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Estimating cost-offsets of new
medications: Use of new antipsychotics
and mental health costs for schizophrenia
A. James O’Malley,a∗† R. G. Franka,b and S.-L. T. Normanda,c

Estimation of the effect of one treatment compared to another in the absence of randomization is a common
problem in biostatistics. An increasingly popular approach involves instrumental variables—variables that
are predictive of who received a treatment yet not directly predictive of the outcome. When treatment is
binary, many estimators have been proposed: method-of-moments estimators using a two-stage least-squares
procedure, generalized-method-of-moments estimators using two-stage predictor substitution or two-stage
residual inclusion procedures, and likelihood-based latent variable approaches. The critical assumptions to
the consistency of two-stage procedures and of the likelihood-based procedures differ. Because neither set of
assumptions can be completely tested from the observed data alone, comparing the results from the different
approaches is an important sensitivity analysis. We provide a general statistical framework for estimation of
the casual effect of a binary treatment on a continuous outcome using simultaneous equations to specify models.
A comparison of health care costs for adults with schizophrenia treated with newer atypical antipsychotics
and those treated with conventional antipsychotic medications illustrates our methods. Surprisingly large
differences in the results among the methods are investigated using a simulation study. Several new findings
concerning the performance in terms of precision and robustness of each approach in different situations are
obtained. We illustrate that in general supplemental information is needed to determine which analysis, if
any, is trustworthy and reaffirm that comparing results from different approaches is a valuable sensitivity
analysis. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: bivariate likelihood; instrumental variables; medicaid cost data; method-of-moments; simultaneous
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1. Introduction

Estimation of the effect of one treatment compared to another in the absence of randomization is
a common problem in biostatistics. With more emphasis placed on value in the health care setting
illustrated with increased funding for comparative effectiveness research in the United States [1],
researchers are increasingly utilizing observational studies to learn about effectiveness of interventions.
It is well understood that a simple comparison of average outcomes between treatment arms will
potentially confound the treatment effect with various selection effects (associations of predictors with
treatment). If the treatment assignment mechanism depends on unmeasured variables affecting the
outcome of interest (unmeasured confounders) then regression adjustment and propensity score methods
[2] may fail to account for selection effects. In this case, instrumental variables methods may provide
a pathway to causality. An instrumental variable (IV) is a random variable that is predictive of the
treatment a patient receives but uncorrelated with the outcome conditional on treatment [3].
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Despite the existence of the various estimators for IV analysis, there is little research on their
comparative operating characteristics, and far less on empirical experience in real world settings. A
compelling issue is that traditional instrumental variables methods are invariant to the form of the
data (continuous versus binary outcome, continuous versus binary treatment) prompting the question
of whether one can do better by tailoring methods to a given situation. Terza et al. [4] proposed a
residual inclusion method for cases when the outcome or selection equation is nonlinear (e.g. as in
generalized linear models). Another important consideration is that traditional IV methods do not utilize
parametric assumptions, perhaps surprisingly so given the recent explosion in the adoption of latent
variable models derived using parametric assumptions (e.g. IRT models, Rasch models, latent class
models, latent factor models). An exception is the bivariate probit model, which is generated from
assumptions on the underlying latent variables [5]. We study the traditional IV methods, the residual
inclusion method, and the latent variable approach to IV in the context of evaluating whether newer
antipsychotic drugs are less costly than their predecessors. We focus on the estimation of the causal
effect of a binary treatment on a continuous outcome.

Our research is motivated by the problem of comparing mental health spending between schizophrenia
patients using newer atypical antipsychotic medications and those using older conventional antipsy-
chotic medications in Florida’s Medicaid population over the period 1994–2001. The older drugs, which
are D2-antagonists such as chlorpromazine and haloperidol, were introduced in the 1950s to alleviate
hallucinations and delusions in psychotic patients. Atypical antipsychotics, including clozapine, olan-
zapine (trade name zyprexa), quetiapine (trade name seroquel), and risperidone (trade name risperidal),
were first marketed in the late 1980s and 1990s, and while considerably more expensive than the
D2-antagonists, were associated with a different profile of side effects. While the conventional antipsy-
chotics were associated with neurologic side effects, the newer atypicals have been linked to other side
effects such as weight gain, diabetes, and lipid problems. During our study observation period, three
atypicals were introduced—zyprexa, seroquel, and geodon. Some have claimed that atypical antipsy-
chotics, while more expensive ultimately pay for themselves by leading to reductions in other types
of health spending [6]. This claim has come to be known as the offset hypothesis. The offset hypoth-
esis asserts that the greater tolerability of the new antipsychotics will improve adherence to treatment
regimens, thereby reducing relapses, resulting in declines in the use of hospital and emergency room
services. However, it is disputed whether lower subsequent costs for atypicals are sufficiently large as
to offset their greater upfront cost [7].

Study of the offsets hypothesis is complicated by the fact that patients that receive the newer atypical
drugs likely differ from those getting the older drugs on a number of systematic factors that may not
be fully measured. These include existing medical and mental health comorbidities, severity of illness,
and treatment preferences.

We utilize variation in the availability of atypical drugs across the state of Florida that arises
because the time-lag between Federal approval and local availability varies by geographic area to form
instrumental variables. The instruments are indicators of whether a specific atypical was available
in a patient’s geographic area of residence defined as one of 11 area Medicaid offices representing
geographic, cultural, social, and economic factors in a given year. Using these instruments we illustrate
several different estimators that account for unmeasured selection effects to test the offsets hypothesis
in the Florida Medicaid population. Our goal involves quantifying the evidence for or against the
offsets hypothesis using multiple approaches encompassing different assumptions, thereby enabling one
approach to act as a sensitivity analysis for another and yielding real-world experience of the extent to
which methodological concerns about the various approaches matter. We also use simulations to evaluate
the operating characteristics of the various methods when assumptions hold and when they are violated.

We next define notation, describe assumptions, and introduce models. General methods for estimation
are detailed in Section 3 and implemented on the Florida Medicaid data in Section 4. Section 5 describes
a simulation study to evaluate the operating characteristics of the methods when assumptions hold and
when they are violated. We provide concluding remarks in Section 6.

2. Statistical models

2.1. Notation and definitions

We use simultaneous equations to specify models and the potential outcomes nomenclature of [8] to
define treatment effects. Let yi , zi , xi , ui , and ci denote the outcome, the treatment variable, a vector
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of exogenous covariates, a vector of instrumental variables, and an unmeasured confounding variable
for the i th of n subjects.

The instrumental variables ui are assumed to be: (1) associated with zi conditional on xi , (2)
uncorrelated with yi conditional on (zi ,ci , xi ), and (3) uncorrelated with ci conditional on xi [9, 10].
Assumption (2) says that there is no direct effect of ui on yi (the exclusion restriction), while assumption
(3) says that ui shares no common causes with yi (i.e. ui is uncorrelated with any unmeasured variables
that predict yi ). If assumption (3) is violated then ui may be related to yi through an uncontrolled
confounding variable [11], thereby introducing bias. In models where yi is modeled with an explicit
error term, �y,i , assumptions 2 and 3 reduce to the assumption that ui and �y,i (which includes ci )
are uncorrelated conditional on (zi , xi ). Although xi and ci might predict both yi and zi and so
structurally are equivalent, ci is problematic because it is unobserved. Controlling for xi generally makes
assumptions (2) and (3) above more believable by controlling for variation in unmeasured confounders
that is correlated with xi [12].

The annual mental health spending for patient i , denoted costi , is the sum of all payments made for
services with mental health diagnoses, mental health procedures (e.g. psychotherapy), or psychotropic
drugs that are primarily used for mental health treatment such as antidepressants and mood stabilizers.
The distribution of costi is right skewed. As discussed in Section 4.1, Box–Cox transformations under
various models indicated that the log-transformation traditionally used for spending data to account
for right-skew would be reasonable. Accordingly, yi= log(costi ). Because all patients in the data set
received services from a health care provider, the 29 observations with costi=0 were considered
impossible and excluded from the analysis.

The treatment zi is a binary-valued indicator of whether a patient filled an atypical (zi=1) or a
conventional antipsychotic (zi=0) prescription in a given year. If a patient filled both we assigned them
to the drug that accounted for the greatest share of their health costs for that year. Thus, zi is defined
in the same year as costi . In a sensitivity analysis we restricted the data to new users (i.e. those who
initiated treatment with an antipsychotic during our study period) and the first year of data on each
individual, thereby obtaining the subset of subjects for whom we could reasonably assume made their
initial antipsychotic choice during the study period. This allowed us to check whether it made sense to
combine new users and longer term users, and those staying on a single drug from those who switched
drugs, in a single analysis. The results were minimally affected suggesting that a pooled analysis that
controlled for year was justified.

The predictors in xi are race/ethnicity, female, age, receipt of Supplementary Security Income (SSI)
benefits, history of substance abuse, area of residence, and year. Variables represented by ci could include
health status of the patient, access to skilled physicians, and physician prescribing habits. The vector
of instrumental variables ui consists of the products of binary indicators of whether zyprexa, seroquel,
and geodon were FDA-approved at the start of each year and the 10 area-of-residence indicators; the
most populous area, Miami, was the excluded category. The variables (xi ,ci ,ui ) are all defined in the
same year as costi and zi .

The rationale for the above choice for ui is that the availability of antipsychotics depends on physician
learning which in turn depends on local area attitudes towards innovation, information dissemination,
and other conditions that varied substantially across Florida. Thus, drug approval and area of residence
are related to antipsychotic use at a given time. In order for ui to be an appropriate instrument, it
cannot be directly related to health care costs or to unmeasured confounders affecting health care costs.
This would not be the case if patients with higher costs lived in areas that were faster adopters or
if attitudes towards innovation, information dissemination, and other conditions directly affect costs.
Thus, the inclusion of area of residence indicator variables in xi helps make drug approval interacted
with region a valid IV.

2.2. Assumed underlying model

The outcome yi depends on treatment zi and the exogenous predictors xi through the linear regression
equation

yi=�1zi+bT
2 xi+�y,i , (1)

where �y,i has mean 0 and variance �2
y . The validity of this model relies on the existence of linear

relationships, homogeneous variances, independent observations, and orthogonality between (zi ,xT
i )T

and �y,i . In the Medicaid data, zi and �y,i are likely to be correlated as (e.g.) detailed measures of the
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severity of a patient’s health condition were not available, and these likely affect a patient’s propensity
to fill an atypical prescription and their net health spending.

A second equation describes the relationship between zi and (ui ,xi )

z∗i =hT
1 ui+hT

2 xi+�z,i , (2)

where zi= I (z∗i >0). In terms of the Medicaid data, z∗i represents the patient’s propensity to be prescribed
an atypical antipsychotic. By assumption, the predictors on the right-hand side (rhs) of (2), including
the IV ui , are independent of �y,i .

The regression parameter �1, the difference in the outcomes when all other factors (including those
influencing �y,i ) are equal, is of primary interest. When zi is exogenous (uncorrelated with �y,i ),
�1=E[yi(1)− yi(0) |xi ], where yi(z) denotes the potential outcome for subject i when zi= z. However,
if zi is correlated with �y,i then �1=E[yi(1)− yi(0) |xi ,�y,i ] �≡E[yi(1)− yi(0) |xi ].

2.3. Parametric model: structural and distributional assumptions

In parametric analyses we follow the construction of the bivariate probit model. This model assumes
that the error term εi= (�y,i ,�z,i ) is an additive function of ci , an unmeasured confounder that linearly
affects (yi , z∗i ), and (�y,i ,�z,i ), a random disturbance. That is, εi= (�3ci+�y,i ,�3ci+�z,i ), where ci ,
�y,i , and �z,i are mutually independent random variables each with mean 0 and variance �2

c , �2
y , and

�2
z , respectively. Hence, εi has mean 0 and covariance

cov(εi )=
(

�2
3�

2
c+�2

y �3�3�
2
c

�3�3�
2
c �2

3�
2
c+�2

z

)
.

Because we can multiply �2
c by k, and divide �3 and �3 by k1/2 without changing the model, for model

identification we set �2
c=1.

Derivation of the bivariate probit is completed by assuming that ci , �y,i , and �z,i are normally
distributed, implying that εi is bivariate normal. Thus, the model is identified through the first and second
moments of the distribution of εi . Because zi is binary we can only identify the standardized effects
h1/(�2

3+�2
z )1/2 and h2/(�2

3+�2
z )1/2, leading to the constraint �2

3+�2
z=1. With three parameters and two

degrees of freedom in cov(εi ) we set �3=1 (equivalently, �2
z=0) to identify the model, defining �3

and �3/(�2
3+�2

y)1/2 as the covariance and correlation between �y,i and �z,i , respectively. In the normal

case unobserved selection is thus quantified by �=�3/�y , where �2
y=�2

3+�2
y . Clearly, �∈ [−1,1].

3. Estimation methods

3.1. Ordinary least squares (OLS)

Linear regression fits the model yi=�1zi+bT
2 xi+�y,i where var(�y,i )=�2

y . The least-squares estimator

is �̂= (XTX)−1XTy, where y= (y1, . . . , yn)T and X is the n×p matrix with i th row (zi ,xT
i ). When �y,i is

mean independent of all predictors and has homoscedastic variance (as assumed here), the estimator is
minimum variance unbiased among the class of linear estimators (Gauss Markov theorem). However,
if any predictor is correlated with �y,i , OLS will be inconsistent [13, Chapter 5].

3.2. Two-stage least squares (2SLS)

The classic IV estimator of b in (1) is the minimum variance estimator among those satisfying the
constraint that ui and εi are orthogonal (see Appendix A for construction). This method-of-moments
estimator is equivalent to the two-stage least-squares (2SLS) procedure, in which we first fit

zi =hT
1 ui+hT

2 xi+�z,i (3)

to obtain ẑi , and then fit

yi=�1 ẑi+bT
2 xi+�y,i (4)

1974
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to estimate b. In the special case where ui is univariate-binary and there are no other covariates, the
2SLS procedure given by (3) and (4) is equivalent to the Wald estimator [14]. The standard error of b̂ is

cov(b̂)= �̂2
y{XTU(UTU)−1)UTX}−1, (5)

where U is the matrix with i th row (uT
i ,xT

i ) and �̂2
y= ε̂T

y ε̂y/(n− p) estimates the residual variance of
the outcome equation [13, Section 5.2.2], [15, p. 531].

The orthogonality condition enforced in (3) holds factors affecting εi constant, allowing b to be
estimated for those subjects for whom ui influences zi , the ‘population on the margin’. In the offsets
analysis, the population on the margin is patients whose uptake of an atypical antipsychotic medication
was influenced by the availability of zyprexa, seroquel, or geodon in the city where they lived. Thus
�̂1 is a ‘structural shift’ of using an atypical.

A notable feature of 2SLS is that no presumption is made about the type (e.g. binary, ordinal,
interval) of variables that yi and zi are or about the distribution of εi . The binary nature of
zi led us to consider whether more efficient results could be obtained by accounting for the
form of zi .

3.3. Alternative two-stage approaches

Although the 2SLS estimator is consistent when the IV assumptions hold [16, 17], inferences
may be inefficient because the binary form of zi is not respected. As an alternative to 2SLS, we
can replace (3) with

zi =�(hT
1 ui+hT

2 xi )+�z,i , (6)

where �(·) is the cdf of the standard normal distribution. The implied (nonlinear) 2SLS procedure
fits (6) using nonlinear least squares (NLS) or a generalized linear model, sets ẑi=�(uT

i ĥ1+xT
i ĥ2),

and then evaluates b̂= (X̂
T

X̂)−1X̂
T

y. The interpretation of �1 is unchanged by the nonlinear first-stage
equation because zi is the main effect in the outcome equation, not z∗i .

Following Terza et al. [4] we term this approach ‘two-stage predictor substitution (2SPS).’ Despite
the fact that orthogonality of ẑ and ε is no longer enforced, 2SPS has been said to yield consistent
estimates of �1 when the outcome equation is linear and (h1,h2) is estimated consistently [5]. However,
in the case when the outcome equation is nonlinear, 2SPS has been shown to perform poorly even
when the first-stage equation is linear [4].

In the case of a linear model for zi , point estimates of �1 under the model

yi=�1zi+bT
2 xi+�3(ẑi−zi )+�y,i (7)

are identical to those obtained from (4). However, when zi depends on a nonlinear model such as (6),
the effect of zi above and beyond the effect of ẑi−zi (the ‘endogenous (bad) variation’ in zi ) on yi
does not equal the effect of ẑi (the ‘exogenous (good) variation’ in zi ) on yi . The two-stage residual
inclusion (2SRI) procedure of [4], whose origins date to a test for endogeneity in [18], is the estimation
of (6) followed by (7). It has been shown that 2SRI yields consistent estimates for linear and nonlinear
models [13, Chapter 12].

3.4. Maximum likelihood

Assuming normality and using the parameterization of Section 2.2, it follows that

εi=
(

�y,i

�z,i

)
∼N

{(
0

0

)
,

(
�2

y ��y

��y 1

)}
. (8)

In this model � quantifies the extent to which unobserved factors affecting z∗i are correlated with those
affecting yi [19]. A positive value of � indicates atypical-favorable selection because unobserved factors
that make individuals more likely to take an atypical are also more likely to have higher health costs;
i.e. ignoring selection would lead to over estimation of �1.
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The joint marginal density for (yi , zi ) is obtained by integrating over z∗i in the model defined by (1),
(2), and (8) (see Appendix B for details). The product of these densities is the observed data likelihood
function for (b,h,�,�2

y), given by

L=
n∏

i=1
	(yi ;
y,i ,�

2
y)�(
z|y,i )

zi (1−�(
z|y,i ))
1−zi ,

where


y,i = �1zi+bT
2 xi , (9)


z|y,i =
hT

1 ui+hT
2 xi+�(yi−
y,i )/�y

(1−�2)1/2
(10)

for � �=±1. The presence of 
y,i and thus b in (9) and (10) precludes separate maximization of the yi
and zi | yi components of the likelihood function. The two components need to be fit simultaneously
in order for �̂1 to have a structural shift interpretation. Only when �=0 does it suffice to fit separate
linear and probit regression models.

3.5. Bayesian inference

Bayesian analysis provides a more flexible approach to inference than maximum likelihood by incor-
porating prior distributions containing information about the parameters. In the absence of prior infor-
mation, a non-informative prior is often reasonable.

Because it is the mechanism governing selection, � plays a crucial role in the offsets analysis. We
are interested in the sensitivity of the results to the prior for � and the extent to which it characterizes
the other approaches. Prior distributions for � that cover a wide range of levels of precision will be
used.

Conditional on �, the other model parameters are well identified by the data. Therefore, to investigate
sensitivity to the prior on �, we specify priors diffuse in (�1,b2,h1,h2,�2

y) and with varying levels of
informativeness about �. Specifically, we assume

p(�1,b2,h1,h2,�
2
y,�)∝�−2

y p(�),

where (�+1)/2∼Beta(�1,�2); p(�) has the shape of a Beta density but its support is extended from [0,1]
to [−1,1]. Note that �=��−2

y (1−�2)−1/2 maps the correlation coefficient to (−∞,∞). In the special

case where �1=�2=1, �∼U(−1,1) and p(� |�2
y)=�y{2(1+�2

y�
2)3/2}−1, the density of a t-distribution

with two degrees of freedom, mean 0, and scale parameter (2�2
y)−1/2; a thick-tailed distribution.

The values considered for m= (�1,�2) are such that E[�]=0 and var(�)=�2
�. This requires that

�1=�2= (�−2
� −1)/2, which places a supremum of 1 on �2

� (a bound that is only obtained in the limiting

case where p(�) has point masses of 1/2 at ±1). The larger �1=�2 the smaller �2
�.

Although �1 is the same conditional effect as for 2SLS and maximum likelihood, Bayesian inter-
pretations are conditioned on dataobs={yi , zi ,xi ,ui }i=1,. . .,n .

3.6. Testing the exclusion restriction

While the exclusion restriction is a necessary condition for parameter identifiability in the two-stage
approaches, the specification of a parametric distribution for εi makes the exclusion restriction non-
essential for identifiability of likelihood-based procedures. Therefore, the exclusion restriction may be
tested by fitting the model

yi=�1zi+bT
2 xi+bT

3 ui+�y,i , (11)

where εi is specified as in (8). Equation (11) is equivalent to the selection model in [20] and is a
special case of the structural shift model in [21]. The model is fully identified when εi is bivariate
normal if (xi ,ui ) contains at least one non-constant predictor [22]. A small non-significant value of

1976

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1971--1988



A. J. O’MALLEY, R. G. FRANK AND S.-L. T. NORMAND

b̂3 supports the exclusion restriction. However, we emphasize that this test is only valid if εi truly is
bivariate normal, an assumption that itself cannot be fully evaluated using the observed data.

3.7. Computation

The two-stage procedures can be implemented using standard methods for fitting linear or generalized
linear models. However, the computation of standard errors is complicated by the need to simultaneously
account for the estimation error from both equations. Equation (5) may be used for 2SLS while
asymptotic approximations, such as those outlined in [13, Chapter 12], are needed to obtain closed-form
expressions for 2SPS and 2SRI.

Because the likelihood function depends on unobserved latent variables, specialized model-fitting
routines are needed for maximum likelihood and Bayesian inferences. MLEs are obtained by directly
maximizing the observed data log-likelihood function in (10) using a nonlinear optimization package in
R. Standard errors are computed using the delta method to obtain closed-form expressions approximating
the covariance matrix of the parameters or functions thereof that is then evaluated at the MLEs of
the parameters (see Appendix C). WinBUGS [23] is used for Bayesian inference with inferences
evaluated as Monte Carlo averages over draws from the posterior distribution of the model parameters.
Convergence is monitored using trace plots and the diagnostics available in CODA [24].

4. Cost-offsets: atypical and conventional antipsychotic use in adults with
schizophrenia in Florida

The dependent variable is the log-transformed aggregate spending for all services with mental health
diagnoses, mental health procedures (e.g. psychotherapy), or psychotropic drugs that are primarily used
for mental health treatment such as antidepressants and mood stabilizers for a patient in a given year. The
objective is to infer �1, the difference in the annual log-spending of treatment of using an atypical versus a
conventional antipsychotic for individuals suffering from schizophrenia in Florida’s Medicaid population
during 1994–2001 when all other factors, including unmeasured factors influencing εi , are fixed.

To facilitate interpretation we transform estimates from log-spending to spending (units of $). At a
given value of (zi ,xT

i )T, mean spending equals the exponential of mean log-spending multiplied by a
retransformation factor. The retransformation factor may in general be estimated using the smearing
estimate [25], given by Ŝ=n−1∑n

i=1 exp(�̂y,i ), where �̂y,i is the estimated residual in (1). Therefore,
in $ the savings attributed to using atypicals over conventionals is given by

�$
1=n−1S{exp(�1)−1}

n∑
i=1

exp(bT
2 xi ). (12)

Under likelihood-based approaches there are alternatives to the smearing estimate. For example, the
MLE of the retransformation factor is given by Ŝ=exp(�̂2

y/2). In Bayesian implementations, the

retransformation factor from log-normal to normal, S=exp(�2
y/2), is incorporated in the posterior

means of any quantities on the scale of the retransformed outcome and so is automatically accounted
for when quantities of interest are evaluated as Monte Carlo averages over draws from the posterior
distribution of the model parameters.

Another quantity of interest is the average treatment effect (ATE). The ATE evaluates the combined
effect of selection and treatment on spending by evaluating the expectation with respect to f (yi (z)),
the marginal distribution of yi (z) after integrating over z∗i ∈ (R : zi= z), whereas �1 is the pure effect
of the latter. The average treatment effect over individuals with covariates values {(xi ,ui )}ni=1 is
given by

ATE= n−1
n∑

i=1
E[yi (1)− yi (0) |xi ,ui ] (General)

= �1+
��y

n

n∑
i=1

	(hT
1 ui+hT

2 xi )

�(hT
1 ui+hT

2 xi )(1−�(hT
1 ui+hT

2 xi ))
(Normal case) (13)
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or in terms of dollars

ATE$ = n−1S
n∑

i=1
E
[
exp(yi (1))−exp(yi (0)) |xi ,ui

]
(General)

= n−1S
n∑

i=1
exp(bT

2 xi )

{
exp(�1)

�(hT
1 ui+��y)

�(hT
1 ui )

− 1−�(uT
i h1+��y)

1−�(hT
1 ui )

}
(Normal case) (14)

where 	(·) and �(·) denote the pdf and cdf of the standard normal distribution, respectively. Equation
(13) illustrates that ATE=�1 when �=0 (no selection).

A feature of parametric methods is that they are able to delineate between population effects (e.g.
�1) and (average) treatment effects specific to the subjects in the sample. The expressions for the ATE’s
in (13) and (14) are informative because they show their relationship to �1. Such expressions can only
be determined through the specification of a full parametric model for the data.

The local average treatment effect (LATE), the effect of treatment on those whose treatment status
can be changed by ui (the marginal population), equals �1 when there is a single binary instrument, no
covariates, the exclusion restriction holds, and the effect of ui is monotone across i [26, p. 155]. However,
under our model different LATEs correspond to the values of ui defining the marginal population.
Specified mathematically, the LATE is given by E[yi (1)− yi (0) | zi (u(1))> zi (u(0)),xi ], where zi (u(k))
is the potential treatment of subject i when ui=u(k) (k=0,1). (See [27, 28] for summary measures of
heterogeneous LATE.) However, �1 (the 2SLS estimand) can be thought of as a weighted average of a
LATE for the marginal subpopulations identified (one at a time) by each component of ui . Therefore,
despite not corresponding to a single LATE, our primary interest is in �1 and so we do not report LATE
for any particular subpopulations.

To gauge the sensitivity of results computed under the Bayesian model with respect to the prior for
�, we fit this model with �2

� between 0.96 (prior has a U-shape) and 10−4/3 (prior is a spike at 0).

4.1. Descriptive results

The Florida Medicaid data set comprises 26 759 adults diagnosed with schizophrenia at some point
during 1994–2001 yielding n=78349 person-year observations (Table I) of health care spending. The
vector xi has 18 elements (intercept, black, other non-white (largely Latino), female, age, receipt of
supplemental security income (SSI), substance abuse history, year, and 10 area dummies), whereas ui
contains 33 elements (the availability of zyprexa, seroquel, and geodon and their interactions with area).

A comparison of means based on Table I suggests that atypical antipsychotics are much more
expensive than conventional drugs. However, this analysis does not account for non-random selection of
patients into treatment; for example, patients with more severe conditions may have higher propensity
to receive an atypical and also be more costly. It is clear from Table I that spending is higher for
males, whites over blacks, blacks over other non-whites, substance abusers, and those receiving SSI.
For all predictors other than male (versus female), the magnitude of the difference is greater within
atypical antipsychotics than conventionals. However, the magnitude of the correlations between year
and spending, and between age and spending, was greater for conventional antipsychotics.

Because the distribution of costi is naturally skewed to the right, we sought a transformation that
induced normality. The maximum likelihood estimate of the Box–Cox transformation is 0.140 for
unadjusted costi , 0.153 under OLS, and approximately −0.05 under the fully parametric simultaneous
equations model. Because the log-transformation is a compromise between these alternatives, corre-
sponding to a transformation parameter of 0, we transformed the data using yi= log(costi ). Using the
alternative Box–Cox transformations had minimal effect on the results of the analysis.

4.2. Treatment effects

We analyzed the data using each of the procedures discussed in Section 3: ordinary least squares (OLS),
two-stage least squares (2SLS), two-stage predictor substitution (2SPS), two-stage residual inclusion
(2SRI), maximum likelihood, and Bayesian analysis with various priors.

The large value of � estimated by the likelihood-based methods (MLE and Bayesian models) was
verified by plotting the profile likelihood function of � and confirming the existence of a unique global
optimum at �̂=0.721, far from the edge of the parameter space (Figure 1). Under such a strong
unmeasured selection effect, �1 and ATE are destined to have very different values. The Staiger–Stock
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Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1971--1988



A. J. O’MALLEY, R. G. FRANK AND S.-L. T. NORMAND

Table I. Florida Medicaid spending for atypical users compared to conventional users (78 378 person-year
observations).

Mental Health (MH) Spending ($)
(Mean, StDev)

Variable Mean Atypical Conventional

Atypical 0.450 11 713 (12 083)
Conventional 0.550 6218 (8833)

Male 0.476 12 034 (12 190) 6754 (9206)
Female 0.524 11 425 (11 980) 5727 (8445)

White 0.430 12 283 (11 998) 6365 (8759)
Black 0.266 11 656 (11 996) 6235 (8833)
Other non-white 0.304 10 994 (12 221) 5994 (8931)

Substance abuse 0.120 21 241 (14 844) 14 694 (13 070)
Non-substance abuse 0.880 10 103 (10 748) 5270 (7662)

SSI 0.964 11 872 (12 199) 6291 (8891)
non-SSI 0.036 7647 (7565) 4146 (6646)

Zyprexa available 0.730 11 420 (11 896) 5737 (8277)
Zyprexa not available 0.270 13 931 (13 207) 6953 (9573)

Seroquel available 0.589 11 315 (11 816) 5533 (7986)
Seroquel not available 0.411 13 076 (12 867) 6750 (9403)

Geodon available 0.159 11 999 (12 717) 6001 (8817)
Geodon not available 0.841 11 619 (11 867) 6239 (8834)

Pensacola 0.041 7323 (10 150) 6475 (12 660)
Tallahassee, Panama City 0.045 6991 (10 012) 5220 (10 368)
Gainesville, Ocala 0.065 6209 (9568) 4436 (9430)
Jacksonville, Daytona Beach 0.099 833 (11 172) 6664 (11 976)
St. Petersburg 0.069 8077 (10 654) 6081 (11 611)
Tampa, Lakeland, Bradenton 0.049 6861 (8855) 4365 (7268)
Orlando 0.072 7775 (11 707) 5552 (11 006)
Ft. Myers, Sarasota, Naples 0.031 6639 (9671) 4434 (8960)
West Palm Beach, Vero Beach 0.058 7517 (11 080) 5685 (12 130)
Ft. Lauderdale 0.086 9768 (13 092) 7886 (13 865)
Miami, Key West 0.384 10 154 (13 445) 6807 (12 349)

Correlation with MH spending

Variable Mean (SD) or range Atypical Conventional

Year 1994–2001 −0.0425 −0.0655
Age 42.57 (11.37) −0.0374 −0.0791

test F-statistic of 9.86 in the 2SLS analysis suggests that the instrument only accounts for a small
fraction of the selection effect and would be considered borderline-weak compared to the conventional
standard of 10 [29].

Ordinary least squares (OLS) suggests that the newer atypical antipsychotics result in more spending
(Table II: �1 estimated to be near 1), the two-stage procedures give inconclusive results (�1 estimated
to be near 0), and the likelihood-based methods suggest that the newer atypicals lead to lower levels
of spending (�1 estimated to be near −0.7). In terms of annual patient dollars, the cost of atypicals
less the cost of conventionals was estimated to be $9948, range from −$263.3 to $2262, and range
from −$10010 to −$9065 under OLS, the two-stage procedures, and the likelihood-based procedures,
respectively. Because the left-skewness of the data inflates the treatment effect upon retransformation,
the predicted mean OLS estimate is substantially larger than the raw mean difference (Table I). Inflation
of the mean due to retransformation combined with the highly positive selection effect leads to the
large saving found under the likelihood-based analyses.

The OLS estimate of �1 and the likelihood-based estimate of the ATE are fairly similar, illustrating
that the former is actually estimating the ATE. The SE of the MLE of the ATE is slightly smaller
than the SE of the OLS estimate, consistent with the result in [30] that regression parameters of terms
unique to one regression equation are estimated more efficiently in a bivariate model than with the
corresponding univariate model.
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Figure 1. Profile likelihood of � based on 78 378 observations from the Florida Medicaid data set.

Table II. Point estimates of the treatment effects (and associated uncertainty) for the ordinary least squares
(OLS), two-stage least squares (2SLS), two-stage predictor substitution (2SPS), two-stage residual inclusion
(2SRI), maximum likelihood (MLE), and the Bayesian procedures on the Florida Medicaid population.

Two-stage Likelihood-based

Term Quantity OLS 2SLS 2SPS 2SRI MLE Bayesian

�1 Estimate 1.022 −0.028 0.237 0.193 −0.793 −0.773
Standard deviation 0.010 0.169 0.144 0.145 0.031 0.031

�$
1 Estimate 9 965 −263.3 2 262 1 911 −9393 −9948

Standard deviation 122.8 1 607 1 415 1 668 537.2 531.5

ATE Estimate 1.049 1.013
Standard deviation 0.010 0.010

ATE$ Estimate 9 576 10 190
Standard deviation 107.1 94.3

� Estimate 0.721 0.696
Standard deviation 0.008 0.008

The ATE, ATE$, and � are only estimated for the likelihood-based procedures as estimation relies on the specification
of a probability distribution for the observations.

Despite estimating the same quantity, differences between the two-stage and likelihood-based esti-
mates of �1 are substantial. Because we thoroughly check the distribution of the observed variables
graphically and using several diagnostics, and also explored various variable transformations, we believe
that the discrepancy in these estimates is due to things we do not observed that cannot be tested fully
empirically: violations of the exclusion restriction or departures of the distribution of the error terms
from the bivariate normal distribution of the data. To gain further insight into possible causes of the
discrepancy we conducted a simulation study (Section 5).

The 95 per cent confidence interval for �1 under 2SLS only just overlaps �̂1 under 2SPS and 2SRI
and conversely the 95 per cent confidence intervals of �1 under 2SPS and 2SRI only just encompass �̂1
under 2SLS, illustrating that the results are sensitive to small differences in the method of estimation.
The MLEs had SEs about one-fifth and one-third those for 2SLS and its nonlinear variants (2SPS and
2SRI), respectively, thus highlighting the ability of the likelihood procedures to yield more precise
inferences.

Comparing the scale of the vertical axes in Figure 2, the Bayesian point and interval estimates
of �1 and �$

1 were substantially more sensitive to p(�) than Bayesian estimators of ATE and ATE$.

From log10(�2
�)=−3 (i.e. �2

�≈0.001) to log10(�2
�)=−2 (i.e. �2

�≈0.01), E[�1 |dataobs] (and thus E[�$
1 |
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Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1971--1988



A. J. O’MALLEY, R. G. FRANK AND S.-L. T. NORMAND

0.0

0.5

1.0

Log Prior Variance of Correlation

Conditional Effect of Atypical

0.97

0.98

0.99

1.00

1.01

1.02

Log Prior Variance of Correlation

Marginal Effect of Atypical

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Log Prior Variance of Correlation

P
os

te
rio

r V
ar

ia
nc

e

Residual Variance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log Prior Variance of Correlation

P
os

te
rio

r 
C

or
re

la
tio

n

Selection Effect

Figure 2. Relationship between Bayesian posterior means of (�1,ATE,�2
y,�) and log10 of the prior variance,

�2
�, when � has an extended Beta density on [−1,1]. The dotted lines are the interpolated pointwise 99 per

cent credibility intervals. The dashed lines in the upper left-hand plot depict from top to bottom the OLS,
2SPS, 2SRI, 2SLS, Bayesian posterior mean under a U(−1,1) prior for �, and the MLE, respectively.

dataobs]) move from being close to the OLS estimate to close to the MLE. However, as indicated in
the plot of the selection effect (bottom-right), a very precise prior on �2

� is required to obtain Bayesian
estimates that correspond to those of the two-stage approaches.

The 33 elements of ui in (11), the model for testing the exclusion restriction, had standardized effects
(estimate divided by standard error or posterior standard deviation) ranging from 1.054 to 1.954, not
significant at the 0.05 level. The F-statistic for the test that b3=0 equals 237, well above the critical
value at the 0.05-level of 47.4. Thus, there is strong evidence under the assumed bivariate normal model
that the exclusion restriction is violated.

5. Simulation study

We conducted a simulation study to evaluate the sensitivity of the estimators of �1 and the ATE,
and properties of likelihood-based tests of the exclusion restriction (i.e. the condition b3=0), to
the distribution of εi . Computations were streamlined by substituting xi and ui with the univariate
variables x sim

i and usim
i , whose effects approximate the combined effects of all elements of xi and ui ,

respectively. This was achieved by making the variance of x sim
i and usim

i equal 1 and �sim
1 , �sim

1 and
�sim

2 equal the empirical standard deviation of bT
2 xi , hT

1 ui and hT
2 xi , respectively. To further reduce

computation time while emulating the Florida Medicaid data, both n and �2
y were reduced by factors

of 10. Bias, mean-squared error (MSE), and coverage were estimated by averaging over 1000 simulated
data sets.
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Figure 3. Simulated bias of estimators as a function of � for different outcome distributions and status of
the exclusion restriction. As per the Florida Medicaid analysis �1=−0.793, �1=0.144, and if the exclusion
restriction is violated then �3=0.144. The vertical axis in the upper-right plot covers a wider range to

accommodate the excessive bias of 2SLS under violation of the exclusion restriction.

In the first group of simulations, εi was drawn from a bivariate normal distribution, the case where
the likelihood function is correctly specified. In subsequent simulations, observations were randomly
drawn from a bivariate t-distribution with seven degrees of freedom or were correlated draws from
gamma distributions, allowing assessment of the robustness of the approaches to thicker-tailed and
skewed distributions. Finally, we simulated data in violation of the exclusion restriction by setting
�sim

3 =�sim
1 to evaluate sensitivity with respect to the exclusion restriction. We also evaluated the normal

likelihood-based test of the exclusion restriction for �sim
3 ranging from 0 to �sim

1 .
The bias and root mean square error (RMSE) for each estimator and scenario are displayed in Figures

3 and 4, respectively, while Table III contains operating characteristics of the likelihood-based test of
the exclusion restriction. However, in discussing these results we use a method-by-method approach;
this was most helpful in describing the scenarios under which each approach works best and when it
absolutely should not be used. To supplement the results, Figure 5 depicts an algorithm for determining
which approach is best to use in practice.
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Figure 4. Simulated root mean-squared error (RMSE) of estimators as a function of � for different outcome
distributions and status of the exclusion restriction. As per the Florida Medicaid analysis �1=−0.793,
�1=0.144, and if the exclusion restriction is violated then �3=0.144. The vertical axis in the upper-right plot
covers a wider range to accommodate the excessive RMSE of 2SLS under violation of the exclusion restriction.

5.1. Results for OLS

As expected the OLS estimates became increasingly biased the further � was from 0 (Figure 3)
with RMSE is essentially equal to bias in all cases where � �=0. Any variations in its performance
across distributions or under violation of the exclusion restriction (which is irrelevant as far as OLS
is concerned) were drowned out by the impact of an unmeasured confounder. Clearly, if there are
legitimate concerns about unmeasured confounders then OLS is not appropriate.

5.2. Results for 2SLS

Figure 3 shows that 2SLS performs well across all conditions other than violation of the exclusion
restriction, in which case 2SLS is even more biased than OLS and thus should not be used. However,
if the IV is supported by theoretical arguments or other insights indicating that the exclusion restriction
holds use of 2SLS is appropriate (as shown in Figure 5).

It is clear from Figure 4, where the range of the vertical axis for 2SLS is much greater than that of
the other methods, that the standard errors of 2SLS estimates exceed those of all other methods. Thus
use of 2SLS typically lowers the statistical power of the analysis compared to other approaches.
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Table III. Simulations results when the exclusion restriction may be violated (�=0.721).

Parameter values Statistics

Distribution �1 �1 �3 Bias RMSE Coverage z-Value Power

Normal −0.793 0.144 0.000 0.000 0.018 0.968 −0.025 0.054
Normal −0.793 0.144 0.036 0.001 0.018 0.972 2.055 0.526
Normal −0.793 0.144 0.072 0.000 0.017 0.984 4.077 0.982
Normal −0.793 0.144 0.108 0.000 0.017 0.972 6.060 1.000
Normal −0.793 0.144 0.144 0.000 0.018 0.980 8.075 1.000

T −0.793 0.144 0.000 0.001 0.015 0.974 0.054 0.038
T −0.793 0.144 0.036 0.001 0.015 0.970 2.470 0.707
T −0.793 0.144 0.072 0.001 0.015 0.982 4.802 0.996
T −0.793 0.144 0.108 0.003 0.016 0.946 7.322 1.000
T −0.793 0.144 0.144 0.002 0.015 0.972 9.651 1.000

Gamma −0.793 0.144 0.000 −0.043 0.046 1.000 −2.767 0.802
Gamma −0.793 0.144 0.036 −0.044 0.046 1.000 −0.498 0.066
Gamma −0.793 0.144 0.072 −0.045 0.047 1.000 1.723 0.390
Gamma −0.793 0.144 0.108 −0.044 0.047 1.000 4.054 0.988
Gamma −0.793 0.144 0.144 −0.043 0.046 1.000 6.389 1.000

Is study
randomized?

Is an IV
available?

Use OLS

Is symmetry of
outcome distribution

a concern?

Use
Parametric

Model
Use 2SLS Use 2SRI

Yes NoNoYes

No Yes

Figure 5. Algorithm for choosing the best method in practice. The decision process begins with the left-hand
rectangle and at each subsequent step selects a method (ovals) or moves to the next decision (boxes). Because
our results suggest that 2SPS is dominated by either 2SRI or 2SLS, it does not appear. Data transformations

and other analyses that inform model specification should be performed prior invoking this algorithm.

5.3. Results for 2SPS and 2SRI

As shown in Figures 3 and 4 these alternative moment-based IV procedures compared favorably to 2SLS
when the underlying distribution is symmetric or the exclusion restriction is violated (although they still
perform consistently poorly in this scenario) but not so favorably when the underlying distribution is
skewed. In general, 2SRI is more precise (smaller variance and RMSE) than 2SPS which is more precise
than 2SLS while the reverse order holds for sensitivity to skewness (i.e. 2SRI is worst performed).

These results, not previously reported in the literature, may be a consequence of the nonlinearity
of Equation (7) introducing bias when the distribution of εi is skewed. Because the theoretical results
reported in [4] imply that 2SRI and 2SPS are consistent (irrespective of the underlying distribution), bias
should approach 0 as n increases. However, additional simulations at different values of n suggested
that, at best, the convergence is very slow.

Based on the above, 2SRI may be the best method to use when the evidence supporting the validity
of the IV is strong (as for 2SLS) but n is such that the study is insufficiently powered under 2SLS.
However, if there is evidence that �i has a skewed distribution, particularly �y,i (see Section 5.5), then
2SLS would be the safer (more robust) choice.

1984
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5.4. Results for likelihood-based estimators

The MLE and the Bayesian estimators of �1 yield better results than the two-stage estimators when the
underlying distribution is normal and are more robust to violations of the exclusion restriction. However,
they are more sensitive to departures of the underlying distribution from normality. An interesting
finding is that likelihood-based estimators of �1 are relatively more robust when non-normality is in the
form of thicker tails than skewness while the reverse is true for likelihood-based estimators of the ATE.

The robustness of the MLE of the ATE is due to the presence of �. The two-stage methods do not
account for � and so, with no way to compensate for �3 �=0, yield biased results, while the MLE of
�1 is only partially affected by violations of the exclusion restriction due to the fact that the error
correlation � partially absorbs �3usim

i �=0.
As indicated in Figure 5, likelihood-based methods are recommended when unmeasured confounders

are thought to exist but it is questionable whether the IV is valid or no IV is available. To make
likelihood-based analyses as believable as possible, transformations of yi that induce normality in �̂y,i
should be considered.

5.4.1. Test of exclusion restriction. Table III shows the results of including usim
i as a predictor of yi

when the true value of its coefficient, �3, varies from 0 to 0.144 (i.e. up to the magnitude of the effect
of the IV). When the underlying distribution is bivariate normal, �3 is estimated with high precision
and no bias. Furthermore, the power of the test H0:�3=0 against the alternative H A :�3 �=0 increases
from 0.05 when the true value is 0 (in this case power = type I error) to over 0.95 at 0.072. Therefore,
if normality holds the likelihood-based methods provide a valid test of the exclusion restriction.

Inferences about �3 are almost as reliable if the underlying distribution has t7 as opposed to normal
marginals, slightly over-covering when �3 >0. However, if the underlying distribution is skewed (as for
a Gamma distribution), then estimates of �3 are biased and the type I error of the test of the exclusion
restriction is excessive. Therefore, the bivariate normal test of the exclusion restriction cannot be relied
upon if the true outcome distribution is asymmetric.

5.5. Other results

We also evaluated the approaches under various other scenarios for which we do not present results. In
one series of simulations one of �y,i and �z,i was normal and the other was non-normal (t or gamma)
distributed. Results were more sensitivity to non-normality of �y,i than �z,i . In fact, as long as �y,i was
symmetric, 2SRI appeared to be robust to the distribution of �z,i and the likelihood-based procedures
were only biased by small amounts.

When h1 increases by a factor of 2, the MSE of the two-stage estimators decreases by a factor
of 4. Although the MLE becomes more precise as h1 increases, the trend is nowhere as dramatic as
for the two-stage approaches. This reflects the fact that the likelihood-based procedures are identified
from the distribution of the data and so the involvement of usim

i improves the stability and precision
of the estimates. Multiplying �1 by 2 does not alter the precision of the estimators revealing that the
magnitude of �1 is not tied to the precision with which it is estimated.

The performance of interval estimators for �1 was highly correlated with the bias and variance of the
corresponding point estimators. If the point estimator was unbiased then the coverage of the interval
estimator was close to 0.95.

6. Discussion

We used data from a large state database to investigate whether newer atypical antipsychotics lowered
net costs of health care relative to conventional antipsychotics. Because treatment is non-randomly
assigned, instrumental variables methods were used to separate the true effect of treatment on log-cost
from selection effects. To aid interpretation, we converted the total payments made under each treatment
from log-spending to spending (in $). We used several approaches for the analysis with the rationale that
the methods would validate one another if similar results were obtained. The methods yielded results
that were surprisingly disparate; atypicals were estimated to save about $10 000 under likelihood-based
procedures (the MLE and Bayesian models), in contrast to no saving or increased spending, of about
$2000, under the two-stage procedures. These results bring the assumptions underpinning the methods
into question.
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To gain a sense of which results to believe, we used simulations that studied the properties of the
two-stage procedures and the MLE. We observed the following: (1) OLS only works in the absence
of confounding, (2) 2SLS works well in all scenarios other than when the exclusion restriction is
violated, in which case it fails completely, (3) 2SPS performs better than 2SLS unless the underlying
distribution is skewed, (4) 2SRI performs better than 2SPS unless the underlying distribution is skewed,
and (5) likelihood-based estimators perform better when the underlying distribution is normal and
when the exclusion restriction is violated. While results (1) and (2) are well known, (3)–(5) are new
findings. The poor performance of the alternative two-stage procedures when the distribution of the
data is asymmetric illustrates that the complete robustness of 2SLS to the distribution of the data is
compromised by seeking to improve efficiency through the use of a nonlinear first-stage equation.

Likelihood-based estimators of �1 and �3 (the direct effect of the candidate IVs on the outcome) are
surprisingly robust to violations of normality as long as the true distribution is symmetric, but fail when
the true distribution is skewed. Thus, while likelihood-based models can be robust and, therefore, can
be used to test the validity of 2SLS when the true distribution is symmetric, their findings are quickly
compromised if the true distribution is skewed.

With the above in mind, where does the evidence for offsets of atypical antipsychotics point?
Based on the analysis of the Florida Medicaid data, there is evidence that the assumption of normal
residuals, although a reasonable approximation, does not hold exactly. Therefore, because 2SLS is
robust to the distribution of the residuals and the exclusion restriction can be defended heuristically
(i.e. from an economic standpoint), 2SLS might be most trustworthy. However, the findings in this
paper reveal that even a small departure from the exclusion restriction makes 2SLS and the alternative
two-stage procedures likely to produce results that are substantially biased. Given the highly conflicting
results across the approaches we feel there is insufficient evidence to conclude the offset of atypical
antipsychotics is positive or negative. This is generally consistent with the research from clinical trials
such as the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study [31].

The fact that different statistical procedures result in such different results is alarming. The finding
that the alternative two-stage procedures are sensitive to the underlying distribution of the data is
important for researchers using these methods. Similarly, the results on the sensitivity of parametric
models derived from latent variable constructs, as for the likelihood-based analysis here, is an important
lesson to statisticians and other users of these approaches.

The methodology we have developed is generally applicable to any observational study in which an
IV is available for the treatment and outcome of interest. In light of the sensitivity results reported here,
the availability of a valid IV is critical. However, finding IVs in practice can seem an art form to one not
familiar with IV analysis as the arguments supporting the exclusion restriction are theoretically rather
than empirically driven. Therefore, we recommend a subject matter expert with an acute sense of the
outcome, treatment and unobserved confounding variables is integrally involved in the determination
of candidate IVs.

A limitation of our empirical analysis is that we did not account for repeated measurement of
subjects that appeared in the data set in multiple years. We subsequently fit a hierarchical Bayesian
model that included a random intercept for subject. The posterior mean of �1 was −0.492 (sd =
0.0197), suggesting that single-level analyses might over-estimate the magnitude of �1. The within-
subject variance had a posterior mean of 1.036 (0.0125) while the between-subject variance had
a posterior mean of 1.118 (0.0141), suggesting there is substantial unexplained variance between
subjects.

Another direction in which the likelihood-based estimators could be extended is by assuming a
more flexible family of distributions for �i (e.g. bivariate t-distribution) and constructing estimators
under those less restrictive assumptions. However, because a more flexible model is likely to be less
well identified by the data, it is not clear that it would yield an estimator that is more robust to the
distribution of the data.

Appendix A: Method-of-moments derivation of 2SLS

Classic IV fits the model in Equation (1) subject to the constraint that ui and εi are orthogonal.
Write �y,i (b)= yi−�1zi+bT

2 xi to emphasize the dependence of �y,i on b= (�1,b2). By definition, ui
is uncorrelated with �y,i and so E[ui �y,i (b)]=0 for all i . As we do not observe the true expectations,
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we seek values of b such that

T (b)=n−1
n∑
i

(
ui

xi

)
�y,i (b)=0. (A1)

Because xi is exogenous, E[xi �y,i (b)]=0.
Equation (A1) can be solved exactly if the number of IVs equals the number of endogenous predictors.

However, if dim(ui )>dim(zi ) it is generally not possible to satisfy all of the orthogonality conditions
simultaneously; zi is said to be overidentified. An ‘optimal’ solution is obtained by finding the parameter
values that minimize the quadratic form

Q(b)=T (b)TWT (b),

where W is a positive-definite weighting matrix quantifying the relative importance of the orthog-
onality conditions across the instruments. Setting W proportional to cov(Xεy)=�2

yXTX, where εy=
(�y,1, . . . ,�y,n)T, minimizes the variance of Q(b). The IV estimator is then the value of b which
minimizes T (b)TXTXT (b) subject to (A1), yielding

b̂= (X̂
T

X̂)−1X̂
T

y, (A2)

where X̂=U(UTU)−1UTX is the predicted value of X in a regression of X on U and U is the matrix
with i th row (uT

i ,xT
i ) [15, p. 530]. Because xi is contained in both X and U it projects onto itself and

so x̂i=xi . Geometrically, ẑ is the projection of z= (z1, . . . , zn)T onto U; ẑ is orthogonal to εy and thus
contains only the component of variation in z that can be used to estimate b.

Appendix B: Derivation of the likelihood function

Make �y,i and �z,i the subject of Equations (1) and (2) and factor the joint density as f (�y,i ,�z,i )=
f (�y,i ) f (�z,i |�y,i ). Then integrate with respect to �z,i over those values of �z,i for which zi=1, and
analogously for those values for which zi=0, to obtain f (zi |�y,i ). Finally, substitute for �y,i to obtain
the joint density of (yi , zi ).

Appendix C: Computation of standard errors of MLEs

Let di = (zi ,uT
i )T, h←h/(1−�2)1/2, �=�/{�2

y(1−�2)}1/2, ri= yi−dT
i b and mi=uT

i h+�ri . Then set

�1(mi , zi )={zi/�(mi )−(1−zi )/(1−�(mi ))}	(mi ), �2(mi , zi )={zi/�(mi )2+(1−zi )/(1−�(mi )2)}
	(mi )2, �3(mi , zi )=−mi�1(mi , zi )−�2(mi , zi ), and wi=1/�2

y−�2�3(mi , zi ).
The first and second derivatives of the log-likelihood function, L, are

Lb=
n∑

i=1
{ri/�

2
y−��1(mi , zi )}di , Lh=

n∑
i=1

�1(mi , zi )ui ,

L�=
n∑

i=1
�1(mi , zi )ri , L�2

y
=−�−2

y

n∑
i=1

di ri ,

L
bb

T=−
n∑

i=1
wi di dT

i , L
bh

T=−�
n∑

i=1
�3(mi , zi )di uT

i ,

Lb�=−
n∑

i=1
{�1(mi , zi )+��3(mi , ziri )}di , Lb�2

y
=−�−4

y

n∑
i=1

di ri ,

L
hh

T=
n∑

i=1
�3(mi , zi )ui uT

i , Lh�=
n∑

i=1
�3(mi , zi )ri ui ,

L��=
n∑

i=1
r2

i �3(mi , zi ), L�2
y�2

y
=n/(2�4

y)−�−6
y

n∑
i=1

r2
i .

All other elements of the Hessian matrix, the matrix of second derivatives of the log-likelihood
function with respect to (b,h,�,�2

y), equal 0. The covariance matrix of the estimated parameters is

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1971--1988
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estimated by the negative-inverse-Hessian matrix. The approximate variance of estimators of functions
of these parameters, such as � and the ATE, are then derived using the delta method.
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