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Kampo (traditional Japanese herbal) medicines are taken orally due to which the gastric
mucosal immune system may act as one of the major targets for the expression of
pharmacological activity. The inner surface of the intestinal tract possesses a large area of
mucosal membranes, and the intestinal epithelial cells sit at the interface between a lumen and a
lymphocyte-rich lamina propria. The cross talk that occurs between these compartments serves
to maintain intestinal homeostasis, and the cytokine network plays an important role in the
cross talk. In this study, the effect of Hochuekkito (HET), one of Kampo medicines, on
cytokine secretion of intestinal epithelial cells was investigated. When murine normal colonic
epithelial cell-line MCE301 cells were stimulated with HET, the contents of granulocyte colony-
stimulating factor (G-CSF) in the conditioned medium were significantly increased in dose- and
time-dependent manners. The enhanced G-CSF gene transcription in MCE301 cells by the
stimulation of HET was observed by RT-PCR. The enhanced G-CSF secretion by HET was
also observed in C3H/HeJ mice-derived primary cultured colonic epithelial cells. When the
HET was fractionated, only the polysaccharide fraction (F-5) enhanced the G-CSF secretion of
MCE301 cells, and the activity of F-5 lost after the treatment of periodate that can degrade the
carbohydrate moiety. These results suggest that HET enhances secretion of G-CSF from
colonic epithelial cells and the polysaccharide is one of the active ingredients of HET. The
enhanced G-CSF secretion by HET may partly contribute to the clinically observed various
pharmacological activities of HET including immunomodulating activity.
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polysaccharide

Introduction

Hochuekkito (HET; Bu-Zhong-Yi-Qi-Tang in Chinese) is

one of the Kampo (traditional Japanese herbal) medicines

that consists of 10 component herbs, and well-known

Kampo formulas used as tonic. HET has been used for

the treatment and recovery of valetudinarian, who have

chronic diseases, tuberculosis, surgery with loss of appetite,

mild fever, night sweat, palpitation, fear, restlessness, weak

feeble voice, slurred speech and disturbance of vision. This

formula has been identified as an effective drug to improve

the function of digestive system and to strengthen defensive

system against various infections. It has been reported that

HET can promote certain biological activities including
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enhancement of natural killer cells and macrophage

activity (1,2). It has also been indicated that HET has an

inhibitory effect on influenza virus infection via enhance-

ment of host immune responses in virus-infected mice (3).

Recently, we have found that orally administered HET

enhanced mucosal immune response to the intranasally and

orally administered antigens (4,5).
The gut-associated lymphoreticular tissues exist on the

intestinal mucosal sites, and play an important role in
host defense including IgA response in the mucosal
immune system (6). The inner surface of the intestinal
tract possesses a large area of mucosal membranes, and
the intestinal epithelial cells sit at the interface between a
lumen and a lymphocyte-rich lamina propria. Intestinal
epithelial cells function not only as a physiological barrier
but also as effector/regulator cells of a host’s immune
responses to foreign substances, including various patho-
gens and food antigens (7–13).
The cytokine network plays an important role in the

inflammatory and immune responses (14–16). Because
Kampo medicines are taken orally, the gastric mucosal
immune system including intestinal epithelial cells may
act as one of the major targets for the expression of
pharmacological activity. However, the modulating activ-
ity of Kampo medicines on mucosal immune system has
not been fully understood. In this study, the effect of
HET on the cytokine secretions of intestinal epithelial
cells was investigated using murine colonic epithelial cell
line MCE301 cells in vitro.
MCE301 has been established by a primary culture of

gastric mucosal cells from transgenic mice harboring a
temperature-sensitive simian virus 40 large T-antigen gene
(17). The cells were not transformed, as judged by the
absence of anchorage-independent growth in soft agar
and lack of tumor formation in nude mice. Because
MCE301 cells have been shown to retain many of the
characteristics of normal colonic epithelial cells (17), the
studies using MCE301 cells provide useful information to
understand colonic epithelial cell function and cellular
response to various stimuli.
In the present study, it was found that HET enhanced

the granulocyte colony-stimulating factor (G-CSF) secre-
tion from intestinal epithelial cells. Present article deals
with the effect of HET on the secretion of G-CSF. To
our knowledge, this is a first report on the modulation of
cytokine secretion of intestinal epithelial cells by the
stimulation of Kampo medicines.

Materials and Methods

Materials

Establishment and characterization of murine normal
colonic epithelial cell-line MCE301 were reported pre-
viously (17). The MCE301 cells were cultured in

Dulbecco’s modified Eagle medium/Ham’s F-12 (1:1)
(DMEM/F-12) medium (Sigma, St Louis, MO, USA)
supplemented with 5% fetal bovine serum (FBS; Sigma),
10 mgml�1 insulin, 5.5 mgml�1 transferrin, 2 mgml�1 etha-
nolamine, 5 ngml�1 sodium selenite and 10 ngml�1 epi-
dermal growth factor at 37�C in a humidified atmosphere
of 5% CO2 in air. After reached confluent, the cells were
cultured at 39�C in DMEM/F-12 alone for 3 days, and then
subjected to experiment. All experiments using MCE301
cells were carried out at 39�C. Phorbol 12-myristate
13-acetate (PMA) was from Sigma. Calcium ionophore,
A23187 was from Calbiochem (La Jolla, CA, USA).

Extract of HET

Spray-dried extract preparations of HET (TJ-41, Lot No
920041001PO) was kindly supplied by Tsumura & Co.
(Tokyo, Japan). HET for 1-day dose was prepared as fol-
lows: a mixture of Astragali Radix (4 g, roots of Astragalus
membranaceus Bunge), Atractylodis lanceae Rhizoma (4 g,
rhizomes of Atractylodes lancea DC.), Ginseng Radix (4 g,
roots of Panax ginseng C.A. Meyer), Angelicae Radix
(3 g, roots of Angelica acutilobaKitagawa), Bupleuri Radix
(2 g, roots of Bupleurum falcatum L.), Zizyphi Fructus
(2 g, fruits of Zizyphus jujuba Miller var. inermis Rehder),
Aurantii Bobilis Pericarpium (2 g, pericarps of ripe fruits
of Citrus unshu Markovich), Glycyrrhizae Radix (1.5 g,
roots of Glycyrrhiza uralensis Fisch et DC.), Cimicifugae
Rhizoma (1 g, rhizomes of Cimicifuga simplex Worms
kjord) and Zingiberis Rhizoma (0.5 g, rhizomes of Zingiber
officinale Roscoe) was added to water and extracted at
100�C for 1 h. The extracted solution was filtered and
spray-dried to obtain dry extract powder (5 g). Chemical
profile of HET obtained by the three-dimensional HPLC
analysis is shown in Fig. 1.

Animals

Specific pathogen-free C3H/HeJ female mice (6–8 weeks
old) were obtained from SLC (Shizuoka, Japan). The
mice were maintained under a 24 h light and dark cycle
(12 h of light, 12 h of darkness) and controlled tempera-
ture (23� 1�C), and they had free access to standard
laboratory chow (Oriental Yeast Co., Tokyo, Japan) and
water. The procedure from the Prime Minister’s Office of
Japan (No 6 of March 27, 1980) for the care and use of
laboratory animals was followed. The experiments were
conducted in accordance with the Guidelines for Animal
Use and Experimentation of the Kitasato Institute
(Tokyo, Japan), and the approval number of the animal
experimentation was 2006-2-35-1 (Kitasato Institute).

Reverse Transcriptase-polymerase Chain Reaction

Total RNA was extracted from the MCE301 cells using
TRIzol� (Invitrogen, Carlsbad, CA, USA), and single
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stranded cDNA was generated from 5 mg of total cellular
RNA using a M-MLV reverse transcriptase (EC 2.7.7.49,
ReverTra Ace�, Toyobo, Osaka, Japan) according to the
instruction manuals. The resulting cDNA was amplified by
the polymerase chain reaction (PCR) technique using Taq
DNA polymerase (EC 2.7.7.7, Takara, Shiga, Japan) with
specific primers. Gene expression of glyceraldehyde-3-
phosphate dehydrogenase (EC 1.2.1.12, GAPDH) was
used as a control. The condition of PCR for G-CSF and
GAPDH were as follows: denature at 94�C for 30 s, anneal
for 30 s and extend at 72�C for 45 s. The annealing tem-
perature was 57�C. The numbers of cycle were 27 for G-CSF
and 16 for GAPDH, respectively. The primer sequences
were based on the sequences of the published cDNAs, and
were as follows: 50-gacggctcgccttgctctgcacca- 30 and 50-
acctggctgccactgtttctttagg-30 for G-CSF, and 50-gagtatgtcg
tggagtctactg-30 and 50-gatgcagggatgatgttctg-30 for GAPDH,
respectively. PCR products were electrophoresed on a 1.5%
agarose gel, and visualized with ethidium bromide.

Cytokine Protein Array

A murine cytokine protein array (RayBiotech Inc.,
Norcross, GA, USA) for simultaneous detection of

G-CSF, granulocyte-macrophage colony-stimulating
factor (GM-CSF), interleukin (IL)-2, IL-3, IL-4, IL-5,
IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17,
interferon (IFN)-g, monocyte chemoattractant protein
(MCP)-1, MCP-5, regulated upon activation normal T
cell expressed and secreted (RANTES), stem cell factor,
tumor necrosis factor (TNF)-a, soluble TNF-a receptor-1,
thrombopoietin, and vascular endothelial growth factor
was used to analyze the expression profile of MCE301
cells by following the manufacturer’s instructions. The
MCE301 culture supernatants were collected after 48 h of
the culture with or without stimulation with 100 mgml�1

of HET. Each array membrane was incubated with
blocking buffer at room temperature for 30min to block
nonspecific binding. One milliliter of the cell culture
supernatant was incubated with each membrane at room
temperature for 2 h. Then the membrane was incubated
with a solution containing mixed biotinylated detection
antibodies (anti-cytokine and anti-chemokine) for 1 h.
Horseradish peroxidase (EC 1.11.1.7)-conjugated strepta-
vidin was then added and incubated for 45min. The
membrane was washed, incubated with the ECL chemi-
luminescence detection agent (Amersham Bioscience,
Little Chalfont, United Kingdom) for 1min, and exposed

Figure 1. Chemical profile of HET analyzed by three-dimensional HPLC. Each peak of HET in the HPLC profile was identified by comparison of

the retention times and UV spectra of chemically defined standard compounds. HPLC condition was as follows: Column; Tosoh TSK GEL ODS-

80Ts (4.6� 250mm). Carrier A: 0.05M ammonium acetate (pH 3.6). Carrier B: Acetonitrile. Gradient: 10–100% carrier B linear in 60min. Flow

rate: 1.0mlmin�1. Injection volume: 30 ml. Detector: Shimadzu SPD-M10A VP.
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to Hyperfilm (Amersham Bioscience). The spot images
were scanned, and each spot was measured by using the
NIH Image-J software. The signals from negative control
spots were used as the background level. The density of
expression of each protein was observed as the intensity of
the spot after subtraction of the background level. The
relative level of expression of each protein was calculated
by determining the percentage of the protein spot density
based on the mean density of the positive control spots
in each array. An increase of �2-fold in the level of
the expression of each cytokine after HET stimulation was
considered as significant.

Enzyme-linked Immunosorbent Assay for G-CSF

Enzyme-linked immunosorbent assay (ELISA) kits for
murine G-CSF was obtained from R&D systems
(Minneapolis, MN, USA). The tests were performed
according to the supplier’s instruction manuals.

Isolation of Colonic Epithelial Cells

Primary murine colonic epithelial cells were isolated from
C3H/HeJ mice (6 weeks old) using a modification of
previously described procedure (18). In brief, the colon was
removed and washed four times with Hanks’ balanced salt
solution (HBSS) and supplemented with 100Uml�1

penicillin, and 100mgml�1 streptomycin. Segments of
tissue were then incubated for 60min at 37�C in 10ml of
DMEM containing 100mg Dispase I (EC 3.4.24.4,
Invitrogen, Carlsbad, CA, USA) in a 50ml centrifuge
tube with constant gentle rotation. The digest was then
passed through a steel mesh sieve to remove mucus and
undigested fragments of the tissue. The recovered cells were
then washed three times with HBSS by centrifugation at
1500 rpm for 5min. The macrophages were depleted by
panning from the suspension of cells at 37�C for 1 h on a
10 cm diameter Petri dish (Falcon 3003, Becton Dickinson,
Franklin Lakes, NJ, USA). Non-adherent cells were
collected and re-suspended in DMEM-FBS and loaded
onto 4ml of 25% Precoll solution in a 15ml centrifuge
tube. Tube was spun at 1500 rpm for 30min at room
temperature, and the cells of interface layer were recovered.
The cells were washed twice with DMEM-FBS to remove
the Percoll. Isolated epithelial cells (1� 106 cells) were
plated onto 96-well culture plate (Falcon 3072), and then
cultured with or without HET. The contamination of
lymphocytes and macrophages, which were determined by
flow cytometry using FITC-labeled anti-CD3 Ab (clone
145-2C11), PE-labeled anti-CD45R/B220 Ab (RA3-6B2)
and PE-labeled anti-CD11b Ab (M1/70), was less
than 1.0%.

Fractionation of HET

Fractionation of HET was performed according to
previously described procedure (19). In brief, HET was

fractionated into five fractions by methanol extraction,
water extraction, dialysis and ethanol precipitation.

Periodate Oxidation of F-5

The procedure was performed as described previously
(19). In brief, 1 g of F-5 was dissolved in 250ml of 50mM
acetate buffer (pH 4.5), and then 75mM sodium period-
ate (250ml) was added. After the reaction mixture was
incubated at 4�C in the dark for 96 h, 1ml of ethylene
glycol was added to destroy excess periodate and then the
mixture was dialyzed against water for 96 h. Non-
dialyzable solution was concentrated to 10ml, and
10mg of sodium tetrahydridoborate was added to the
concentrate. The reaction mixture was stirred for 12 h at
room temperature, and then neutralized with acetic acid.
Finally, the oxidized product was obtained as a
lyophilizate after dialysis. The yield of oxidized F-5
from F-5 was 56.5%.

Amylase Digestion of F-5

One gram of F-5 was dissolved in 500ml of 50mM
acetate buffer (pH 5.0) containing 2mM calcium
acetate, and then 900 Unit of a-amylase (Bacillus
subtilis, a-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1,
SEIKAGAKU Co., Tokyo, Japan) and 1000 Unit of
b-amylase (sweet potato, a-1,4-glucan maltohydrolase;
EC 3.2.1.2, SEIKAGAKU Co.) were added, and then
incubated for 72 h at 37�C. After neutralization with 1M
sodium hydroxide, the reaction mixture was boiled to
destroy the enzymes. The amylase digested F-5 was
obtained as a lyophilizate after dialysis. The yield of
amylase digested F-5 from F-5 was 46.4%.

Analytical Methods

Total carbohydrate, uronic acid and protein contents
were determined by phenol–H2SO4 (20), m-hydroxybi-
phenyl (21) and Bradford’s methods (22) with Bio-Rad
dye (Bio-Rad, Hercules, CA, USA) by using galactose,
galacturonic acid and bovine serum albumin (BSA) as the
respective standards. Component sugars of the samples
were analyzed as trimethylsilyl methylglycoside deriva-
tives by gas–liquid chromatography (23) on a DB-1
capillary column (0.25mm i.d.� 30m, 0.2 mm film thick-
ness, J&W Scientific, CA, USA); the temperature
program was: 60�C for 1min, 60–170�C (30�C min�1),
170–190�C (1�C min�1), and 190–300�C (30�C min�1).

Statistical Analysis

Data were expressed as mean� SD, and differences
between groups were analyzed by Student’s t-test, and
by analysis of variance (ANOVA) followed by post hoc
analyses using Bonferroni/Dunn and Scheffe’s test using
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a personal computer with the StatView-J program for
Macintosh (SAS Institute Inc., Cary, NC, USA). The
probability (P) values <0.05 were considered significant.

Results

Protein Array Analysis on Cytokine Secretion from

Murine Normal Colonic Epithelial Cell-Line MCE301

Cells

In order to evaluate whether HET modulates the
cytokine secretion of intestinal epithelial cells, the
cytokines in the culture supernatant of the murine
colonic epithelial cell line MCE301 cells were analyzed
by the cytokine protein array. When MCE301 cells were
cultured in the presence of HET, significantly increased
intensity of the spot of G-CSF was observed (Fig. 2A),
and the intensity of the spot was increased 2.5-fold
compared with that of unstimulated vehicle control. No
measurable change in the intensity of the spot of other
tested cytokines including GM-CSF was observed on the
array (Fig. 2A). When MCE301 cells were stimulated
with PMA plus A23187, which was used as a positive
control, enhanced secretions of G-CSF was observed
(Fig. 2B).

Enhancement of G-CSF Secretion from Murine Normal

Colonic Epithelial Cell-Line MCE301 Cells

When MCE301 cells were stimulated with HET, the
G-CSF secretion from MCE301 cells was enhanced in
dose- and time-dependent manners (Fig. 3A and B).

To determine whether the enhanced G-CSF secretion by
HET was attributable to enhanced G-CSF gene tran-
scription, mRNA was isolated from MCE301 cells
stimulated with HET for 24 h, and then expression of
G-CSF mRNA measured by RT-PCR. The enhanced
G-CSF gene transcription by the stimulation of HET was
observed (Fig. 3C and D). These results suggest that the
G-CSF expression in response to HET is regulated, at
least partially, at the transcriptional level.

Enhancement of G-CSF Secretion from Primary Cultured

Murine Colonic Epithelial Cells

When primary cultured murine colonic epithelial cells
from C3H/HeJ mouse were stimulated with HET, the
enhanced G-CSF secretion from the cells was observed
(Fig. 4). These results suggest that HET also stimulates
the secretion of G-CSF from intestinal epithelial cells.

Active Ingredient in HET for the G-CSF Secretion

Enhancing Activity

HET was fractionated into five fractions by methanol
extraction, water extraction, dialysis and ethanol preci-
pitation in order to divide it into the fractions containing
low molecular weight ingredients, intermediate-size
ingredients and high molecular weight ingredients
(Fig. 5A). Of these fractions, only the high molecular
weight polysaccharide fraction (F-5) showed the G-CSF
secretion enhancing activity (Fig. 5B), and the other
fractions did not show any activity (Fig. 5B). F-5 was
composed of about 105.3% of carbohydrate as galactose,
which mainly comprised arabinose, galactose, glucose

Figure 2. Protein array analysis of cytokines secretion from MCE301. (A) MCE301 cells were cultured for 48 h with or without 100mgml�1 of HET,

and the resulting culture supernatant was analyzed by cytokine protein array. The image of spot signal on membrane due to each cytokine was

shown. (B) MCE301 cells were stimulated with PMA (100 nM) plus A23187 (100 nM) as a positive control. Note: detailed information on the

cytokine protein array used in this study can be obtained following web site. http://www.raybiotech.com/index.asp?m=1.
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and galacturonic acid, in addition to 7.5% of protein as
BSA (Table 1). In order to clarify which molecules in F-5
contribute to the expression of the G-CSF secretion
enhancing activity, the F-5 fraction was treated with
periodate (chemical degradation of carbohydrate moiety)
or amylase (enzymatic digestion of amylose moiety), and
the G-CSF secretion enhancing activity of each product
was compared with that of the untreated F-5. Chemical
properties of F-5 modified by chemical and enzymatic
treatments were shown in Table 2. The enhancing activity
of F-5 on G-CSF secretion disappeared after periodate
oxidation of F-5 (Fig. 6), whereas the activity of F-5 was
increased significantly by amylase digestion of F-5 (Fig 6).
These observations suggest that polysaccharide(s) is one of
active ingredients of HET, and the heteropolysaccharide(s)
other than amylose type polysaccharide(s) plays an
important role in expression of the activity.

Discussion

It has been reported that G-CSF is produced by many
different types of cells such as stimulated monocytes/

macrophages, lymphocytes, endothelial cells and fibro-

blasts (24). It has also been reported that human colonic
adenocarcinoma HT-29 cells secreted G-CSF when

stimulated with IL-1b and TNF-a (25). In the present

study, it was shown that the HET-enhanced G-CSF
secretion from primary cultured colonic epithelial cells

and normal colonic epithelial cell-line MCE301 cells. So

far as we know, this is a first description that the normal

intestinal epithelial cells secrete G-CSF after stimulation.
The intestinal tract possesses a large area and the inner

surface was covered by a number of the epithelial cells.

Therefore, it is presumed that the intestinal epithelial cells
may be one of major source of G-CSF in the body.

Figure 3. Enhanced secretion of G-CSF from MCE301 cells by HET stimulation. (A) Dose-dependent increased in production of G-CSF induced by

HET. MCE301 cells were cultured in 24-well culture plate for 48 h with 1, 10 or 100mgml�1 of HET, and the G-CSF content in the supernatant was

measured using an ELISA for murine G-CSF. Data were expressed as mean� SD (n=3), and analyzed by ANOVA followed by post hoc analysis

using Bonferroni/Dunn test. (B) Time-dependent increase in production of G-CSF induced by HET. MCE301 cells were cultured with or without

stimulation with 100mgml�1 of HET in a 12-well culture plate, and the MCE301 culture supernatants were collected after 3, 6, 9, 24 or 48 h of

culture, and then the G-CSF content was measured using an ELISA. Data were expressed as mean� SD (n=4). (C) PCR product for each cytokine

on a 1.5% agarose gel. (D) Expression of mRNA of G-CSF relative to GAPDH expression. G-CSF mRNA expression at time zero and 24 h after

HET stimulation (100 mgml�1). The relative level of G-CSF mRNA was calculated by NIH Image J, and the values were expressed as pixel value

(right panel). Data were expressed as mean� SD (n=4), and analyzed by Student’s t-test.
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Bacterial endotoxin, LPS is known as a G-CSF potent

inducer (26). The enhanced G-CSF secretion by HET

was also observed in primary cultured colonic epithelial

cells from LPS-non-responder C3H/HeJ mice, it was

suggested that this enhancing effect of HET is not

dependent on LPS.

In the present study, it was shown that the poly-

saccharide(s) in HET is responsible for the enhanced

G-CSF secretion from intestinal epithelial cells, suggest-

ing that polysaccharide(s) is one of important immuno-

modulating constituents in HET. HET consists of 10

component crude drugs, and contains a number of low

molecular weight compounds (Fig. 1), which may possess

immunomodulatory and immunosuppressive effects.

Although low molecular fractions in HET did not show

any G-CSF secretion enhancing activity (Fig. 5B), the

complex interactions such as the synergistic or antag-

onistic effects among various ingredients including poly-

saccharide(s) would produce the pharmacological effects

of HET as a whole. Thus, it is assumed the whole effect

as a HET is absolutely not a simple sum of each effect

induced by its constituents.
In a recent phase I clinical trial, Lehne et al. (27)

reported the IgA concentration in saliva increased

significantly following the oral administration of the

soluble branched yeast b-1,3-d-glucan despite lack of

systemic absorption of the polysaccharide. There are

many reports that orally administered polysaccharides

from plant, seaweed or fungus origin exert various

pharmacological activities including immunomodulating

activity (28–31). However, the mode of action of the

polysaccharides including their target cells has been

unclear because it has been widely believed that

polysaccharides are not absorbed from digestive tract

due to their high molecular weight (32). Therefore, it is

important to clarify the detailed mode of action of

the pharmacologically active polysaccharides on the

modulating activity of intestinal immune system.

Figure 5. Fractionation of HET and the G-CSF secretion enhancing activity of the fractions from F-5. (A) A scheme of the fractionation of HET.

HET was fractionated into five fractions by methanol extraction, water extraction, dialysis and ethanol precipitation. (B) G-CSF secretion enhancing

activity of the fractions. MCE301 cells were cultured for 48 h in 24-well culture plate with HET or its fractions, and G-CSF content in the

supernatant was measured using an ELISA. The concentration of each fraction for assay was calculated to be equivalent to 100 mgml�1 of HET from

the sum of recover rate and the yield of each fraction. Data were expressed as mean� SD (n=3), and analyzed by ANOVA followed by post hoc

analysis using Scheffe’s test.

Figure 4. Enhanced secretion of G-CSF from colonic epithelial cells by

HET. A primary cultured colonic epithelial cells from C3H/HeJ mouse

were stimulated in 96-well culture plate for 24 h with or without

100mgml�1 of HET, and G-CSF content in the supernatant was

measured using an ELISA for murine G-CSF. Data were expressed as

mean�SD (n=3), and analyzed by Student’s t-test.
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The polysaccharide(s) in HET-enhanced G-CSF secretion
from intestinal epithelial cells, suggesting that the
intestinal epithelial cells act as one of the major target
cells for the expression of immunopharmacological
activity of the orally administered polysaccharides.
However, whether orally active other polysaccharides
modulate the cytokine secretion of intestinal epithelial
cells, it is now not known.

G-CSF was identified initially as a growth factor for
granulocyte, and characterized as a cytokine inducing
both proliferation and maturation of granulocyte (33–36).
There is growing evidence that G-CSF also exerts
profound immunoregulatory effects in adaptive immunity
(37–39). G-CSF induces regulatory T cells and regulatory
dendritic cell (DC)-like cell (40–42). G-CSF modulates
the balance between T helper 1 (Th1) and Th2 immune
responses by affecting cytokine production (43–46). In
addition, there is emerging data suggesting that G-CSF is
a potential new agent for neuroprotection (47,48). Thus,
G-CSF is considered as a pleiotropic cytokine playing a
major role as regulators of hematopoiesis, innate and
adaptive immune responses, etc. Therefore, the enhanced
G-CSF secretion from intestinal epithelial cells by HET
may contribute to the clinically observed various
medicinal effects such as promoting the recovery of
leucopenia after chemotherapy, reinforcement effect on
resistance to infection, and improving allergic physical
condition. Details of the G-CSF secretion enhancing
activity of HET, including possible mode of action as
well as active substances, are now underway, and it will
be described in a following paper.
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Table 2. Chemical properties of subfraction (F-5) modified by chemical
and enzymic treatments

F-5 Periodate
oxidized

Amylase
treated

Recover rate (% from F-5) – 56.5 46.4

Carbohydrate contenta (%) 105.3 37.9 62.7

Uronic acid contentb (%) 19.2 4.2 29.9

Protein contentc (%) 7.5 13.4 15.6

Component sugar (mol%)

Arabinose 10.8 11.6 16.3

Rhamnose 2.1 3.0 1.8

Fucose 0.3 Trace 0.3

Xylose 0.9 2.5 1.8

Glucuronic acid 0.5 Trace Trace

Galacturonic acid 18.0 46.3 63.0

Mannose Trace Trace 1.7

Galactose 6.2 29.9 9.4

Glucose 61.4 6.6 5.7

aPhenol-sulfuric acid method (as galactose); bm-hydroxybiphenyl
method (as galacturonic acid); cBradford method (as bovine serum
albumin).

Figure 6. Effect of chemical and enzymatic treatments of F-5 on the

G-CSF secretion enhancing activity of F-5. MCE301 cells were cultured

in a 96-well culture plate with 100mgml�1 of periodate or amylase

treated HET for 48 h, and the G-CSF content in the supernatant was

measured using an ELISA. Data were expressed as mean�SD (n=3),

and analyzed by ANOVA followed by post hoc analysis using

Scheffe’s test.

Table 1. Chemical properties of sub fraction obtained from HET

F-1 F-2 F-3 F-4 F-5

Recover rate (% from TJ-41) 65.9 8.9 4.4 0.2 6.9

Carbohydrate contenta (%) n.d. 65.2 63.2 41.9 105.3

Uronic acid contentb (%) n.d. 7.3 3.0 2.7 19.2

Protein contentc (%) n.d. 4.1 5.3 13.7 7.5

Component sugar (mol%)

Arabinose n.d. 3.4 7.9 51.0 10.8

Rhamnose n.d. 0.5 2.1 5.6 2.1

Fucose n.d. 0.1 Trace Trace 0.3

Xylose n.d. 1.0 3.1 2.3 0.9

Glucuronic acid n.d. 0.6 2.3 1.4 0.5

Galacturonic acid n.d. 5.5 Trace 2.6 18.0

Mannose n.d. Trace Trace 10.0 Trace

Galactose n.d. 2.1 6.3 1.7 6.2

Glucose n.d. 86.9 78.3 25.3 61.4

n.d. Not determined.
aPhenol-sulfuric acid method (as galactose); bm-Hydroxybiphenyl
method (as galacturonic acid); cBradford method (as bovine serum
albumin).
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HET by 3D-HPLC. We thank to Mr K. Nonaka,
Ms H. Mizushima and Ms M. Inoue for their technical
assistance.
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