
explicitly coded set of rules. For instance, Mataric [18] proposes a generalization of Reynolds’
original model with an optimally weighted combination of six basic interaction primitives
(namely, collision avoidance, following, dispersion, aggregation, homing and flocking). Vicsek
[6] models the swarming of point particles, moving at a constant speed, in the average direction
of motion of the local neighbors with some added noise. Hartman and Benes [19] come up
with yet another variant of the original model, by adding a complementary force to the align-
ment rule, that they call change of leadership. Many other approaches have been based on
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informed agents or fixed leaders [20-22]. Unfortunately, in spite of the insight this kind of
approach brings into the dynamics of swarming, it shows little about the pressures leading to
its emergence.

For that reason, experimenters attempted to simulate swarming without a fixed set of rules,
rather by incorporating into each agent an artificial neural network brain that controls its
movements, namely using the evolutionary robotics approach. The swarming behavior is
evolved by copy with mutations of the chromosomes encoding the neural network parameters.
By comparing the impact of different selective pressures, this type of methodology, first used in
[23] to solve optimization problems, eventually allowed to study the evolutionary emergence of
swarming.

Tu and Terzopoulos [24] have swarming emerge from the application of artificial pressures
consisting of hunger, libido and fear. Other experimenters have analyzed prey/predator sys-
tems to show the importance of sensory system and predator confusion in the evolution of
swarming in preys [25, 26].

In spite of many pressures hypothesized to produce swarming behavior, designed setups
presented in the literature are often complex and specific. Previous works typically introduce
models with very specific environments, where agents are designed to be more sensitive to par-
ticular inputs. While they are bringing valuable results to the community, one may wonder
about with a more general, simpler design.

Recently, studies such as in Torney et al. [27] successfully showed the advantages of signal-
ing to climb environmental gradients. However, these models hard-code the fact that individu-
als turn towards each other based on the signals they emit, unlike the evolutionary robotics
approach mentioned previously which attempts to have the swarming behavior evolve. Collec-
tive navigation has also been shown to allow for a dampening of the stochastic effects of indi-
vidual sampling errors, helping groups climb gradients [28, 29]. This effect has also been
highlighted for migration [30, 31].

Finally, even when studies focus on fish or insects, which swarm in 3D [26], most keep their
model in 2D. While swarming is usually robust against dimensionality change, the coding for
such behavior from 2D to 3D has been shown to require a non-trivial mapping, in the sense
that the dependence on parameters can vary case by case [32]. Indeed, the addition of a third
degree of freedom may enable agents to produce significantly distinct and more complex
behaviors.

Signaling agents in a resource finding task

This paper studies the emergence of swarming in a population of agents using a basic signaling
system, while performing a simple resource gathering task.

Simulated agents move around in a three dimensional space, looking for a vital but invisible
food resource randomly distributed in the environment. The agents are emitting signals that
can be perceived by other individuals’ sensors within a certain radius. Both agent’s motion and
signaling are controlled by an artificial neural network embedded in each agent, evolved over
time by an asynchronous genetic algorithm. Agents that consume enough food are enabled to
reproduce, whereas those whose energy drops to zero are removed from the simulation.

Each experiment is performed in two steps: training the agents in an environment with
resource locations providing fitness, then testing in an environment without fitness.

During the training, we observe that the agents progressively come to coordinate into clus-
tered formations. That behavior is then preserved in the second step. Such patterns do not
appear in control experiments having the simulation start directly from the second phase, with
the absence of resource locations. This means that the presence of the resource is needed to
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make the clustered swarming behavior appear. If at any point the signaling is switched off, the
agents immediately break the swarming formation. A swarming behavior is only observed
once the communication is turned back on. Furthermore, the simulations with signaling lead
to agents gathering very closely around food patches, whereas control simulations with silenced
agents end up with all individuals wandering around erratically.

The main contribution of this work is to show that collective motion can originate, without
explicit central coordination, from the combination of a generic communication system and a
simple resource gathering task. As a secondary contribution, our model also demonstrates how
swarming behavior, in the context of an asynchronous evolutionary simulation, can lead to a
neutral evolutionary space, where no more selection is applied on the gene pool.

A specific genetic algorithm with an asynchronous reproduction scheme is developed and
used to evolve the agents’ neural controllers. In addition, the search for resource is shown to
improve from the agents clustering, eventually leading to the agents gathering closely around
goal areas. An in-depth analysis shows increasing information transfer between agents
throughout the learning phase, and the development of leader/follower relations that eventu-
ally push the agents to organize into clustered formations.

Methods
Agents in a 3D world

We simulate a group of agents moving around in a continuous, toroidal arena of

600.0 x 600.0 x 600.0 (in arbitrary units). Each agent is characterized by the internal neural
network (i.e. neural states x; and the connections among them w;;), 6 inputs I; (i=1,2, ..., 6)
and 3 outputs O; (i = 1, 2, 3) computed from the inputs through the neural network.

The agents have energy which is consumed by their moving around. If at any point an
agent’s energy drops to zero, the agent is dead and is immediately removed from the
environment.

The agent’s position is determined by three floating point coordinates between 0.0 and
600.0. Each agent is positioned randomly at the start of the simulation, and then moves at a
fixed speed of 1.0 arbitrary unit per iteration.

The navigation schema of each agent consists of 3 steps.

1. The agent’s velocity ¥;(¢) is updated by the following equation;
T(6) = (e = 1)+ ¢ - tan(0) - 7+, - tan() - 7(t — 1) @)
from the two Euler angles (y for the agent’s pitch (i.e. elevation) and 0 for the agent’s yaw

(i.e. heading)) at the previous time step. Fig 1 illustrates the Euler angles, as they are used in
our model.

2. The angles are updated as follows:

¢=2ctan’1§zﬂ:2csin’1# (3)

Gy, 2)l
while the norm of the velocity || ¥; || is kept constant (like in [6]).

3. The position of agent i X, is then updated according to its current velocity with, instead of
Eq1:

ri(t) = 7i(t = 1) +v(t) (4)
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Fig 1. lllustration of Euler angles. y corresponds to the agent’s pitch (i.e. elevation) and @ is the agent’s
yaw (i.e. heading). The agent’s roll ¢ is not used in this paper.

doi:10.1371/journal.pone.0152756.g001

We iterate the three steps in order to determine the next positions and velocities of each
agent. In order to compute the second step above, we need to calculate the outputs of neural
networks.

Agents controlled by neural networks

A neural network consists of 6 sensors, a fully connected 10-neurons hidden layer and 3 output
neurons that encode two motor outputs and one which produces the communication signal.
Each sensor and output state takes continuous values between 0 and 1, but the output states are
converted into two Euler angles (see in the previous section) and one communication signal.

Each activation state y; of a neuron i takes a value in the interval between 0 and 1 and is
updated according to:

Vi = U(iwjzyj) (5)

where wj; the weight from neuron j to neuron i, and ¢ is the sigmoid function defined as:

_ 1
1l et

a(x) (6)
with S the slope parameter.

The connections between neurons are defined according to the architecture shown in Fig 2.
Each connection’s weight w;; in the neural network takes continuous values between 0 and 1.
The connection weights are put into a gene string which constitutes the agent’s genotype, and
is then evolved using a specific genetic algorithm described below.

Communication among agents

Every agent is capable of sending signals with intensities (signals are encoded as floating point
values ranging from 0.0 to 1.0). One of three outputs, O;, is assigned as a signal.
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Fig 2. Architecture of the agent’s controller, a recursive neural network composed of 6 input neurons (/4 to /¢), 10 hidden neurons (H, to H,(), 10
context neurons (C, to C4o) and 3 output neurons (O, to O3). The input neurons receive signal values from neighboring agents, with each neuron
corresponding to signals received from one of the 6 sectors in space. The output neurons O4 and O, control the agent’s motion, and O3 controls the signal it
emits. The context neurons have connections from and to the hidden layer, thus creating a feedback allowing for a state maintenance effect.

doi:10.1371/journal.pone.0152756.9002

Six input sensors (I; (i=1,2, ..., 6)) of each agent are to detect signals produced by other
agents. The sensors are put on the front, rear, left, right, top and bottom of the agent’s spherical
body and collect inputs up to a distance of 100 units from 6 directions, respectively.

The distance to the source proportionally affects the intensity of a received signal, and sig-
nals from agents above a 100-distance are ignored. The sensor whose direction is the closest to
the signaling source receives one float value, equal to the sum of every signal emitted within
range, divided by the distance, and normalized between 0 and 1.

Genetic algorithm and an asynchronous reproduction scheme

Genetic algorithms [33-35] simulate the descent with modification of a population of chromo-
somes, selected generation after generation by a defined fitness function.

Our model differs from the usual genetic algorithm paradigm, in that it designs variation
and selection in an asynchronous way, similarly to steady state genetic algorithms in [36, 37].
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The reproduction takes place continuously throughout the simulation, creating overlapping
generations of agents. This allows for a more natural, continuous model, as no global clock is
defined that could bias the results.

Practically we iterate the following evolution dynamics in this order:

1. Every new agent is born with an energy equal to 2.0.

2. Each agent can lose a variable amount of energy depending on the behavior during a given
period. More precisely, agents spend a fixed amount of energy for movement C,,,,, (0.01 per
iteration) and a variable amount of energy Ci;, for signaling costs (0.001 - I;, per iteration
where I;, is the signal intensity).

3. Each agent can gain at time ¢ from an energy source by R;(t) = 7 Where 7 is the reward

value and d; is the agent’s distance to the center of the energy source. The reward falls off
inversely proportionally to d.

4. A total sum of energy F; is computed, which is adjusted such that the population size
remains between 150 and 250 agents. This adjustement is given by introducing the cost fac-
tor ¢ as follows: Fi(t) = Ri—c - (Cypoi(t)—Ciig(t)).

5. Whenever an agent accumulates 10.0 in its energy value, a replica of itself with a 5% muta-
tion in the genotype is created and added to a random position in the arena (the choice for
random initial positions is to avoid biasing the proximity of agents, so that reproduction
does not become a way for agents to create local clusters). Each mutation changes the value
of an allele by an offset value picked uniformly at random between —0.05 and 0.05. The
agent’s energy is decreased by 8.0 and the new replica’s energy is set to 2.0.

6. Every 5000 iterations, the energy source site is randomly reassigned.

There are a few remarks in running this evolution schema. First, a local reproduction
scheme (i.e. giving birth to offspring close to their parents) leads rapidly to a burst in popula-
tion size (along with an evolutionary radiation of the genotypes), as the agents that are close to
the resource create many offspring that will be very fit too, thus able to replicate very fast as
well. This is why we choose to introduce newborn offspring randomly in the environment. On
a side note, population bursts occur solely when the neighborhood radius is small (under 10),
while values over 100 do not lead to population bursts.

Second, for the genetic algorithm to be effective, the number of agents must be maintained
above a certain level. Also, the computation power limits the population size.

Third, the energy value allowed to the agents is therefore adjusted in order to maintain an
ideal number as close as possible to 200 (and always comprised between 50 and 1000, passed
which there is respectively no removal or reproduction of agents allowed) agents alive through-
out the simulation. The way it is done in practice is by adjusting the energy cost of every agent
by a multiplying factor 1.0001 if the population is higher than 250 individuals and a divide it
by 1.01 if the population is lower than 150.

Finally, the agents above a certain age (5000 time steps) are removed from the simulation,
to keep the evolution moving at an adequate pace.

Experimental setup

Additional to the above evolution schema, we executed the simulation in two steps: training
and testing: In the training step, the resource locations are randomly distributed over the envi-
ronment space.
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Table 1. Summary of the simulation parameters.

Parameter Value
Initial/average number of agents 200
Maximum number of agents 1000
Minimum number of agents 100
Agent maximum age (iterations) 5000
Maximum agent energy 100
Maximum energy absorption (per iteration) 1
Maximum neighborhood radius 100
Map dimensions (side of the cube) 600
Reproduction radius 10
Initial energy (newborn agent) 2
Energy to replicate (threshold) 10
Cost of replication (parent agent) 8
Base survival cost (per iteration) 0.01
Signaling cost (per intensity signal and iteration) 0.001
Range of signal intensity [0; 1]
Range of neural network (NN) weights [-1; 1]
Ratio of genes per NN weight 1
Number of weights per genotype 290
Gene mutation rate 0.05
Gene mutation maximum offset (uniform) 0.05

Presented in this table are the values of the key parameters used in the simulations.

doi:10.1371/journal.pone.0152756.1001

In the testing step, the fitness function is ignored, and the resource is simply distributed
equally among all the agents, meaning that they all receive an equal share of resource sufficient
to keep them alive. As a consequence, the agents do not die off, and that second step conserves
the same population of individuals, in order to test their behavior. From this point, whenever
not mentioned otherwise, the analyses are referring to the first step, during which the swarm-
ing behavior comes about progressively. The purpose of the second step of the experiment is
uniquely aimed at checking the behavior of the resulting population of agents without
resources, that is to say, without reproduction, as the cost in energy is controlled to maintain
the population in a reasonable interval.

The parameter values used in the simulations are detailed in Table 1.

Results
Emergence of swarming

Agents are observed coordinating together in clustered groups. As shown in Fig 3 (top) the
simulation goes through three distinct phases. In the first one, agents wander in an apparently
random way across the space. During the second phase, the agents progressively cluster into a
rapidly changing shape, reminiscent of animal flocks (as mentioned in the introduction,
swarming can take multiple forms depending on the situation and/or the species, and is remi-
niscent of the swarming of mosquitoes or midges in this case). In the third phase, towards the
end of the simulation, the flocks get closer and closer to the goal, forming a compact ball
around it. Although results with one goal are presented in the paper, same behaviors were
observed in the case of two or more resource spots.
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Fig 3. Visualization of the three successive phases in the training procedure (from leftto right: t =0,t =2 - 10°, t =2 - 10”) in a typical run. The
simulation is with 200 initial agents and a single resource spot. At the start of the simulation the agents have a random motion (a), then progressively come to
coordinate in a dynamic flock (b), and eventually cluster more and more closely to the goal towards the end of the simulation (c). The agents’ colors represent
the signal they are producing, ranging from 0 (blue) to 1 (red). The goal location is represented as a green sphere on the visualization.

doi:10.1371/journal.pone.0152756.9003

Fig 4 shows more in detail the swarming behavior taking place in the second phase. The
agents coordinate in a dynamic, quickly changing shape, continuously extending and com-
pressing, while each individual is executing fast paced rotations on itself. Note that this fast
rotation seems to be needed to evolve swarming, as all trials with slower rotation settings never
achieved this kind of dynamics. A fast rotation allows indeed each agent to react faster to the
environment, as each turn making one sensor face a particular direction allows a reaction to
the signals coming from that direction. The faster the rotation, the more the information gath-
ered by the agent about its surroundings is balanced for every direction. The agents are loosely
coupled, and one regularly notices some agents reaching the border of a swarm cluster, leaving
the group, and ending up coming back in the heart of the swarm.

In spite of the agents needing to pay a cost for signaling (cf. description of the model above),
we observe the signal to remain mostly between 0.2 and 0.5 during the whole experiment (in
the case with signaling activated).

Neighborhood

We choose to measure swarming behavior in agents by looking at the average number of neigh-
bors within a radius of 100 distance around each agent. Fig 5 shows the evolution of the average
number of neighbors, over 10 different runs, respectively with signaling turned on and off. A
much higher value is reached around time step 10° in the signaling case, while the value
remains for the silent control. The swarming emerges only with the signaling switched on, and
as soon as the signaling is silenced, the agents rapidly stop their swarming behavior and start
wandering randomly in space.

We also want to measure the influence of each agent on its neighborhood, and vice versa.
To do so, we use a measure of information transfer, to detect asymmetry in the interaction of
subsystems [38]. The measure is to be applied on the time series of recorded states for different
agents, and is based upon Shannon entropy. In the following, we first introduce the measure,
then explain how we use it on our simulations.
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Fig 4. Visualization of the swarming behavior occurring in thesecond phase of the simulation. The figure represents consecutive shots each 10
iterations apart in the simulation. The observed behavior shows agents flocking in dynamic clusters, rapidly changing shape.

doi:10.1371/journal.pone.0152756.g004

Transfer entropy measure

Shannon entropy H represents the uncertainty of a variable [39]. For a probability p(x), where
x is the state of each agent (in our case we choose the instantaneous velocity), it is defined by:

~N

H(X) = =32 p(x)log p(x) (7)

The mutual information I between two variables X and Y can be expressed as:

I(X,Y) = H(Y) — H(Y|X)

—
oo
=~
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Average number of neighbors (10 runs) with signalling ON vs OFF
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Fig 5. Comparison of the average number of neighbors (average over 10 runs, with 10° iterations) in the case signaling is turned on versus off.

doi:10.1371/journal.pone.0152756.9005

where H(Y) is the uncertainty of Y and H(Y|X) is the uncertainty of Y knowing X. The direc-
tion of causality is difficult to detect with mutual information, because of the symmetry: M(X,
Y) = MI(Y, X) [40].

The transfer entropy from a time series X to another time series Y is a measure of the
amount of directed transfer of information from X to Y. It is formally defined as the amount of
uncertainty reduced in future values of Y by knowing a time window of h past values of X. This
is written as follows:

TXHY = H(Yt | Yt—1+d:t—h) - H(Yt | Yt—1+d:t—h7Xt—1+d:t—h) (9)

where X, 1., and Y, ;. 5, are the past histories of length h for respectively X and Y, i.e. the h
previous states counted backwards from the state at time -1, and d is the time delay.

Information flows in simulations

In our case, as the processes are the agent’s velocities, and thus they take values in R?, we based
our calculations on generalizations to multivariate and continuous variables as proposed in
[40-43].

To study the impact of each agent on its neighborhood, the inward average transfer entropy
on agent’s velocities is computed between each neighbor within a distance of 100.0 and the

T cighborhood—seif = Z Z T . (10)

icagents d(j,i)<r =

agent itself:

We will refer to this measure as inward neighborhood transfer entropy (NTE). This can be
considered a measure of how much the agents are “following” their neighborhood at a given
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Average neighborhood transfer entropy

Average neigborhood transfer entropy vs simulation time for signalling on (red) and off (blue)
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Fig 6. Plot of the average inward neighborhood transfer entropy for signaling switched on (red curve) and off (blue curve). The inward neighborhood
transfer entropy captures how much agents are “following” individuals located in their neighborhood at a given time step. The values rapidly take off on the
regular simulation (with signaling switched on, see red curve), whereas they remain low for the silent control (with signaling off, see blue curve).

doi:10.1371/journal.pone.0152756.9006

time step. The values rapidly take off on the regular simulation (with signaling switched on),
while they remain low for the silent control, as we can see for example in Fig 6.

Similarly, we can calculate the outward neighborhood transfer entropy (i.e. the average transfer
entropy from an agent to its neighbors). We may look at the evolution of this value through the
simulation, in an attempt to capture the apparition of local leaders in the swarm clusters. Even
though the notion of leadership is hard to define, the study of the flow of information is essential
in the study of swarms. The single individuals’ outward NTE shows a succession of bursts coming
every time from different agents, as illustrated in Fig 7. This frequent switching of the origin of
information flow can be interpreted as a continual change of leadership in the swarm. The agents
tend to follow a small number of agents, but this subset of leaders is not fixed over time.

On the upper graph in Fig 8, between iteration 10° and 2 x 10°, we see the average distance
to the goal drop to values oscillating between roughly 50 and 300, that is the best agents reach
50 units away from the goal, while other agents remain about 300 units away. On the control
experiment graph (Fig 8, bottom), we observe that the distance to the goal remains around 400.

Swarming, allowed by the signaling behavior, allows agents to stick close to each other. That
ability allows for a winning strategy in the case when some agents already are successful at
remaining close to a resource area. Swarming may also help agents find goals in the fact that
they constitute an efficient searching pattern. Whilst an agent alone is subject to basic dynamics
making it spatially drift away, a bunch of agents is more able to stick to a goal area once it finds

PLOS ONE | DOI:10.1371/journal.pone.0152756 April 27,2016 12/26
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it, since natural selection will increase the density of surviving agents around those areas. In the
control runs without signaling, it is observed that the agents, unable to form swarms, do not
manage to gather around the goal in the same way as when the signaling is active.

Controller response

Once the training step is over, the neural networks of all agents are tested, and swarming agents
are compared against non-swarming ones. In particular, we plotted on Fig 9 for a range of
input values for the front sensor, the resulting motor output o, (controlling the rotation of the
velocity vector about the y axis) and the average activation of neurons in the context layer. In
practice, this is equivalent to plotting the rotation rate against local agent density and against
“memory activation”. We observed that characteristic shapes for the curve obtained with
swarming agents presented a similarity (see Fig 9, top), and differed from the patterns of non-
swarming agents (see Fig 9, bottom) which were also more diverse.

In swarming individuals’ neural networks, patterns were observed leading to higher motor
output responses in the case of higher signal inputs. This is characteristic of almost every
swarming individual, whereas non-swarming agents present a wide range of response func-
tions. A higher motor response allows the agent to slow down its course across the map by exe-
cuting quick rotations around itself, therefore keeping its position nearly unchanged. If this
behavior is adopted in the cases in which the signal is high, that is in the presence of signaling
agents, the agent is able to remain close to them. Steeper slopes in the response curves in Fig 9
may consequently lead to more compact swarming patterns. Those swarming patterns are
observed after longer simulation times.
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Fig 8. Average distance of agents to the goal with signaling (top) and a control run with signaling switched off (bottom). The average distance to the
goal decreases between time step 10° and time step 2 x 10°, the agents eventually getting as close as 50 units away from the goal on average. In the same
conditions, the silenced control experiment results in agents constantly remaining around 400 units away from the goal in average.

doi:10.1371/journal.pone.0152756.g008
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Fig 9. Plots of evolved agents’ motor responses to a range of value in input and context neurons. The three axes represent signal input average
values (right horizontal axis), context unit average level (left horizontal axis), and average motor responses (vertical axis). The top two graphs correspond to
the neural controllers of swarming agents, and the bottom ones correspond to non-swarming ones’.

doi:10.1371/journal.pone.0152756.9009

This dual pattern of motion is reminiscent of species such as Chlamydomonas reinhardtii
[44]. This single-cell green alga moves by beating its two flagella either synchronously or asyn-
chronously, leading respectively to spiraling along a rectilinear trajectory or rotating around a
fixed axis.

Signaling
On the one hand signaling having a cost in energy, one expects it to be selected against in the

long run since it lowers the survival chances of the individual. However, if the signaling behav-
ior is beneficial to the agents, it may be selected for. But agents that do not signal may profit
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Fig 10. Invasion of freeriders resulting from the introduction of 5 silent individuals in the population. About 200k iterations after their introduction, the
5 freeriders have replicated and taken over the whole population.

doi:10.1371/journal.pone.0152756.9010

from the other agents’ signals and still swarm together. A value close to zero for the signal saves
them a proportional cost of energy in signaling, hypothetically allowing those freeriders to
spend less energy and eventually take over the living population.

In order to study the agent’s choice of signaling over remaining silent, we examine the effect
of artificially introducing silent agents in the population. To that purpose, during a run at the
end of its training step, 5 agents are picked at random in the population, and their genotype is
modified such that the value of the signal they produce becomes zero. Indeed, the values in
each agent’s genotype encodes directly the weights of its artificial neural network. In order for
the rest of the controller response to be identical, the only weights being changed are the ones
of the connections to the signal output (O; on the diagram in Fig 2).

As aresult, the modified (silent) agents take over the population, slowly replacing the signal-
ing agents. As the signaling agents progressively disappear from the population (cf. Fig 10), so
does the clustering behavior. About 200k iterations after the introduction of the freeriders, the
whole population has been replaced by freeriders and the swarming behavior has stopped. This
confirms silent freeriding as an advantageous behavior when a part of the population is already

swarming, however leading to the advantageous swarming trait being eradicated from the pop-
ulation after a certain time. If we then let the simulation run, we observe that the signaling
behavior will end up evolving again, after a variable time depending on the seed. Although it is
not in the scope of this paper, further study could focus on how certain areas of the genetic
space will influence the probability to evolve it again in a given simulation time.
If there is an evolutionary advantage to swarming, and if that behavior relies on signaling,
the absence of signaling directly reduces the swarm’s fitness. This is not the case however if the
change in signaling intensity occurs progressively, slowly leading to a lower, cost-efficient

16/26
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Fig 11. Average signal intensity over the population versus evolutionary time (5 runs).

doi:10.1371/journal.pone.0152756.g011

signaling, while swarming is still maintained. We observe this effect of gradual decrease in aver-
age signal at Fig 11.

The reason why in the original simulation, the whole population is not taken over by freeri-
ders is that smaller changes to the genotype, smoothly making the signaling lower, is not going
to invade the whole population in the same way. Indeed, in that case, the population is replaced
by individuals signaling gradually less. In our evolutionary scheme, the genes controlling the
signal intensity do not drop quickly enough to make the signal intensity drop to zero. Instead,
a swarm will have its signal intensity drop down to a point where it is still fit enough to be
selected for, against other groups, which illustrates a limited case of group selection. A detailed
analysis of these dynamics is however not in the scope of this paper.

Genotypic diversity

The decisions of each agent are defined by the parameters describing its neural controller,
which are encoded directly in each agent’s genotype. That genotype is evolved via random
mutation and selection in the setup environment. In order to study the variety of the genotypes
through the simulation, the average Shannon entropy [39] is calculated over the whole popula-
tion using:

H= 7Zpi log p; (11)
i1

where p; is the frequency of genotype i. The frequency is the proportion of a particular
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Fig 12. Genotypic diversity measured by Shannon’s information entropy. The information entropy measures the variety in the measure progressively
decreases during the simulation, until it reaches a minimal value of 50 hartleys (information unit corresponding to a base 10 logarithm) around the millionth
iteration, then restarts to increase slowly.

doi:10.1371/journal.pone.0152756.9012

combination of genes among all combinations being considered. The value of H ranges from 0
if all the genotypes are similar, to log n for evenly distributed genotypes, i.e.V i p, = L It should
be noted that as every allele (i.e. value in the genotype vector) takes a floating point value, we
discretize those in 5 classes per value to allow for a measure of frequencies. H is used as a mea-
sure of genotypic variety and plotted against simulation time (Fig 12). The measure progres-
sively decreases during the simulation, until it reaches a minimal value of 50 hartleys
(information unit corresponding to a base 10 logarithm) around the millionth iteration, before
restarting to increase, with a moderate slope. The fast drop in diversity is explained by a strong
selection for swarming individuals in the first stage of the simulation. Once the advantageous
behavior is reached, a genetic drift can be expected, resulting in genetic drift and reduced selec-
tion, as will be discussed further below.

Phylogeny
The heterogeneity of the population is visualized on the phylogenetic tree at Fig 13. At the center
of the graph is the root of the tree, which corresponds to time zero of the simulation, from which
start the 200 initial branches, i.e. initial agents. As those branches progress outward, they create
ramifications that represent the descendance of each agent. The time step scale is preserved, and
the segment drawn below serves as a reference for 10 iterations. Every fork corresponds to a
newborn agent. The parent forks counterclockwise, and the newborn forks clockwise. Therefore,
every “fork burst” corresponds to a period of high fitness for the concerned agents.

In Fig 14, one can observe another phylogenetic tree, represented horizontally in order to
compare it to the average number of neighbors throughout the simulation. The neighborhood
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Fig 13. Phylogenetic tree of agents created during a run. The center corresponds to the start of the simulation. Each branch represents an agent, and
doi:10.1371/journal.pone.0152756.9013

becomes denser around iteration 400k, showing a higher portion of swarming agents. This
leads to a firstly strong selection of the agents able to swarm together over the other individuals,

heterogeneous population, as we can see on the upper plot, with numerous branches towards
the end of the simulation.

a selection that is soon relaxed due to the signaling pattern being largely spread, resulting in a
The phylogenetic tree shows some heterogeneity, and the average number of neighbors is a
measure of swarming in the population. The swarming takes off around iteration 400k, where
there seems to be a genetic drift, but the signaling helps agents form and maintain swarms.

To study further the relationship between heterogeneity and swarming, we classify the set of
all the generated genotypes with a principal component analysis or PCA [45]. In practice, we
operate an orthogonal transformation to convert the set of weights in every genotype into val-

ues of linearly uncorrelated variables called principal components, in such a way that the first

PLOS ONE | DOI:10.1371/journal.pone.0152756 April 27,2016
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Fig 14. Top plot: average number of neighbors during a single run. Bottom plot: agents phylogeny for the same run. The roots are on the left, and
each bifurcation represents a newborn agent. The two plots show the progression of the average swarming in the population, indicated by the average
number of neighbors through the simulation, compared with a horizontal representation of the phylogenetic tree. Around iteration 400k, when the
neighborhood becomes denser, the selection on agents’ ability to swarm together is apparently relaxed due to the signaling pattern being largely spread. This
leads to higher heterogeneity, as can be seen on the upper plot, with numerous genetic branches forming towards the end of the simulation.

doi:10.1371/journal.pone.0152756.9014

principal component PC1 has the highest possible variance, and the second component PC2
has the highest variance possible while remaining uncorrelated with PC1.

In Fig 15, we observe a large cluster on the left of the plot for PC1 € [-1; 0], and a series of
smaller clusters on the right for PC1 € [3; 5]. The genotypes in the early stages of the simula-
tion belong to the right clusters, but get to the left cluster later on, reaching a higher number of
neighbors.
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The classification shows a difference between early and late stages in terms of genotypic
encoding of behavior. The genotypes are first observed to reach the left side cluster on the
biplot, which differs in terms of the component PC1. It also corresponds to a more intensive
swarming, as shown by the individuals” average number of neighbors. The agents then remain
in that cluster of values for the rest of the simulation. The timing of that first change corre-
sponds to the first peak in number of neighbors, which is an index for the emergence of swarm-
ing. The agents’ genotypes then seem to evolve only slowly in terms of PC2, until they reach
the last and highest peak in number of neighbors. This very slow and erratic increase is corre-
lated with the slow drop in the radius of the clusters, due to steeper slopes of controller
responses (see Fig 9) on long runs.

Discussion

In this work we have shown that swarming behavior can emerge from a communication system
in a resource gathering task. We implemented a three-dimensional agent-based model with an
asynchronous evolution through mutation and selection. The results show that from decentral-
ized leader-follower interactions, a population of agents can evolve collective motion, in turn
improving its fitness by reaching invisible target areas. The trajectories are reminiscent of
swarms of cells such as Chlamydomonas, which alternate synchronous and asynchronous
swimming using their two flagella [44].

However, the intention in this paper is not to imitate perfectly animal swarms in nature, but
rather study how an approach from evolutionary robotics, with neural networks evolved via an
asynchronous genetic algorithm, could lead to the emergence of such collective behavior. The
obtained swarming genuinely corresponds to the conditions of the embodiment given to the
agents in our simulation, which models a species unable to directly perceive its fitness
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landscape. The absence of sensors to detect gradients of resources forces the agents to find dif-
ferent ways to optimize their survival, thus letting them evolve a swarming behavior. This
paper can as well be read through the lens of the evolutionary metaphor for a species perform-
ing an uninformed search for optimal ecological niches. In that case, the three-dimensional
space becomes just an abstract representation of the role and position of the species in its envi-
ronment, i.e. how it feeds, survives and reproduces.

Our results represent an improvement on models that use hard-coded rules to simulate
swarming. Here, the behavior is evolved with a simplistic model, based on each individual’s
computation, which truly only perceive and act on their direct neighborhood, as opposed to a
global process controlling all agents such as the boids introduced by [17]. The model also
improves on previous research in the sense that agents naturally switch leadership and follow-
ership by exchanging information over a very limited channel of communication. Indeed, it
does not rely on any explicit information from leaders like in [46, 20] and [21], nor does it even
impose any explicit leader-follower relationship beforehand, letting simply the leader-follower
dynamics emerge and self-organize. The swarming model presented in this paper offers a sim-
ple, general approach to the emergence of swarming behavior once approached via the boids
rules. Other studies such as [26] and [25] have approached swarming without an explicit fit-
ness. Although their simulation models a predator-prey ecology, the type of swarming they
obtain from simple pressures is globally similar to the one in this study. However, a crucial dif-
ference is that our model presents the advantage of a simpler self-organized system merely
based on resource finding and signaling/sensing. Our results also show the advantage of
swarming for resource finding (it is only through swarming, enabled by signaling behavior,
that agents are able to reach and remain around the goal areas), comparable to the advantages
of particle swarm optimizations [23], here emerging in a model with a simplistic set of condi-
tions. Contrary to previous work studying environmental gradients climbing [27], the motion
leading to swarming was here not a coded behavior but rather evolved through generations of
simulated agents.

In the simulations, the agents progressively evolve the ability to flock using communication
to perform a foraging task. We observe a dynamical swarming behavior, including coupling/
decoupling phases between agents, allowed by the only interaction at their disposal, that is sig-
naling. Eventually, agents come to react to their neighbors’ signals, which is the only informa-
tion they can use to improve their foraging. This can lead them to either head towards or move
away from each other. While moving away from each other has no special effect, moving
towards each other, on the contrary, leads to swarming. Flocking with each other may make
agents slow down their pace, which for some of them may keep them closer to a food resource.
This creates a beneficial feedback loop, since the fitness brought to the agents will allow them
to reproduce faster, and eventually spread the behavior within the whole population. In this
scenario, agents do not need extremely complex learning to swarm and eventually get more
easily to the resource, but rather rely on group dynamics emerging from their communication
system to increase inertia and remain close to goal areas.

The swarming constitutes an efficient dynamic search pattern, that improves the group’s
chances to find resource. Indeed, the formation of a cluster slows agents down, allowing them
to get more resource whenever they reach a favorable spot, which gives the agents more chance
to replicate. Also, as a cluster, the agents are less likely to be wiped off because of some individ-
uals drifting away from the resource. As long as the small mistakes are still corrected as new-
comers join the group, the swarm can be sustained. Importantly, such dynamic swarming
pattern is only observed in the transient phase, when the agents are still moving across the
map, i.e. before any group has stabilized its position around a fixed resource area, thus making
the swarms more and more compact.
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Lastly, we provide five ending remarks about the swarming dynamics uncovered in this paper:

The simulation allows for strong genetic heterogeneity due to the asynchronous reproduction

schema, as could be visualized in the phylogenetic tree. Such genetic, and thus behavioral
heterogeneity may suppress swarming but the evolved signaling helps the population to
form and keep swarming. The simulations do not exhibit strong selection pressures to
adopt specific behavior apart from the use of signaling. Without high homogeneity in the
population, the signaling alone allows for interaction dynamics sufficient to form swarms,
which proves in turn to be beneficial to get extra fitness, as mentioned above. The results
suggest that by coordinating in clusters, the agents enter an evolutionary neutral space [47],
where little selection is applied to their genotypes. The formation of swarms acts as a shield
on the selection process, as a consequence allowing for the genotypes to drift. This relaxa-
tion of selection can be compared to a niche construction, in which the system is ready to
adapt to further optimizations to the surrounding environment. This may be examined in
further research by the addition of a secondary task.

In the presented model, the population of genotypes progressively reaches the part of the

behavioral search space that corresponds to swarming, as it helps agents achieve a higher fit-
ness. The behavioral transition between non-swarming and swarming happens relatively
abruptly, and can be caused by either the individual behavior improving enough or the pop-
ulation dynamical state satisfying certain conditions, or a combination of both. The latter
one is highlighted by the variable amount of time necessary before swarms can reform after
the positions have been randomized, thus illustrating the concept of collective memory in
groups of self-propelled individuals. Indeed, although one agent’s behavior is dictated by its
genotype, the swarming also depends on the collective state of the neighborhood. Couzin

et al. [4] brought to attention that even for identical individual behaviors, the previous his-
tory of a group structure can change its dynamics. In the light of that fact, reaching the neu-
tral space relies on more than just the individual’s genetic heritage.

The swarming behavior that our model demonstrates in phase 2, before it starts overfitting in

phase 3, may be an example of emergence of criticality in living systems [48]. The coevolu-
tionary and coadaptive mechanisms by which populations of agents converge to be almost
critical, in the process of interacting together and forming a collective entity, is typically
demonstrated in phase 2, showing agents reaching this critical evolutionary solution in their
striving to cope in a complex environment.

The leadership in the simulated swarms is not fixed, but temporally changing, as shown by our

measures of the transfer entropy among agents. This dynamic alternation of leaders may
change depending on the swarm approaching or getting away from food sites. The initiation
of leadership is an interesting open question for simulating swarming behaviors, which
should be examined in further work.

The phenomenon of freeriding, observed when artificially introducing silent individuals, is

comparable to a tragedy of the commons (ToC) or an evolutionary suicide, in which an
evolved selfish behavior can harm the whole population’s survival [49, 50]. This effect, here
provoked artificially, is however unlikely to happen in our setup, as the decrease in pro-
duced signal intensity would progressively result in an inefficient performance, with a
smooth decrease of fitness over the search space. The ToC has better chances to arise in a
setup with a larger map, in which parts of the population can be isolated for a longer time,
leading to different populations evolving separately, until they meet again and confront
their behaviors.
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