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There is growing evidence that paternal environmental information alters small noncoding RNAs (sncRNAs) in sperm and in
turn can induce alterations of metabolic and behavioral phenotypes of the next generation. However, the potential mediators
of the effects remain to be elucidated. A great diversity of environmental insults and stresses can convergently induce the
elevation of reactive oxygen species (ROS) in sperm; nonetheless, it remains unclear whether ROS mediates the biogenesis of
sncRNAs in sperm and participates in the reprogramming of offspring phenotypes. Here, we show that ROS could induce the
alteration of sncRNA profiles in sperm, especially for transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived
small RNAs (rsRNAs). Zygotic injection of 29-34 nt RNA fractions (predominantly tsRNAs and rsRNAs) from oxidative stress
(OS) sperm could induce depressive-like and anxiety-like behaviors in male offspring. Moreover, zygotic injection with
synthetic RNAs partially resembled OS sperm-induced depressive-like and anxiety-like behaviors in offspring. Male offspring
maintained on a chow diet was found to develop impaired glucose tolerance and hyperactive hepatic gluconeogenesis,
accompanied by the upregulation of hepatic gluconeogenic and lipolytic genes. Together, our results have shown that ROS-
induced alteration of sncRNA profiles in sperm contributes to the alterations of behavioral and metabolic phenotypes of the
offspring.

1. Introduction

Environmental conditions in which one generation experi-
enced can manifest in the phenotypes of future generations,
and the understanding of this mechanism has tremendous
implications in not only basic biology, but also public health
[1–9]. Interestingly, most of the paternal environmental
stress, including mental stress, unhealthy diet, and toxin
exposure can convergently induce the alteration of metabolic
and behavioral phenotypes of the next generation [10–14].
This leads to the speculation whether a certain factor in
sperm is mediated by these environmental stimuli. In fact, a
wide range of stressful environmental stimuli including

unhealthy diets (e.g., low protein and high fat), cigarette
smoking, alcohol intake, heat stress, and toxicants (e.g.,
endocrine disruptors) increased reactive oxygen species
(ROS) levels in sperm [15–19]. Physiological production of
ROS in sperm can regulate essential functions such as capac-
itation, acrosome reaction, motility, hyperactivation, and
sperm-oocyte fusion [20]. Meanwhile, ROS-induced sperm
oxidative stress (OS) is known to induce male infertility
[20–23]. Recently, Lane et al. have found that the elevation
of sperm ROS concentration induces metabolic syndrome
and obesity in the offspring [24]. It implies that ROS may
serve as one of the mechanisms by which paternal informa-
tion induced programming of phenotypes in offspring.
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However, a clear mechanism of this intergenerational effect
remains to be elucidated.

Recently, sperm-borne small noncoding RNAs (sncRNAs)
are being shown to transfer paternal epigenetic traits transge-
nerationally other than DNA [5, 6, 12–14, 25–31]. We and
others have reported that 30-40 nucleotide (nt) RNA fractions
in sperm, such as transfer RNA-derived small RNAs (tsRNAs)
and ribosomal RNA-derived small RNAs (rsRNAs), as well as
their modifications, could be rapidly altered by environmental
inputs such as unhealthy diets and toxicants, which then
contribute to the intergenerational inheritance of metabolic
disorders [5, 6, 25, 29, 32, 33]. Also, sperm sncRNAs play a
crucial role in the transgenerational modification of offspring
addictive-like and anxiety-like behaviors [25, 31, 33]. ROS is
known to be participate in epigenetic modifications including
DNA methylation, histone modifications, and noncoding
RNAs [34–37]. Recently, research has indicated that ROS
induces cleavage of tRNAs into tsRNAs and the cleavage of
rRNAs into rsRNAs by regulating their biogenesis pathways
[38]. Paternal low-protein diet can elevate the production of
ROS in male germ cells and induced expression changes in
the liver of offspring and the biogenesis of sncRNA in sperm
[39]. It can be of great significance to understand whether
ROS is involved in the mediation of sncRNA biogenesis in
mature sperm or participates in the reprogramming of pheno-
types of the offspring.

In order to explore whether ROS-induced alteration of
sncRNA profiles in sperm could contribute to reprogram-
ming of phenotypes in offspring, we conducted a study
which is aimed at investigating the effect of ROS on sncRNA
profiles in mature sperm. Moreover, through the of a zygotic
injection model, we provided direct evidence on the function
of these sncRNAs in the alterations of metabolic and behav-
ioral phenotypes of the offspring.

2. Materials and Methods

2.1. Sperm Treatment and Collection. Sperm which was
from the vas deferens and caudal epididymis of mice was
collected as described previously [24] and allowed to swim
out in 1mL of Whitten’s-HEPES-buffered medium at 37°C
for 15min [40]. Then, sperm from each mice were split
into either control Whitten’s-HEPES-buffered medium or
Whitten’s-HEPES-buffered medium supplemented with
1500μM H2O2 (this concentration increases ROS levels
in sperm but does not affect sperm viability or the ability
to bind and fertilize an oocyte [24]) for 3 h. After that,
sperm were assessed for intracellular ROS levels, motility,
and for RNA extraction.

2.2. Assessment of Mitochondrial ROS. To measure sperm
ROS levels, sperm were incubated with 2μM MitoSox Red
(MSR, Molecular Probes, Eugene) at 37°C for 10min. MSR
fluorescence was measured by flow cytometry (FACS
Verse™, BD Biosciences, USA). Meanwhile, the ROS fluores-
cence intensity in the sperm treated with hydrogen peroxide
was observed under a microscope.

2.3. Sperm RNA Extraction. Sperm sample collection and
RNA extraction were performed as previously described
[29]. The sperm were treated on ice with somatic cell lysis
buffer for 40min to eliminate somatic cell contamination.
After removal of suspension, the sperm pellets were washed
twice with PBS and pelleted at 600 g for 5min. The sperm
pellets were added with TRIzol reagent (Invitrogen, cat. no.
15596026) for RNA extraction.

2.4. Deep Sequencing and Small RNA Annotation. Small
RNA libraries were performed as previously described [29].
All RNA library preparation and quality examination were
performed by BGI. Small RNA sequences were annotated
using the pipeline SPORTS (small noncoding RNA annota-
tion Pipeline Optimized for and tsRNA rRNA [41]. Small
RNA tags were annotated with miRNA, tRNA, rRNA, and
other sncRNAs from miRBase19, Genbank, and Rfam data-
bases using blastn with standard parameters: -F F -e 0.01. To
analyze differential expression of small RNAs between
H2O2-treated and control sperm, tsRNA and rsRNA reads
were normalized to RPM (reads per million), respectively.
The P value and q value between samples were generated
by DEGseq package of R. Those small RNAs that had P
value smaller than 0.05 and had the fold change number
larger than 2 were labeled as significantly changed RNAs.

2.5. Northern Blots. Northern blot analysis was carried out as
previously described [29]. RNA was separated by 15% urea-
PAGE gel stained with SYBR Gold, immediately imaged,
and then transferred to positively charged nylon membranes
(GE Amersham, cat. no. MRPN303B). Membranes were
prehybridized with DIG Easy Hyb solution (Roche;
11603558001) at 42°C for least 1 h. The membranes were
immersed in probes which replenish with hybridization
solution at a final concentration of 16 nM overnight (12-
16 h) at 42°C. DIG-labeled oligonucleotide probes were syn-
thesized by GENEWIZ, Inc. as the sequence as CCACTA
GACCACCAGGGA for 5′-tsRNA-Glu.

2.6. Isolation of 29-34 nt RNAs from Sperm Total RNAs. Small
RNAs sized at 29-34 nt were excised from the gel as previ-
ously described [5, 6]. One microgram of total sperm RNAs
was separated by denatured 15% PAGE with 8M urea. The
gel was dyed with SYBR Green II stain stock solution (Invi-
trogen). The location of RNA fragments was determined by
the standard small RNA markers with using long-wave UV
light illumination of the gel.

2.7. Oocyte Collection, Zygote RNA Microinjection, and
Embryo Transfer. Embryo collection and transfer were per-
formed as previously described [29]. Intracytoplasmic sperm
injection (ICSI) with MII (first polar body present) oocytes
revealed two protoplasts and confirmed successful fertiliza-
tion. The 29-34 nt RNAs isolated from OS or control
sperm and chemically synthetic 5′ end phosphorylated
tsRNA sequences (synthetic RNAs) or synthetic scrambled
RNA (Table S1), with a concentration of 2 ng/μL, were
microinjected into the male pronuclei of fertilized eggs as
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previously described [5, 6]. The zygotes were then
transferred to surrogate mother of C57BL/6 background.

2.8. Behavioral Tests. The offspring were tested on open field
test at age of 7 weeks and light-dark box at age of 8 weeks for
anxiety-like behavior and the forced swimming test at age of
9 weeks for depressive-like behavior. The same mice were
used for all the experiments.

2.8.1. Forced Swimming Test. The forced swimming test was
conducted following the method described previously [42].
Briefly, mice were individually forced to swim in an open
container at 25 ± 1°C. Latency to first immobility and total
immobility time was manually scored during a 6min period.
The duration of immobility swimming time was recorded.

2.8.2. Open Field Test. Open field box was made of card-
board with a center zone in the middle of the box marked
with permanent marker and was used to analyze anxiety
and locomotor activity [43]. Mice were placed near the wall
of the arena and allowed to freely explore for 10min while
being recorded from a top mounted camera. Duration in
the center was expressed as a percentage of the test duration.

2.8.3. Light-Dark Box Test. The light-dark box test apparatus
comprised an open-topped arena, one-third painted black
and two-thirds white. The two compartments were sepa-
rated by a wooden partition which had a small opening cut
into its center at floor level. The time to exit from the dark
to the light compartment and the percent of total time spent
in the light compartment were measured. The natural pro-
pensity of mice to hide in the dark compartment is balanced
by the animal exploratory behavior.

2.9. Serum Corticosterone Analysis. Serum corticosterone
levels were quantified using an ELISA according to the man-
ufacturer’s instructions by Mouse Corticosterone ELISA Kit
(E-EL-0161c, Elabscience Biotechnology Co. Ltd, Wuhan,
China). The experimental procedures were as described in
the manufacturer’s instructions.

2.10. RT-PCR. Total RNA was extracted from hippocampus
or liver using TRIzol reagent was performed as previously
described [29]. One microgram of RNA was reverse tran-
scribed using the M-MuLV Reverse Transcriptase Reaction
system (NEB, cat. no. M0253L). Gene-specific primers were
used with SYBR green (Promega, cat. no. A6002) for detec-
tion on a LightCycler 480 system (Roche). The primer
sequences used were synthesized by BGI as shown Table S2.

2.11. Metabolic Testing. Mice were fasted overnight (16 h)
before glucose tolerance test (GTT) or pyruvate tolerance
test (PTT). The mice received intraperitoneal injection of
2 g glucose/kg body weight for GTT or 1.5 g pyruvate/kg
body weight for PTT experiment. Blood collected from the
tail was used to measure blood glucose levels at baseline
(0), 15, 30, 60, 90, and 120min after glucose injection by a
glucose meter (ACCU-CHEK Active Blood Glucose Meter,
Roche).

2.12. RNA-seq. Total RNA was extracted from liver of F1
male mice for RNA-seq as previously described [29]. The
libraries were sequenced on Illumina NovaSeq 6000
sequencer as paired-end 150 bp reads following Illumina’s
instructions. Quantification of gene expression was per-
formed using HTSeq v0.6.1 and gene annotations from
Ensembl release. Only the Pearson correlation coefficient of
interacted DEGs were greater than 0.997 are shown in this
figure. The larger the circle, the greater the number of genes
interacted with it.

2.13. Statistics. All data are presented as mean ± SEM and
were analyzed with GraphPad Prism 7. Two-way ANOVA
with uncorrected Fisher’s LSD was used for GTT and PTT,
and two-tailed unpaired Student’s t-test was used for behav-
ior test, AUC of GTT and PTT, levels of glucose and TG,
and qPCR data. For each variable, Kolmogorov-Smirnov
test was used to evaluate the normal distribution of values.
The differences were considered statistically significant when
P < 0:05.

3. Results

3.1. ROS-Induced Alterations of sncRNA Profiles in Sperm.
Sperm was collected and then incubated with 1500μM
H2O2 for 3 h, as described previously [24]. The H2O2
treatment-induced OS caused the intracellular ROS levels
in sperm to increase (Figure S1). To explore whether the
sperm sncRNA profiles are affected by OS, we performed
deep sequencing of sperm small RNAs. The results showed
that OS could not cause significant changes in the
proportion of tsRNAs and rsRNAs in sperm (Figure 1(a)).
Because the 29-34 nt sncRNAs are highly expressed in
mature mouse sperm [44], we further analyzed these RNAs
in more detail (fold change > 2 and P < 0:05). Among all
the 29-34 nt 5′-tsRNAs, the expression levels of 196 5′-
tsRNAs increased whereas those of 394 5′-tsRNAs
decreased in OS sperm (Figure 1(b), Figure S2, Table S3).
The abundance of 5′-tsRNA-Glu in sperm was analyzed by
Northern blot analysis (Figure 1(c)). Among all the 29-34
nt rsRNAs, the expression levels of 6 rsRNAs increased
whereas those of 70 rsRNAs decreased in OS sperm. These
data reveal that ROS could induce changes of sncRNA
profiles in sperm.

3.2. Injection of Sperm RNA Fragment Induces Depressive-
Like and Anxiety-Like Behaviors in Adult Male Offspring.
The 29-34 nt RNA fragments were collected from control
and OS sperm and injected into the male pronuclei of nor-
mal zygote following a previously established zygotic RNA
injection protocol (Figure 2(a)) [5, 6]. We found that the
RNA injection had no adverse effects on the embryo devel-
opment (Table S4). The body weight and body composition
of the resultant offspring from control (Con-F1) and oxida-
tive stress (OS-F1) sperm RNA fragment injection have
shown no significantly difference (Table S5 and Table S6).
The depressive-like and anxiety-like behaviors of the off-
spring were tested. In the forced swimming test, the immo-
bility time of OS-F1 male mice was longer compared with
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that of Con-F1 male mice (Figure 2(b), P = 0:0008; 155:3 ±
3:9 s vs. 129:0 ± 5:5 ), and there was no significant difference
in latency to immobility which suggests that it exhibited
depressive-like behavior in male mice (Figure 2(c)). In the
open field test, the time of OS-F1 male mice spent in the
center areas was significantly less than that of Con-F1

(Figure 2(d), P = 0:0201; 7:6 ± 0:6% vs. 10:1 ± 0:8%). In
the light-dark box test, the time spent in the light compart-
ment of OS-F1 mice was less than that of Con-F1
(Figure 2(e),P = 0:0087; 25:8 ± 2:3% vs. 37:0 ± 3:1%). How-
ever, there was no significant difference in total floating
time (Figure S3a) and immobility time (Figure S3b)
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Figure 1: Composition of sncRNAs in sperm with or without oxidative stress. (a) Subcellular fractionation of miRNAs, tsRNAs, rsRNAs,
and piRNAs in Con and OS sperm. (b) Heat map of differentially expressed 29-34 nt 5′-tsRNAs in sperm. (c) Northern blot analysis of
5′-tsRNA-Glu (shown by arrowheads) in sperm.
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Figure 2: Continued.

5Oxidative Medicine and Cellular Longevity



during forced swimming test in female mice. Also, there was
no significant difference in time spent in the center areas
(Figure S3c) during open field test and time spent in the
light (Figure S3d) during the light-dark box test in female
mice. Taken together, these results suggest that OS-F1 male
but not female mice exhibited anxiety-like behavior.

Corticosterone in plasma plays a key role in the
hypothalamic-pituitary-adrenal (HPA) axis could be a well
characterized marker of stress intensity [45], wherein OS-
F1 mice were more markedly elevated than those in Con-F1
male mice (Figure 2(f)). Moreover, the level of glucocorticoid
receptor (GR) mRNA in hippocampus in OS-F1 male mice
was lower than that in Con-F1 mice (Figure 2(g)).

3.3. Injection of Synthetic RNAs Induces Depressive-Like and
Anxiety-Like Behaviors in Adult Male Offspring. We next
synthesized the most highly expressed 5′-tsRNAs which are
abundant in the OS sperm and injected into the male pronu-
clei of normal zygote to investigate whether they could mimic
the function of endogenous sperm sncRNAs (Figure 3(a)). In
the forced swimming test, the immobility time of synthetic
RNAs-F1 male mice were longer compared with that of
scrambled RNA-F1 male mice (Figure 3(b), P = 0:0001;
253:1 ± 9:5 s vs. 147:7 ± 20:1 s). Also, the immobility time of
synthetic RNAs-F1 female mice were longer compared
with that of scrambled RNA-F1 female mice (Figure S4a,
P = 0:0265; 249:7 ± 12:0 s vs. 185:9 ± 17:8 s). The time of
latency to immobility of synthetic RNAs-F1 male mice
was less than that of scrambled RNA-F1 male mice
(Figure 3(c), P = 0:0043; 27:9 ± 7:6 s vs. 61:1 ± 4:9) but
not female mice (Figure S4b). In the open field test, the
time of synthetic RNAs-F1 male mice spent in the center
areas was significantly less than that of scrambled RNA-
F1 (Figure 3(d), P = 0:0029; 5:0 ± 0:1% vs. 9:1 ± 1:1%)
and female mice (Figure S4c, P = 0:0025; 31:7 ± 4:5% vs.

57:5 ± 4:6%). In the light-dark box test, the time spent in
the light compartment of synthetic RNAs-F1 male mice was
less than that of scrambled RNA-F1 mice (Figure 3(e), P =
0:0052; 6:1 ± 1:1% vs. 19:1 ± 4:6%) and also in female mice
(Figure S4d, P = 0:0052; 6:1 ± 1:1% vs. 19:1 ± 4:6%). Taken
together, these results show that zygotic injection of a pull of
synthetic tsRNAs can partly induce depressive-like and
anxiety-like behaviors in offspring.

3.4. Injection of Sperm RNA Fragments Alters Hepatic
Metabolic Phenotypes of Adult Male Offspring. OS-F1 male
mice maintained on a chow diet developed impaired glucose
tolerance. The blood glucose levels during GTT were signif-
icantly higher than those of Con-F1 mice at 14 weeks of age
(Figures 4(a) and 4(b)). Additionally, compared with Con-
F1 mice, OS-F1 male mice had elevated blood glucose levels
during fasting (Figure 4(c)) and had higher glucose levels
during PTT, an indication of hyperactive hepatic gluconeo-
genesis (Figures 4(d) and 4(e)). However, there was no sig-
nificant difference in blood glucose levels during GTT
(Figure S5a-b) and blood glucose levels during fasting
(Figure S5c). Moreover, the content of triglyceride in the
liver of OS-F1 mice was lower than that of Con-F1 mice
(Figure 4(f)). Overall, these results demonstrate that
hepatic gluconeogenesis of mice in the OS-F1 male mice
was elevated.

3.5. Injection of Sperm RNA Fragments Alters Hepatic Gene
Expression of Adult Male Offspring. To obtain an overall
view of the transcriptional response, RNA purified from
liver samples of OS-F1 and Con-F1 male mice at 17 weeks
of age was sequenced. A total of 129 genes (68 upregulated
genes and 61 downregulated genes) were found to be dif-
ferentially expressed (Figure 5(a)). Pathway analysis of
these differentially expressed genes showed that these genes
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Figure 2: Behavior, blood corticosterone, and hippocampal GR in male offspring generated from sperm 29-34 nt RNA injection. (a)
Illustration of zygotic injection of sperm 29-34 nt RNAs to generate F1 male offspring. (b) Forced swimming test. (c) Latency to first
immobility of forced swimming test. (d) Open field test. (e) Light-dark box test. (f) Blood concentration of corticosterone detected by
ELISA. In (b–f), n = 12 mice per group. (g) The relative expression level of GR mRNA in hippocampus detected by RT-PCR. n = 8 mice
per group. All data are plotted as means ± SEM. Each dot represents one mouse.
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were enriched in the metabolic pathways (fold change > 2
and P < 0:05) (Figure 5(b)). The expression level of gluco-
neogenic (PEPCK and G6Pase) (Figure 5(c)) and lipolytic
(ATGL) genes was higher in the liver of OS-F1 male mice
than that of the Con-F1 mice (Figure 5(d)). The protein-
protein interaction networks of DEGs in the partially top
20 enriched KEGG pathways related to metabolism
(Figure 5(e)). Ctrb1 emerged as a hub protein in the network,
linking with several metabolic pathway-related genes, such as
Cela2a, Cyp2c70, Cyp1a1, and Cyp2a5 (Figure 5(e)). Alto-
gether, male offspring maintained on a chow diet developed
impaired glucose tolerance and hyperactive hepatic gluco-
neogenesis, accompanied by the upregulation of hepatic
gluconeogenic and lipolytic genes.

4. Discussion

Increasing evidence has indicated that paternal environmen-
tal inputs can induce alterations of behavioral and metabolic
phenotypes of the next generation; however, little is known
about the mechanisms involved in this process. Here, we
demonstrated that ROS could induce the changes in sperm
sncRNA profiles. Zygotic injection of 29-34 nt RNA frag-
ments from OS sperm or a pull of synthetic tsRNAs could
induce depressive-like and anxiety-like behaviors and glu-
cose intolerance in male but not female offspring. It suggests
that ROS-induced change of sperm sncRNA profiles con-
tributes to the alterations of behavioral and metabolic phe-
notypes of the offspring (Figure 6).
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Figure 3: Behavior in male offspring generated from synthetic RNA injection. (a) Illustration of zygotic injection of synthetic tsRNAs to
generate F1 male offspring. (b) Forced swimming test. (c) Latency to first immobility of forced swimming test. (d) Open field test. (e)
Light-dark box test. n = 7 mice in scrambled RNA group and n = 10 mice in synthetic RNA group. All data are plotted as means ± SEM.
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Sperm sncRNA contributes to the intergenerational
transmission as a potential carrier [5, 25, 29, 31]. A large
amount of researches show that sncRNAs mediate the trans-
mission of paternal traits to offspring is based on long-term
exposure from testis to epididymis [5, 6, 25, 32, 33]. It has
been reported that tRNA cleavage was by several classes of
self-cleaving ribozymes including RNase A, tRNA splicing
endonuclease, RNase T2, and RNase L into tsRNAs [46].
There are several RNases expressed in male germ cell [47,
48] and mature sperm [49, 50] and is essential for mamma-
lian spermatogenesis and male fertility. Recently, research
has indicated that ROS can mediate the cleavage of tRNAs
into tsRNAs and the cleavage of rRNAs into rsRNAs by reg-
ulating their biogenesis pathways [38]. The exposed sites of
the tRNA structure could be “points of attack” in an ancient
cellular environment, being fragmented by either nonspe-
cific stress signals such as ROS, specific recognition by
enzymes, or ribozymes [46]. In the present study, ROS

induced changes in mature sperm sncRNA profiles. Also,
Dai et al. reported that the abundance of mRNAs and miR-
NAs was altered during cryopreservation by sperm exposure
to oxidative stress [51]. These results suggested that ROS
induced small RNA processing in mature sperm. Further
studies are required in order to better understand how
ROS mediate the cleavage of tRNA into tsRNAs and rRNA
cleavage into rsRNA in mature sperm.

Increasing evidence now suggests that sperm sncRNAs
can mediate intergenerational effects but the underlying pro-
cesses and mechanisms remain puzzling. It has been reported
that transfection of sncRNAs promoted lineage differentia-
tion in embryoid bodies and embryonic stem cells in mice
[52, 53]. The alteration in the early embryo might trigger a
chain reaction that continuously influences the metabolic
state in the offspring [11]. Gluconeogenesis is primarily mod-
ulated by PEPCK and G6Pase [54]. In the present study, we
found that liver tissue of OS-F1 mice showed a significant
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Figure 4: Metabolic parameters in male offspring generated from sperm 29-34 nt RNA injection. (a) Blood glucose during GTT in F1 males.
(b) The area under curve (AUC) statistics for GTT. ∗P < 0:05; ∗∗P < 0:01. (c) Blood glucose in fasting conditions. (d) Blood glucose during
PTT in F1 males. (e) The AUC statistics for PTT. ∗P < 0:05. (f) The content of TG in liver. n = 12 mice per group. All data are plotted as
means ± SEM. Each dot represents one mouse.
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increase in PEPCK and G6Pase. Interestingly, a recent study
found that 5′-tsRNA-Gly-GCC that increased in HFD mice
mature sperms can promote gluconeogenesis in liver by reg-
ulating Sirt6-FoxO1 pathway, which activates PEPCK and
G6Pase [55]. Thus, the phenotypic outcome of injecting 29-
34 nt RNA fragments from OS sperm may relate to the func-
tion of sncRNAs in cell fate regulation in the early embryo
and continuously influences the metabolic state in the off-

spring. Further work is needed to elucidate the function of
sperm sncRNAs in association with tsRNA-mediated inter-
generational effects.

It has been demonstrated that in vitro fertilization (IVF)
may affect embryo development, causing multiple adverse
effects on health during the postnatal life of the embryo,
contributing to the development of chronic adult-onset
diseases, such as type 2 diabetes, metabolic syndrome, and
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Figure 5: The hepatic gene expression in male offspring generated from sperm 29-34 nt RNA injection. (a) Expression levels of genes
affected by sperm 29-34 nt RNA injection visualized by heat map in liver samples of F1 male offspring. (b) The top ten significant
clusters of gene ontology (KEGG) terms enriched in liver samples of F1 male offspring determined by GSEA and clustered under parent
terms were related to synaptic signaling (n = 3, NES > j2j and FDR < 0:05). (c) The relative expression levels of gluconeogenic genes
PEPCK and G6Pase in the liver of F1 male mice. (d) The relative expression levels of lipolytic genes HSL, LPL, and ATGL in the liver of
F1 male mice. n = 8 mice per group. All data are plotted as means ± SEM, and each dot represents one mouse. (e) Protein-protein
interaction networks of DEGs in the partially top 20 enriched KEGG pathways related to metabolism.
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cardiovascular disease [56–58]. During IVF, the level of ROS
in sperm could arise from several exogenous factors such as
exposure to visible light, cryopreservation, O2 tension, and
temperature [21, 59]. In this study, one important observa-
tion was that sncRNA profiles in sperm could rapidly
response to the presence of ROS. Recently, several studies
have indicated that sperm tsRNA profiles may be used as a
potential biomarker for evaluating male fertility during IVF
[60, 61]. Our results indicated that OS-induced alteration
of sncRNAs in sperm might be involved in the fetal origins
of adult diseases. This information may be used as a guide-
line for sperm preservation, artificial insemination, and
IVF, as well as for precision medicine.

Taken together, our data showed a role on ROS in “sperm
RNA code” and phenotypes of offspring as follows: (i) ROS
could alter the sncRNA profiles in sperm; (ii) sncRNAs were
essential for ROS in sperm to induce the programing of
behavioral and metabolic phenotypes of the offspring. Fur-
ther exploration of these mechanisms is required in order
to gain deeper insights into the developmental programming
of health and disease of the offspring based on the paternal
health at the time of conception.
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