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Abstract: We developed a prototype for measuring physiological data for pulse transit time (PTT)
estimation that will be used for ambulatory blood pressure (BP) monitoring. The device is comprised
of an embedded system with multimodal sensors that streams high-throughput data to a custom
Android application. The primary focus of this paper is on the hardware–software codesign that
we developed to address the challenges associated with reliably recording data over Bluetooth on
a resource-constrained platform. In particular, we developed a lossless compression algorithm that is
based on optimally selective Huffman coding and Huffman prefixed coding, which yields virtually
identical compression ratios to the standard algorithm, but with a 67–99% reduction in the size of the
compression tables. In addition, we developed a hybrid software–hardware flow control method
to eliminate microcontroller (MCU) interrupt-latency related data loss when multi-byte packets
are sent from the phone to the embedded system via a Bluetooth module at baud rates exceeding
115,200 bit/s. The empirical error rate obtained with the proposed method with the baud rate set to
460,800 bit/s was identically equal to 0%. Our robust and computationally efficient physiological data
acquisition system will enable field experiments that will drive the development of novel algorithms
for PTT-based continuous BP monitoring.

Keywords: pulse transit time; blood pressure; electrocardiogram; photoplethysmogram;
seismocardiogram; gyrocardiogram; compression; Huffman coding; UART flow control

1. Introduction

1.1. Rationale

High blood pressure is a high risk factor for cardiovascular diseases (that cause 7.1 million
deaths annually) [1] and effective BP monitoring may potentially decrease mortality and improve
a patient’s quality of life by reducing hospitalization [2]. We are currently developing a wearable
system that would, in contrast to traditional cuff-based methods, enable 24-h continuous ambulatory
BP monitoring. We envision an unobtrusive device based on pulse transit time (PTT) methods that
is comprised of wearable seismocardiogram (SCG) and gyrocardiogram (GCG) for proximal timing,
reflectance-mode photoplethysmogram (rPPG) for distal timing, and an electrocardiogram (ECG) that
is used as a timing reference. Studies suggest that PTT—the time that it takes for an arterial pressure
wave to travel between two locations—is correlated with BP and can therefore be used to obtain BP
measurements [3,4].
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Data measured with these sensing modalities would ideally be preserved for further analysis
by a clinician, which can be achieved either by storing the data locally on a Secure Digital (SD) card
or by transmitting them over a wireless network to, for instance, a Bluetooth-enabled smartphone.
The latter is preferable because it minimizes the burden placed on the user for reliably transferring
data from the wearable device. In addition, computationally demanding tasks such as PTT estimation
may be delegated to the smartphone (or to the cloud with the smartphone acting as a conduit),
which means that the wearable may be designed to use low-cost components with very modest
computational resources. A smartphone acting in an Internet gateway role may also be used to
deliver over-the-air firmware updates and enable interesting applications such as customized sensing.
The authors of [5] developed an Android application with real-time data streaming capabilities for
PTT estimation; however, their system samples 8-bit ECG at 300 Hz and a single channel finger PPG at
75 Hz. The reported sampling rates and resolution are likely insufficient for accurate PTT detection
(typical sampling rates reported in existing literature are in the 1–2 kHz range [6,7]). Moreover, an ECG
sensor and a PPG sensor alone can only be used to measure pulse arrival time, which is not a reliable
predictor of BP [8].

There are a few limitations associated with Bluetooth communications that need to be addressed
before it can be reliably used for PTT sensing. First, the severe bandwidth constraints of Bluetooth
communication over a universal asynchronous receiver–transmitter (UART) interface restricts the
maximum sustained data rate to 45 kB/s (a two-bit overhead (for the start and stop bits) is incurred
for every byte transmitted over UART, so we adopt bit/s as the unit for the raw data rate and B/s for
the usable data rate—to distinguish between both quantities) for the low-power MCU and Bluetooth
module pair used in this work, which is significantly lower than the achievable 2 mB/s (or higher)
SD card speeds over a serial peripheral interface (SPI). Second, the inherently lossy nature of wireless
communications, which results in dropped packets and missing data, poses a significant challenge
for PTT applications that require accurate detection of fiducial points on the acquired waveforms.
Finally, the active mode current consumption of the Bluetooth device used in this work can be as high
as 26 mA—a relatively large value for wearables where battery power is at a premium. All of the
aforementioned drawbacks can be mitigated by data compression via source coding. Data compression
simultaneously minimizes bandwidth usage and current consumption because the Bluetooth radios
spend less time in active mode. Furthermore, the bandwidth savings can be used to implement an
application layer that enables lossless communications over the lossy interface.

1.2. Data Compression Background

Data compression methods can be broadly categorized, based on their ability to perfectly recover
the original data from its compressed form, into lossy and lossless compression. Several authors
have developed lossy compression algorithms for physiological data such as ECG [9,10] and
electroencephalograms [11], and most have reported very high compression ratios but with varying
degrees of compromises made with regards to the reconstructed signal quality. The percent root-mean
square difference (PRD) is often used a metric for quantifying the signal reconstruction fidelity [12,13].
Lossy compression is certainly a sensible approach for cardiac analysis methods, such as heart rate
monitoring, that depend on aggregate morphological features of the measured waveforms. In contrast,
the singular focus in PTT sensing is on accurately identifying the fiducial locations on the cardiac
signals of interest. In particular, a reconstructed PPG waveform with a smeared pulse foot, but with
the rest of the waveform perfectly reconstructed, would likely have a low PRD although the smearing
of the pulse foot may render the waveform virtually useless for PTT estimation. Moreover, the type of
distortion is not known a priori, so lossy compression is not ideal for PTT sensing applications.

Lossless compression algorithms typically implement an estimator for the underlying signal
and encode the residual between the true signal and the estimate with an entropy reducing
algorithm [14]. The residual should, in theory, have a much smaller dynamic range in comparison
to the true signal. Estimators that are commonly used for physiological data compression include
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transform-based methods such as wavelets [15,16] and linear predictors used in linear predictive
coding [17]. These methods are inappropriate for low-power computing platforms because of their
relatively high computational cost. A more promising method is differential pulse code modulation
(DPCM) [18,19], where the estimate of the current sample is simply the previous sample, therefore the
residual corresponds to the first backward difference. The DPCM method relies on the observation
that adjacent samples in naturally occurring signals are highly correlated [19].

Popular entropy reducing algorithms include Huffman coding [20] and arithmetic coding.
Arithmetic coding provides higher compression ratios [21], but Huffman coding is a more attractive
choice for this application because it only requires a table lookup, which can be implemented with
hash tables that support very fast and efficient queries. Huffman codes are variable-length codes
that assign fewer bits to frequently occurring symbols and longer bit sequences to less frequent ones.
The main challenge associated with implementing the Huffman coding algorithm on a low-power
MCU is its prohibitive storage requirement. The reason is that, for lossless compression, every possible
symbol in the dictionary must be explicitly stored in the compression table, which implies that M-bit
data would require a table with 2M entries. Clearly, O(2M) space complexity does not scale well to
low-power platforms with memory capacities typically in the kB range. Furthermore, the size of the
underlying data types required to store the codes may increase because longer bit sequences are used
to encode low probability symbols.

One method that has been proposed for minimizing the Huffman table size is the so-called
optimally selective Huffman coding scheme [22], which explicitly encodes the k most frequent
symbols (where k is a user-defined parameter), while other symbols are transmitted in their raw form.
A preceding bit is used to indicate whether the succeeding bits are encoded or raw data. Without loss of
generality, let k = 2m, where m ∈ Z≥0; if the k symbols are uniformly distributed, then the average code
length for the k symbols is given by the maximal entropy, which is log2(k) = m [23]. However, if the
2m symbols can be grouped together and there exists a natural ordering among them, then there is the
trivial bijection between the set of k symbols and the index set {0, 1, . . . , 2m− 1}mapping the symbols to
their respective positions, where each index has an m-bit binary representation. Therefore, an identical
compression ratio can be achieved—without the use of a compression table—by transmitting the
symbol’s index within the group instead of its Huffman code. This example, which highlights the
main drawback of the algorithm, may seem to be somewhat contrived, however analysis of the data
in Figure 1 reveals that this is not the case. Figure 1c is the histogram of magnitudes of residuals for
14-bit ECG data recorded during device development. Although the first 16 (24) bins are not exactly
uniformly distributed, their Huffman codes (computed with MATLAB and provided in Appendix A.3)
are all 4-bits long. Therefore, residuals in bin 0 can be encoded as 0 (0000b), bin 1 as 1 (0001b), . . .,
and bin 15 as 15 (1111b) without increasing the average code length of the 16 symbols. It should be
noted that this behavior served as the primary rationale for the algorithm developed in this work.
Another limitation is that it is highly susceptible to overfitting—a problem shared with other greedy
algorithms. The distribution of the finite dataset that the codes are computed from may not be
representative of the true distribution. For example, PPG amplitudes are well-known to be highly
dependent on contact/hydrostatic pressure and perfusion (amongst other factors) [24–26]. Therefore,
its empirical distribution is dependent on those parameters and the data used to compute the codes
may not be consistent with the data recorded later. Nevertheless, optimally selective Huffman coding
is just a special case of the algorithm proposed in this work and this special case is selected if it is
indeed optimal in the context that is defined shortly.

Huffman prefixed coding (not to be confused with the prefix-free property of Huffman codes)
is an alternative strategy for constructing tables from potentially large dictionaries by grouping the
symbols into equiprobability classes with Huffman codes computed for those probability classes
alone [27]. The code for a symbol is subsequently formed by concatenating the Huffman code for its
probability class with the index of the symbol within that class. Although not explicitly acknowledged,
this method was used by Pahlm [28], where the groups are of the form {0} (the special case) and the
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nonuniform half-open intervals [2m−1, 2m) for m ≥ 1 (the general case). This grouping implicitly makes
very strong but not necessarily correct assumptions about the nature of the distribution. Specifically,
it assumes that the distribution decays rapidly but that it is approximately piecewise constant within
each of the intervals. That assumption is definitely reasonable for the unimodal ECG distribution in
Figure 1c, but not so for the noisy PPG data in Figure 1d, which has the multimodal distribution shown
in Figure 1f. Moreover, the algorithm has no tuning parameters, so the one-size-fits-all approach
is unlikely to be optimal for every possible waveform and sensing modality. Furthermore, it treats
the symbol ‘0’ as a special case but it can be observed in Figure 1c,f that ‘0’ is not always the most
probable symbol.
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Figure 1. (a) A three-second trace of ECG data recorded during device prototyping. (b) The unimodal
histogram of residuals for the entire ECG dataset with 260k samples. (c) The residuals are approximately
symmetric, so a sign bit can be transmitted along with the encoded magnitude. (d) A three-second
trace of noisy rPPG data recorded simultaneously with the ECG. (e) The multimodal histogram of
residuals for the rPPG. (f) The histogram of magnitudes of the residuals for the rPPG.

1.3. Contributions

We developed an end-to-end system that will be used for conveniently recording high-throughput
physiological data in a mobile setting, which will guide algorithm development for PTT-based
ambulatory BP monitoring. To that end, we implemented a breadboard prototype that incorporates
off-the-shelf and custom analog front-ends for sensing rPPG, SCG, GCG, and ECG. We also developed
a software suite comprised of firmware running on a low-power MCU and an Android application
for acquiring data in real-time, a desktop application for recovering data offline, and a back-end web
application for storing de-identified subject metadata.

In addition, we propose a compression algorithm that is based on optimally selective Huffman
coding and Huffman prefixed coding, where compact Huffman tables are computed from a subset of
data grouped into probability classes. Furthermore, we developed a fast algorithm for learning the
tables in a computationally efficient manner, and we demonstrate how to leverage the computational
capabilities of modern smartphones such that the compression tables can be computed in real-time
from streaming data. We compare compression ratios obtained with the proposed method to those
obtained with Huffman tables computed from complete data. We also demonstrate how this method
may be used to acquire and transmit physiological data at a rate higher than the theoretical channel
capacity of the Bluetooth module.
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Finally, we addressed the need for lossless data communications by implementing: (1) a hybrid
hardware–software UART flow control method to eliminate MCU interrupt-latency related errors;
and (2) an acknowledgment-based (ACK-based) lossless communications protocol for reliably
transmitting sensor data from the wearable to a smartphone, and compression tables and messages in
the reverse direction.

2. Materials and Methods

2.1. Algorithm

In this subsection, we first present the proposed algorithm and its associated grouping strategy.
Next, we derive a computationally efficient algorithm for learning the hyperparameters of the proposed
algorithm and the corresponding compression table.

2.1.1. Encoder

The histograms in Figure 2a,d provide the rationale for the proposed method. It can be observed
that the bin counts are approximately constant over a small neighborhood (how small the neighborhood
is will be discovered from data with an approach that is subsequently described). If the neighborhoods
are restricted to be bins of the zero-aligned histogram with bin widths of the form 2m, where m ∈ Z≥0,
then the probability class of a residual r[n] is

⌊
|r[n]|

2m

⌋
and its index within the class is |r[n]| mod 2m.

This grouping strategy is convenient because, for M-bit data, the (M−m) most significant bits of the
magnitude of the residual correspond to the sample’s probability class while the m least significant bits
is the residual’s index within the probability class, which greatly simplifies the encoder and the decoder.
It is worth noting that this method is, to some extent, similar to the content-adaptive Golomb–Rice
coding algorithm that was developed for compressing ECG by Tsai [29] because both techniques
encode the lower m bits in binary. The key differences are: (1) the Golomb–Rice algorithm unary
encodes the upper (M−m) bits; and (2) they learn m with a windowing method that is determined by
the QRS complex of the ECG. Our approach is more general and can be used for different physiological
sensing modalities without any modification, because it does not rely on any morphological features of
the waveform in order to perform compression. Moreover, their overall system is more complex than
the one proposed in this paper, which may significantly reduce sampling rates (with similar hardware,
they recorded twelve channels of 11-bit ECG at 600 Hz, compared to the 3200 Hz sampling rate for ten
14- and 16-bit channels in this work).

As with the optimally selective Huffman coding algorithm, we compute Huffman codes for only
a subset of the data, but, instead of making the table size a fixed parameter, we specify a search range
{k1, k1 + 1, . . . , k2} of acceptable table sizes and we compute tables for probability classes as opposed
to residuals. Figure 2c,f shows the selected subsets when m = 1 and k = 13, and it can be observed
that this grouping method works well with unimodal and multimodal distributions because it is able
to sift out three out of four modes in Figure 2f. The encoder is explicitly given in Algorithm 1, but the
decoder is omitted for brevity (because it can be inferred from the encoder). Nevertheless, both are
illustrated by the simulated example given in Figure 3. The encoder for an M-bit sample d[n] checks if
the Huffman code for the sample’s probability class is in the compression table Tm,k, where m is the
bin width parameter and k is the size of table. If so, the sample’s code is constructed by concatenating
the encoded data indicator, the sign indicator for the residual, the Huffman code for the residual’s
probability class, and its index within the class. If the code for the probability class is not in the table,
the code is formed by concatenating the raw data indicator with the raw sample—with any unused
leading bits removed.
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Algorithm 1 encode.

Input: d[n], d[n− 1], m, M, Tm,k

Output: c[n]
1: E← 1
2: R← 0
3: r[n]← d[n]− d[n− 1]
4: z[n]← |r[n]|
5: pDm [n]←

⌊
z[n]
2m

⌋
6: if pDm [n] ∈ dom(Tm,k) then
7: q[n]← z[n] mod 2m

8: if r[n] ≥ 0 then
9: s[n]← 1

10: else
11: s[n]← 0
12: end if
13: c[n]← (1)E⊕ (1)s[n]⊕ Tm,k[pDm [n]]⊕ (m)q[n]
14: else
15: c[n]← (1)R⊕ (M)d[n]
16: end if

Comments: (1) |·| Denotes the magnitude or cardinality (size) of its given argument when applied to a scalar or

a set, respectively; (2) ⊕ Denotes bitwise concatenation; and (3) Leading superscript explicitly indicates the size

(in bits)
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Figure 2. Histograms of magnitudes of residuals for ECG and PPG. (a) ECG with bin width = 1 is sparse
(with respect to the underlying dictionary of 214 possible values) with only 144 bins with nonzero
counts. (b) The number of bins with nonzero counts is approximately halved when the bin width is
increased to 2. (c) The 13 most frequent bins are in contiguous slots. (d) PPG with bin width = 1 is
also sparse with only 60 bins with nonzero counts. (e) The number of bins with nonzero counts is
halved when the bin width is increased to 2, and the distribution still retains the same multimodal form.
(f) The 13 most frequent bins are not all in contiguous slots, which demonstrates how the proposed
method can sift out modes in multimodal distributions.
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Probability Class Code

1 (00000000001) 1
2 (00000000010) 01
3 (00000000011) 000
4 (00000000100) 0010
6 (00000000110) 0011

(a) T3,5 (Huffman Table)

1

3

00000000011

00000000100

0

0

0 1

1

1

0 1

4 6

2

00000000110

00000000001

00000000010

(b) T−1
3,5 (Huffman Tree)

n d[n] r[n] z[n] s[n] p[n] q[n]

0 12,050 (0010111100010010) — — — — —
1 12,073 (0010111100101001) +23 23 (00000000010111) 1(+) 2 (00000000010) 111
2 12,028 (0010111011111100) −45 45 (00000000101101) 0(−) 5 (00000000101) 101

(c) Three-sample packet

d[0]
0010111100101001 0010111011111100

d[1] d[2]
Raw stream 0010111100010010

Encoded stream 10111100010010
c[0] c[2]

010111011111100
c[1]
011 1111

q[
1]

T
3
,5
[p
[1
]]E + R

(d) Encoded packet

n Decode Op. d[n]

0 00⊕ c[0][0 : M) 12,050
1 d[0] +

(
00⊕ T−1

3,5 [01]⊕ 111
)

12,073
2 00⊕ c[2][1 : M + 1) 12,028

(e) Decoded packet

Figure 3. A simulated example of encoding and decoding a three-sample packet with a 14-bit single
data channel. (a) The compression table stored on the MCU (M = 14, m = 3, k = 5), which maps the
11 upper bits of the magnitude of residuals to Huffman codes. (b) The tree stored on the smartphone
for decoding Huffman codes. (c) d[0] is sent in its raw form so that packets are self-contained and can
be decoded out of order, d[1] is encoded because 2 is in the compression table, and d[2] is transmitted
in its raw form because 5 is not in the compression table. (d) An illustration of the steps for encoding
packets. (e) An illustration of the steps for decoding packets. It should be noted that: (1) the two
uppermost unused bits are removed by the encoder and replaced by the decoder; and (2) β[n1 : n2)

denotes values of bits n1, n1 + 1, . . . , n2 − 1 in the bit sequence β.

2.1.2. Hyperparameter Search

The primary task of computing Tm,k from data involves learning m and k because, given those
parameters, Tm,k can be computed in a trivial manner. To that end, we search for the hyperparameters
with model validation—a standard supervised machine learning method. Specifically, we partition
the time series data S , s[0], s[1], . . . , s[J − 1], which are the sensor data for a particular channel,
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into equal-length non-overlapping subsequences T and V that are labeled training and validation data,
respectively (with the samples in T preceding those in V). We then proceed to learn Tm,k from T
by evaluating its performance, via a chosen objective function, on unseen data V , which is done to
minimize the risk of overfitting. It is reasonable to expect a high degree of similarity between the
k probability classes from which Tm,k is computed and the empirical distribution of the validation
data. The Kullback–Leibler divergence is often used to evaluate the similarity (or more accurately,
the dissimilarity) between two distributions [30]. However, a high degree of agreement between both
distributions is only a likely artifact and not the desired goal, which is to learn a table that maximizes
the compression ratio. The compression ratio, which can be maximized by minimizing the total
number of bits, is therefore chosen as the objective function. The hyperparameter search problem can
then be expressed as the optimization:

m∗, k∗ = arg min
0≤m<M,k1≤k≤k2

Φ(V ; m, M, Tm,k) (1)

where

Φ(V ; m, M, Tm,k) ,
N−1

∑
n=0

len (encode (v[n]; v[n− 1], m, M, Tm,k)) (2)

and len(β) denotes the length (in bits) of the bit sequence β. It should be noted that Equation (2)
assumes that there is a fictitious sample v[−1] = 0.

A brute-force search is used to implement the optimization program defined in Equation (1)
because there is no closed-form expression for evaluating Equation (2). The computational cost of Φ
for any {m, k} pair is O(N), which is far from ideal for a real-time implementation when N is large.
However, the inherent structure in Algorithm 1 can be exploited to derive a more computationally
efficient algorithm that may be used to learn {m∗, k∗} from arbitrarily large streaming datasets.

The key observation that can be derived from Algorithm 1, for the purpose of accelerating the
search, is that, given m, M, and Tm,k, the code length for any sample v[n] is completely specified by
the probability class of its residual

pVm[n] ,
⌊
|v[n]− v[n− 1]|

2m

⌋
(3)

that is,

Φ(V ; m, M, Tm,k) =
N−1

∑
n=0

φ(pVm[n]; m, M, Tm,k) (4)

where

φ(α; m, M, Tm,k) ,

{
2 + len(Tm,k[α]) + m, if α ∈ dom(Tm,k)

1 + M, otherwise
(5)

Moreover, pVm[n] is not necessarily unique in V—especially when N is large. Therefore, the terms
with common arguments in Equation (4) can be grouped together into the compact form given below

N−1

∑
n=0

φ(pVm[n]; m, M, Tm,k) = ∑
x∈

N−1⋃
n=0
{pVm [n]}

(
N−1

∑
j=0

1{pVm [j]=x}

)
φ(x; m, M, Tm,k) (6)

= ∑
x∈supp(HVm)

HVm[x]φ(x; m, M, Tm,k) (7)

where HDm [x] is the bin count of bin x in the zero-aligned histogram HDm of the upper (M−m) bits of
the magnitudes of residuals of the time series data D, and supp(HDm ), the support of HDm , is the set of
bins in HDm with nonzero bin counts.
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Furthermore, let supp(HVm) be partitioned into the following index sets

Am,k , supp(HVm) ∩ dom(Tm,k) (8)

and
Bm,k , supp(HVm) \ Am,k (9)

Am,k is the set of probability classes in the validation dataset with codes in the compression table.
Tm,k and bins in HVm with nonzero bin counts are stored in hash tables, so Am,k is the set of keys that
are common to both Tm,k and HVm. The expression in Equation (7) can therefore be expanded as follows

∑
x∈supp(HVm)

HVm[x]φ(x; m, M, Tm,k) = ∑
a∈Am,k

HVm[a] (2 + len(Tm,k[a]) + m) + ∑
b∈Bm,k

HVm[b](1 + M) (10)

However, the number of samples without codes in the compression table is simply the difference
between the total number of samples and the samples with codes in the table, i.e.,

∑
b∈Bm,k

HVm[b] = N − ∑
a∈Am,k

HVm[a] (11)

Substituting the constraint in Equation (11) into Equation (10) and simplifying yields the following
expression for efficiently evaluating Φ

Φ(V ; m, M, Tm,k) = N(1 + M)− ∑
a∈Am,k

HVm[a] (λm − len(Tm,k[a])) (12)

where
λm , M−m− 1 (13)

Equation (12) assumes that HVm is given—for it to be significantly more efficient than Equation (2).
HVm may be computed naively by making an expensive O(N) scan through V , however, the method
described below, which relies on the observation that HVm is sparse, can be used to efficiently compute
HVm for m > 0.

Proposition 1. The bin counts HDm+1[x] of bin x in histogram HDm+1 can be computed from HDm via the
following recurrence relation, where the base case HD0 is constructed directly from the dataset D.

HDm+1[x] = ∑
y3x=b y

2 c
HDm [y] 0 ≤ m < M− 1 (14)

Proof. Bins x and y contain data that map to the same value with the transformations
⌊
|·| /2m+1⌋ and

b|·| /2mc, respectively. Therefore, it is sufficient to show that, for any z ∈ Z≥0,

⌊ z
2m+1

⌋
=

⌊ b z
2m c
2

⌋
(15)

An intuitive but admittedly informal discussion for the more general constraint m ≥ 0 is
given here; however, a formal proof is provided in Appendix A.2. Any nonnegative integer z has
a unique binary representation [31], in other words, for some M > 0 and bi ∈ {0, 1}, z = ∑M−1

i=0 bi2i.
Integer division of z by 2m+1 (the left-hand side (LHS) of Equation (15)) can be implemented with
a right shift of the binary representation of z by m + 1 bits [32]. However, a right shift by m + 1 bits can
be performed recursively, i.e., with a right shift by m bits followed by a right shift by one bit (the right
hand side (RHS) of Equation (15)). Therefore, both sides of Equation (15) are equal.
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The following provides justification for the claim that Algorithm 2 may be used to compute
compression tables from arbitrarily large streaming datasets:

Algorithm 2 Fast hyperparameter optimization and Huffman table construction.

Input: S , M, k1, k2

Output: Tm∗ ,k∗

1: {T ,V} ← partition(S)
2: HT0 ← histogram(|∆T |n)
3: HV0 ← histogram(|∆V|n)
4: m← 0
5: N ← |V|
6: Φ← {}
7: Φmax ← N(1 + M)

8: do
9: λm ← M−m− 1

10: sHTm ← sort(HTm , ‘descending’)
11: for k← k1 to k2 do
12: Φ[m, k]← Φmax

13: Tm,k ← huffman(sHTm [0 : k))
14: for all a ∈ dom(Tm,k) do
15: if a ∈ supp(HVm) then
16: Φ[m, k]← Φ[m, k]− HVm[a] (λm − len(Tm,k[a]))
17: end if
18: end for
19: end for
20: HTm+1

(14)←− HTm
21: HVm+1

(14)←− HVm
22: m← m + 1
23: while m < M
24: m∗, k∗ ← arg minm,k Φ[m, k], 0 ≤ m < M, k1 ≤ k ≤ k2

25: Tm∗ ,k∗ ← huffman(sHTm∗ [0 : k∗))

Comments: (1) |∆D|n is the sequence of magnitudes of the first backward difference ofD; (2) g[n1 : n2) denotes the

sequence g[n1], g[n1 + 1], . . . , g[n2 − 1]; and (3) HDm+1 is computed with the recurrence relation in Equation (14)

1. Algorithm 2 does not invoke the encoder because only the knowledge of a sample’s probability
class, but not its actual code, is required to compute its code length, which implies that number of
primitive operations within each loop is reduced.

2. There is no need to explicitly compute the code lengths for samples whose probability classes are
not in the compression table because they have already been implicitly accounted for by the first
term in Equation (12).

3. In Algorithm 2, the innermost for-all-loop over the k entries in the compression table replaces the
for-loop over the N samples in the validation dataset with the naive implementation. The table
size is several orders of magnitude smaller than the size of the validation data. Moreover,
the predicates in the innermost for-all-loop and its associated if-statement may be interchanged
if
∣∣supp(HVm)

∣∣ < k, i.e., the size of the histogram is smaller than the size of the table, so that
the cost of evaluating Φ[m, k] is O(K), where K , min(k,

∣∣supp(HVm)
∣∣) (in contrast to the O(N)

cost with the naive method). For instance, the worst case cost of Φ given T3,5 in the simulated
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example in Figure 3 is proportional to 5—whether the size of the validation dataset is 103 or 10100

is irrelevant.
4. λm − len(Tm,k[a]) is the number of bits saved by compressing a sample within the probability

class a. However, instead of computing those values one-at-a-time, the histogram is used to
compute the total number of bits saved by all samples within the probability class a.

5. Huffman tables for sorted data can be computed in linear time, and the size of the table is typically
very small, so the cost of computing Tm,k is low.

6. HDm is independent of k, so HDm′ is only computed once to evaluate Φ with {m′, k1},
{m′, k1 + 1}, . . . , {m′, k2}.

7. HDm+1 is computed with Equation (14) in linear time by making a single pass through HDm .
Furthermore, HDm is sparse and

∣∣supp(HDm )
∣∣ typically decays exponentially in m by a factor of 2

(both can be observed for m ∈ {0, 1} in Figure 2). Therefore, computing HDm with Equation (14)
becomes progressively cheaper with increasing m.

8. The cost of the do-while-loop, which executes the brute-force search, is decoupled from the size of
the data (and becomes fixed) once the number of nonzero bins in HT0 and HV0 converge because
the loop only depends on S through HT0 and HV0 . One important consequence of this result
(which was not exploited in this work) is that the algorithm can be made to be very memory
efficient because there is no need to explicitly store the raw data. HT0 may be constructed by
incrementally updating the histogram for the first N samples received from the embedded system,
while HV0 may be similarly constructed from the latter N samples. Moreover, the cost of computing
the histograms in this manner is negligible because it is spread out over time.

2.2. Hardware

Figure 4 is a high-level overview of the hardware architecture of the embedded system, which is
comprised of an MCU that interfaces with custom and off-the-shelf analog front-ends for acquiring the
multimodal physiological signals described below.

LED x 5

L1915-02

PD x 5

S2386-18K

3-Axis Accel.

ADXL354

3-Axis Gyro.

BMG250

TIA

G = 110 dB

&

LPF

𝑓𝑐 = 7.8 Hz

G = 55 dB

&

BPF

0.6 – 10.2 Hz

G = 37 dB

&

BPF

0.4 – 40 Hz

ECG

SEN-12650

MCU

MSP432P4111

ADC

SPI

Tx

UART

Rx

Rx Flow Control

Rx

Tx

SPI Bus

CTS

SPBT3.0DP1

Bluetooth

ECG Electrodes

Ag/AgCl

Figure 4. Hardware architecture for acquiring ECG, SCG, GCG, and rPPG.

2.2.1. Electrocardiogram (ECG)

The SEN-12650 ECG module (Sparkfun Electronics, Niwot, CO, USA) that is based on the AD8232
ECG front-end (Analog Devices Inc., Norwood, MA, USA) was used for recording ECG. Sparkfun has
open-sourced the design of the SEN-12650, which we will fully incorporate into a more compact
single-board implementation in the future.
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2.2.2. Seismocardiogram (SCG)

SCG is a measurement of chest-wall vibrations in response to cardiac contraction and the ejection
of blood at the aortic valve [33,34], and it is typically used for proximal pulse detection. It has been
shown that it can be measured with an accelerometer placed on the sternum [35,36]. In this work,
the low-noise ADXL354 3-axis accelerometer (Analog Devices Inc., Norwood, MA, USA) was used to
record SCG. The signal amplitudes are typically low, so a custom gain circuit is used to amplify the
signal so that the ADC input range can be better utilized.

2.2.3. Gyrocardiogram (GCG)

The ultra-low noise BMG250 (Robert Bosch GmbH, Gerlingen, Germany) 3-axis gyroscope
attached to the sternum was used to record GCG data, which measures angular chest-wall vibrations in
response to heartbeats [37]. It has been shown that cardiac timing estimation accuracy can be improved
by using GCG, along with SCG, for proximal pulse detection [38,39].

2.2.4. Reflectance Mode Photoplethysmogram (rPPG)

rPPG is used for distal pulse detection in the context of PTT estimation. In reflectance mode,
the photodiode (PD) detects back-scattered or reflected light from tissue, bone or blood vessels,
in contrast to transmissive mode PPG, where light is transmitted from a light emitting diode (LED)
through the body to the PD located opposite the LED [26]. Two channels of rPPG were recorded at the
sternum and one channel was recorded at the finger with a custom PPG circuit developed in our lab.
For each chest PPG channel, two L1915-02 infrared LEDs (Hamamatsu Photonics K.K., Hamamatsu,
Japan) were connected in series and two S2386-18K PDs (Hamamatsu Photonics K.K., Hamamatsu,
Japan) were connected in parallel to boost the signal-to-noise ratio (SNR), which is typically low when
rPPG signals are measured at poorly perfused anatomical regions of the body. In contrast, only a single
LED-PD pair was used to record rPPG at the finger because rPPG waveforms recorded there have
a much higher signal quality.

2.2.5. Microcontroller

The MSP432P4111 MCU (Texas Instruments Inc., Dallas, TX, USA) with a single-core 48 MHz
processor was used because of its ultra-low power consumption, as well as its relatively large 256 KB
RAM, which provides sufficient room for implementing an ACK-based lossless communications
protocol and for storing the compression tables. In addition, it is equipped with a 14-bit
analog-to-digital converter (ADC), which was used to sample SCG, PPG, and ECG data, and an SPI
module for interfacing with the BMG250 gyroscope. It also has a comparator module that was used
for the UART flow control system described below.

2.2.6. Bluetooth Module

The SPBT3.0DP1 (STMicroelectronics, Geneva, Switzerland) classic Bluetooth module with
enhanced data rate was used because of its relatively high sustained data rate of 450,000 bit/s
and its easy-to-use serial pass-through capabilities, which greatly simplified prototyping. However,
future designs will utilize a more modern Bluetooth transceiver, such as the CC2564 dual-mode
Bluetooth transceiver (Texas Instruments Inc., Dallas, TX, USA) to enhance design flexibility.

2.2.7. UART Flow Control

One major issue that had to be addressed during prototyping was the severe data loss
that occurred whenever multi-byte packets (required for messages, data acknowledgments,
and compression tables) were transmitted from the phone to the embedded system through the
Bluetooth module over UART at baud rates exceeding 115,200 bit/s. The standard UART flow control
mechanism, which involves raising the CTS flow control line in an interrupt service routine (ISR),
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is inadequate because the underlying problem is related to the MCU’s relatively high interrupt latency
(meaning that the CPU cannot react quickly to incoming data) when the data rate is high, coupled with
the asynchronous nature of UART communications, but not due to insufficient bandwidth to satisfy
the very modest application data rate of less than 2.5 kB/s. As a concrete example, even if the required
bandwidth is just 2 B/s, but both bytes are sent in rapid succession, then the second byte overwrites
the first before it is copied from the receive buffer or before the Bluetooth module responds to the CTS
line that is raised in the ISR.

The hybrid hardware–software flow control solution that was developed in this work is
illustrated in Figure 5, and it makes use of the knowledge that UART data lines idle high and that
a high-to-low transition (known as a start bit) indicates the beginning of a new byte. The start
bit is detected by the D-type flip-flop (after inversion) and the circuit autonomously asserts the
CTS line, without any software intervention, by propagating the high latched value to the CTS line
after a Bluetooth-device-specific delay implemented with a combination of a first-order RC circuit
and a comparator. Data flow from the Bluetooth module can then subsequently be re-enabled at
a leisurely pace when the MCU is ready to receive more data by applying a reset pulse (CLR) to
the flip-flop. It should be noted that the time between the start bit and when CTS is asserted was
empirically determined to be 3.5 µs (with baud rate = 460,800 bit/s) by trial-and-error because it was
not specified in the datasheet. In addition, a hysteresis effect on the comparator was used to add
a 50 µs delay between the reset pulse and when CTS is deasserted so that the MCU can service other
time-critical code.

Tx
Q’

QD

VCC

SPBT3.0DP1
CLK

SN74AHC1G04 CLK

CLR

CTS

Q

Tx

Start Start
83µs

Idle

32µs

3.5µs

12µs

CTS
TC7WH74FU

MCU-Comparator

Vref

MCU-CLRMCU-Rx

Figure 5. UART flow control circuit with a timing diagram (recorded with a logic analyzer) of
a single-byte frame of a seven-byte acknowledgment packet.

2.3. Software

Figure 6a provides a high-level illustration of the software architecture for the MCU. The firmware
was written in C++ with Texas Instruments’ real-time operating system (RTOS), as opposed
to a bare-metal approach, to reduce implementation complexity. An ACK-based lossless data
communications method was implemented, where transmitted sensor data are buffered and
retransmitted if an acknowledgment for the sensor data is not received before a one-second timeout.
The Index provides fast and efficient O(1) access to the packets in the retransmission queue, so that
they can be efficiently removed when ACKs are received. The system also acknowledges messages
(e.g., START and STOP) and compression tables. While 32-bit cyclic redundancy check (CRC) codes
were used for error detection for sensor data and compression tables, 16-bit CRC codes were used to
validate messages and requests from the smartphone and responses to those requests. Retransmissions
of lost packets are limited when the embedded system is actively sampling data, thereby implicitly
placing more importance on new data.



Sensors 2020, 20, 7106 14 of 25

Message Decoder

Timestamp

Sensor Data ACKs, START, STOP, PAUSE, UNDO, CLEAR

SPI

B
lu

et
o

o
th

®

Transmitter

Transmission Queue

Table Packets

ACKs

Tables

Throttle
Lossless Sensor Data Communicator

Retransmission Queue & Index

Analog Channels

Encode & Frame

Huffman Codes

Digital Channels

Sensor Manager

Texas Instruments RTOS®

Table Constructor

Compute CRC
Rx Flow Control

BMG250ADC

Messages START, STOP, PAUSE, RESUME, SETUP

___
CTS

Sensor Data Packet

UNDO, CLEAR

Thread

(a) Embedded system software architecture

Withings BPM+®

Receiver

Huffman Learner

Lossless Data Communicator

Sensor Data ACKs

Message & Table Packets

Messages: START, STOP, PAUSE, RESUME, SETUP, UNDO, CLEAR

ECGData
DecimateDecode BPF

Compute CRC

Preprocessor

Detect R-waves

Average

Real-Time Visualization with GraphView®
ECG, PPG x 3, SCG x 3, GCG x 3

Android OS®
Thread

Heart  Rate

Messages

Message & Table ACKs ACKs

B
lu

et
o

o
th

®

Huffman 
Codes

HR BP

Raw Data

ACKsTables

Tables

(b) Android software architecture

Figure 6. Software architecture for real-time data acquisition of physiological data and lossless data
communication over Bluetooth.

Figure 6b is a simplified block diagram of the Android application, running on a low-cost Pixel
3a XL smartphone (Google Inc., Mountain View, CA, USA), which was written in Java and Kotlin.
Raw data are shared with the thread responsible for computing the compression tables before they
are downsampled for visualization with the GraphView library. The application also interfaces with
the BPM+ Android application (Withings, Issy-les-Moulineaux, France) so that the BP measurements
made with the BPM+ device can be conveniently shared with our application. These measurements
will be used as the gold standard for experiments that will be made with our system. The application
saves sensor data, compression tables, and metadata to Google Drive for post-processing.

The desktop application was also written in Java and Kotlin but with the JavaFX graphical
user interface development framework. The application is used for offline decompression of data,
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initial post-processing, and for exporting compression codes for initializing the compression tables on
the smartphone and the embedded system.

The back-end server was implemented in Python with Google App Engine and Google Datastore.
The server’s functionality is currently limited to generating globally unique subject IDs and for storing
de-identified subject metadata (e.g., age and weight), but may be used to compute PTT and BP in future.

2.4. Subject Demographics

Six healthy subjects (gender: four males and two females with mean ± std: age, 27.5± 5.8 years;
height, 171.8± 12.2 cm; and weight, 72.4± 15.8 kg) were properly consented before participating in
the protocol approved by Georgia Institute of Technology’s Institutional Review Board. Data from the
first subject were only used to initialize the compression tables for one of the experiments in the main
experimental protocol that involved the other five subjects.

2.5. Measurements

There were 50 samples of data for each channel in every packet. For uncompressed data,
the number of bits per sample was 15 bits for the seven channels of SCG, ECG, and rPPG and
17 bits for each of the three GCG channels (with the raw data indicator included in the calculation).
Furthermore, the size of the header and trailer was 19 B for each packet. Therefore, the size of each
uncompressed packet was 50× (15× 7 + 17× 3)/8 + 19 = 994 B.

2.5.1. Data Acquisition at below the Theoretical Channel Capacity

Data recorded at a 1600 Hz sampling rate were used to demonstrate the plug-and-play capability of
the proposed compression method, which enables sensors that have not previously been characterized
to be interfaced to the embedded system. The initially empty compression tables are then updated
after the compression tables have been computed by the smartphone from data recorded in real time.
Subsequent samples are encoded using the compression tables, which reduces the bandwidth and
power consumption of the Bluetooth radios. The maximum required bandwidth in this mode is
994× 1600/50 ≈ 32 kB/s, which is less than the maximum channel capacity of 45 kB/s.

2.5.2. Data Acquisition at above the Theoretical Channel Capacity

The maximum required bandwidth for data sampled at 3200 Hz is 994× 3200/50 ≈ 64 kB/s,
which is significantly higher than the channel capacity. This implies that data sampled at this rate
cannot be transmitted in its raw form. Therefore, the compression tables were initialized with
Huffman codes computed from data sampled at 1600 Hz from a subject who did not participate
in the experimental protocol described below, which reduced the bandwidth to less than the theoretical
channel capacity. The compression tables were subsequently updated once the smartphone was done
computing tables from newly recorded data.

2.5.3. Experimental Protocol

The experimental setup is shown in Figure 7 with subjects asked to place and hold the chest
patch on their sternum for the entire duration of each experiment. The ECG electrodes were placed
on the torso in a Lead I configuration. The search parameters k1 and k2 for the compression table size
were chosen to be 10 and 30, respectively. The compression tables were computed on the smartphone
with Algorithm 2 from the first two minutes of data at each of the sampling rates and then the tables
were transmitted to the embedded system and subsequently used to compress data recorded for
another three minutes. Thus, the total duration for each experiment was approximately five minutes.
It should be noted that compression tables were simultaneously computed from all of the residuals in
the training data and saved for use as the gold standard. The sensor data packets are explicitly tagged
with a compression table ID, which greatly reduces the cost of synchronization of the tables on the
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smartphone with the MCU (the ID of tables computed online is 1). The seemingly arbitrary sampling
rates of 1600 and 3200 Hz were selected because they are the two highest native sampling rates
supported by the BMG250 gyroscope. In addition, although the 3200 Hz sampling rate is higher than
typical sampling rates for PTT applications, the performance of the proposed algorithm was evaluated
at this frequency for the following reason. The design of the wearable is likely to evolve towards the
use of off-the-shelf analog front-ends, such as the AFE4900 (Texas Instruments Inc., Dallas, TX, USA)
and the ADXL355 (Analog Devices Inc., Norwood, MA, USA), which have ADC resolutions of 24- and
20-bits, respectively (higher than the 14- and 16-bit resolutions of waveforms recorded in this work).
Therefore, the higher 3200 Hz sampling rate was used to simulate the higher average data rate that
would be needed for future implementations.

Google Drive & Google Cloud (App Engine & Datastore)

Chest Patch
ADXL354 3-Axis Accel. + Amplifier

BMG250 3-Axis Gyro.
5x S2386-18K PDs.
5x L1915-02 LEDs

Electrodes

Mobile (Google Pixel 3A XL)Desktop Data Decompression & Analysis

Sensor Data, Tables, Subject Metadata

Main Board
MSP432P4111 MCU

SPBT3.0DP1 Bluetooth 
PPG Array Circuit
SEN-12650 ECG

Figure 7. Block diagram for the experimental setup.

2.6. Post-Processing

First, the received packets were rearranged because they were not necessarily received in the
correct order. Second, the packets with compression table ID 1 were unrolled with the sensor data
grouped according to their respective channels. The compression ratios were computed on data with
ID 1 with the compression tables for the proposed and standard methods.

Duplicate sensor data packets on the receiver may be due to: (1) an insufficiently large packet
acknowledgment timeout parameter after which a packet is retransmitted; and (2) a corrupted data
acknowledgment packet, which also results in a retransmission. A generous timeout value of one
second was specified for the application—although acknowledgments are typically received in less
than 100 ms. Therefore, a duplicate sensor data packet indicates that the acknowledgment packet was
dropped due to packet corruption, and this property was used to evaluate the efficacy of the proposed
flow control method.

3. Results and Discussion

3.1. Compression

The plots in Figure 8a are representative waveforms of the raw ADC codes for GCG-Z, SCG-Z,
finger PPG, chest PPG 1, and ECG recorded from Subject 4 at 3200 Hz. Some interference was present
in the SCG-Z signal (in the form of impulsive noise), which was likely due to the unshielded cables
used in the experiments. The amplitudes and signal quality of the GCG-Z and SCG-Z are rather
low, but the ECG, chest PPG, and finger PPG waveforms all exhibit markedly higher signal quality.
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The finger PPG signal is very clean and has such a high dynamic range that the waveform is close to
saturating beat-to-beat. The amplitudes of the chest PPG and ECG are also quite strong, with clean
signal features visible.

(a) Representative Waveforms: Raw ADC Codes
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(b) Representative Waveforms: Median Filtered
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Figure 8. Representative results of data recorded from Subject 4 at 3200 Hz. (a) Ten-second trace
of raw ADC codes for ECG, chest PPG, finger PPG, SCG-Z, and GCG-Z data. (b) Filtering with
a seventh-order median filter reveals the underlying signal in the electronic noise corrupted raw SCG-Z
signal. (c) Compression table sizes for the standard and proposed methods. (d) Compression ratios for
the standard and the proposed methods.

Table 1 reveals that our proposed method enabled a table size decrease of 67–99% across
all sensing modalities and sampling rates, thereby optimizing the MCU memory consumption.
In particular, the average table size for the standard method is 1728 for SCG-Z data recorded at
3200 Hz, which demonstrates why it is impractical for memory-constrained embedded systems
because it would require, at a bare minimum, 19 kB of memory for the SCG-Z channel alone (11 B
for each table entry: 2 B for the key, 4 B for the code, 1 B for the code length, and 4 B for the pointer
to the next entry in the hash table bucket). In contrast, the worst case memory usage, with the 11 B
memory allocation per table entry analysis above, is only 330 B for our proposed method. The reason
that the tables sizes are much larger for SCG data in comparison to the other sensing modalities is
likely due to the impulsive noise, which violates the underlying assumption of differential pulse code
modulation that adjacent samples are highly correlated in naturally occurring signals. The impulse-like



Sensors 2020, 20, 7106 18 of 25

QRS complex in the ECG similarly causes its table sizes (with the standard method) to be significantly
larger than those of other sensing modalities.

Table 1. Compression table size.

1600 Hz 3200 Hz

Sensor Proposed Standard Proposed Standard

GCG-X 23± 1 104± 35 28± 1 113± 9
GCG-Y 21± 6 113± 46 20± 5 120± 26
GCG-Z 22± 1 127± 45 28± 5 121± 10
SCG-X 27± 4 868± 121 26± 5 1630± 75
SCG-Y 21± 2 739± 99 29± 1 1566± 300
SCG-Z 26± 3 832± 133 24± 4 1728± 72
PPG-F 23± 6 195± 37 18± 9 358± 121
PPG-C-1 26± 8 228± 118 30± 0 181± 39
PPG-C-2 25± 6 241± 153 27± 3 175± 36
ECG 28± 1 398± 218 29± 1 420± 68

Table 2. Compression ratio.

1600 Hz 3200 Hz

Sensor Proposed Standard Proposed Standard

GCG-X 2.37± 0.04 2.37± 0.04 2.28± 0.01 2.28± 0.01
GCG-Y 2.43± 0.07 2.43± 0.07 2.36± 0.03 2.37± 0.03
GCG-Z 2.36± 0.03 2.36± 0.02 2.18± 0.01 2.18± 0.01
SCG-X 1.85± 0.27 1.84± 0.27 1.95± 0.19 1.91± 0.18
SCG-Y 1.87± 0.22 1.86± 0.22 1.96± 0.13 1.93± 0.13
SCG-Z 1.89± 0.22 1.87± 0.22 1.98± 0.16 1.95± 0.16
PPG-F 1.81± 0.04 1.80± 0.06 2.02± 0.05 2.01± 0.06
PPG-C-1 2.18± 0.18 2.18± 0.17 2.28± 0.03 2.28± 0.03
PPG-C-2 2.13± 0.17 2.13± 0.17 2.25± 0.02 2.25± 0.02
ECG 1.80± 0.09 1.79± 0.10 1.93± 0.08 1.93± 0.08

Another interesting observation that can be made from the results in Table 1 is that the
hyperparameter search algorithm does not greedily always select a table of size k2 (the specified
maximum table size of 30), which may be due to either of the following reasons: (1) the trivial case when
the requested table size is larger than possible, i.e., k2 >

∣∣supp(HTm∗)
∣∣; and (2) Φ[m∗, k2] ≥ Φ[m∗, k∗].

During post-processing, we only had access to supp(HTm ) for m = 0 (in the form of the keys of the
table for the standard method). However, for m∗ ≥ 0, Proposition A1 was used to check if the trivial
case could definitely be ruled out, which was indeed the case for 64 out of 65 times when the selected
table size was less than k2. Φ[m∗, k2] ≥ Φ[m∗, k∗] arises when increasing the table size results in either
a tie or an increase in the total number of bits. The latter may occur as a consequence of the prefix-free
property of Huffman codes, which states that no valid code is a preceding subsequence of another.
To maintain this invariant, the code lengths of an initial set of probability classes may increase as the
table size is increased. This may be seen in the simulated example in Figure 3 where the codes for the
probability Classes 1 and 2 would have been 0 and 1 (or possibly flipped), regardless of their relative
frequencies, if they had been the only entries in the table. However, the code length for Class 2 is two
because of the other probability classes added to the table. If the relative frequencies of the additional
classes in the validation data are not consistent with the training data, for example if none of those
additional table entries is present in the validation data, then the total number of bits increases due to
the larger code length of samples in Class 2 that are not compensated for by gains from the other table
entries. It should also be noted that code lengths of classes present in the validation data but not in the
training data are of fixed length (1 + M). Both observations demonstrate how, by splitting the data
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into training and validation datasets, the hyperparameter search algorithm selects codes that are more
robust to noise than would be the case if the codes were generated without the validation data.

The main observation that can be drawn from the results in Table 2 is that the compression ratios
obtained with the proposed method matches those of the standard approach—even with much smaller
tables. In addition, the compression ratios for the GCG and chest PPG are, in general, larger than those
of the finger PPG, ECG, and SCG, which suggests that impulsive signals and those with high dynamic
range have lower compression ratios than signals with low amplitudes or slowly varying waveforms.
It should be noted that the reported compression ratios for SCG, ECG, and PPG data are relative to the
ADC’s 14-bit resolution, so the actual compression ratios are higher if one considers the two unused
bits in the 16-bit representation of the raw ADC codes.

There was an across-the-board increase in compression ratios for the SCG, PPG, and ECG data
when the sampling rate was increased from 1600 to 3200 Hz, which may be due to a decrease in the
magnitude of residuals when the sampling rate is increased. However, this relationship is reversed
for the GCG data. It is not immediately clear why, but one reasonable explanation is that the low
signal levels of the GCG makes the residuals more susceptible to being dominated by random noise.
Nevertheless, the changes in compression ratios in both directions demonstrates the dependence of the
performance of the compression tables on the sampling rate amongst other factors, which illustrates
why learning the compression tables in real-time is superior to computing them offline.

We present all the chosen values for m∗, the selected bin width parameter, as opposed to the
mean ± std statistics because outliers hide important trends in the result. Specifically, the high
degree of intra-channel consistency and inter-channel variance demonstrate the hyperparameter
search algorithm’s ability to adapt to the underlying signal. For example, for the GCG-X channel,
m∗ = 1 for all subjects. Furthermore, the mode was selected at least 50% of the time for nine out of ten
channels, and at least 70% of the time for six out of ten channels. Another key observation is that m∗ is
typically larger for impulsive signals or those with a high dynamic range, which explains the outlier in
Table 3 where m∗ = 3 for PPG-C-1 recorded at 1600 Hz from Subject 1 that was saturating beat-to-beat.
This behavior was not observed for other measurements, so it was likely as a consequence of the
contact pressure applied by the subject during that experiment. In Figure 9, the cumulative distribution
function (CDF) of the finger PPG lies below the chest PPG’s, which shows that the distribution of
residuals for the finger PPG is more spread out, and that causes the algorithm to select a larger bin
width to compensate for the spread. The compression table of the finger PPG recorded from Subject 4
has 11 and 340 entries for the proposed and standard methods, respectively, although the compression
ratios obtained with both methods are practically identical. The reason is that the table is able to
encode 88 unique residual magnitudes given the bin width of eight and the table size of 11. The CDF at
88 > 0.98, which demonstrates how a very compact compression table may be used to achieve a very
high code density.

The combined duration for executing the hyperparameter search algorithm for all ten channels
was 1050 ± 158 ms and 2012 ± 151 ms for the 1600 Hz and 3200 Hz sampling rates, respectively.
Although not explicitly shown in Algorithm 2, the hyperparameter search algorithm terminates early
once k1 >

∣∣supp(HTm )
∣∣, i.e., the minimum acceptable table size is greater than the number of histogram

bins, so we also recorded the combined number of candidate {m, k} pairs that Φ was evaluated with
across all channels, which was 1254± 103 and 1305± 47, for the 1600 and 3200 Hz sampling rates,
respectively. The short duration required to compute the tables and the large number of searches,
which indicates that the algorithm did not terminate only after a few iterations, demonstrates the
performance of the proposed hyperparameter search method even with large datasets of 192,000
and 384,000 samples for the 1600 and 3200 Hz sampling rates, respectively. Moreover, the cost of
constructing HT0 and HV0 likely dominates the cost of the actual search; therefore, the algorithm
can be made to run more quickly by constructing them with the incremental approach described in
Section 2.1.2 for larger datasets.
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Table 3. Bin width parameter m∗ for each of the five subjects.

1600 Hz 3200 Hz

Sensor 1 2 3 4 5 1 2 3 4 5

GCG-X 1 1 1 1 1 1 1 1 1 1
GCG-Y 2 1 1 1 1 2 1 1 1 2
GCG-Z 1 1 1 1 1 1 1 1 2 1
SCG-X 2 2 0 2 1 2 2 0 1 0
SCG-Y 2 2 1 2 1 1 1 0 1 0
SCG-Z 2 2 1 2 1 2 2 1 1 1
PPG-F 2 2 3 2 2 1 1 3 3 3
PPG-C-1 3 0 0 0 0 0 0 0 1 0
PPG-C-2 2 0 1 1 1 1 1 1 1 0
ECG 2 2 2 2 2 1 2 2 1 2

Figure 9. Empirical cumulative distribution function for Subject 4 at 3200 Hz.

3.2. UART Flow Control

There were no duplicate packets among the 160,550 correctly received sensor data packets across
all subjects and experiments. Therefore, every seven-byte acknowledgment packet that was sent by
the smartphone for every correctly received data packet was correctly received by the embedded
system. The computed empirical error rate for data sent in the path from the smartphone to the
embedded system was identically 0%, which demonstrates the effectiveness of the proposed flow
control method. It should be noted that the system has been successfully tested at an even higher
baud rate of 921,600 bit/s. However, because the maximum sustained data rate of the SPBT3.0DP1
Bluetooth module is 450,000 bit/s, the closest standard baud rate of 460,800 bit/s was used.

3.3. Limitations

In this work, the compression tables on the MCU were unconditionally updated after learning
them on the smartphone. However, there is no guarantee that the new table will, at the very least,
perform as well as the previous table (unless in the trivial case when the previous table is empty).
One way to guard against updating a compression table with an inferior one is by evaluating both tables
with data recorded after the one used to compute the table (this may also be done by partitioning the
data into training, validation, and test datasets, with the test data used for the assessment). A decision
can then be made as to whether the compression tables should be updated based on the outcome of
the evaluation.
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The lossless communications method developed in this work is limited to correcting random
packet loss, and is not well-suited to more significant communication failures like long-term Bluetooth
connection loss because the MCU’s 256 KB RAM only provides a few seconds of buffering capacity.
In practice, however, this constraint has not been an issue and we have successfully tested the prototype
by continuously streaming data for two hours.

The choice of a D-type flip-flop, as opposed to a more appropriate D-type latch, was dictated
by availability (at the time of prototyping) in limited quantities required for device development.
Nevertheless, for this application, a D-type flip-flop can emulate a D-type latch because the only value
that needs to be latched onto is a high, and this can be done by permanently connecting the D input
to high. It should also be noted that only the following discrete components are actually required:
a D-type latch, a resistor, and a capacitor. That is because most MCUs, including the MSP432P4111,
have on-board comparators and there are D-type latches with inverting clock inputs, which eliminates
the need for a discrete comparator and an inverter.

Finally, the performance of the approach in persons with cardiovascular diseases and arrhythmias
must be characterized to understand generalizability of the methods. Specifically, the impact of
arrhythmias on the compression algorithm will need to be studied in future work. Broadly speaking,
the signals measured in this work have been demonstrated to be of high quality even in patients
with severe left ventricular dysfunction, i.e., patients with advanced heart failure [40,41], and thus the
potential for this work to be applicable to such populations holds merit.

4. Conclusions

We developed a prototype of an end-to-end system for conveniently recording high throughput
physiological data that will be used for monitoring BP in a mobile setting. The system is comprised
of custom and off-the-shelf analog front-ends for recording ECG, rPPG, SCG, and GCG; a Bluetooth
module for transmitting acquired data to a Bluetooth-enabled Android smartphone; and a software
suite with MCU firmware, an Android application, a back-end web server, and desktop software.
We also developed a computationally inexpensive source coding method that is based on Huffman
coding and we showed that the proposed method can match the compression ratios obtained
with the standard algorithm while requiring significantly less memory for storing compression
tables. In addition, we implemented a UART flow control method that minimizes data loss due
to the interrupt-latency of low-power MCUs. Future work will include developing a PCB with
the components of the current breadboard prototype and performing field studies with the device
for continuous ambulatory BP monitoring. We will also investigate other methods for increasing
data acquisition efficiency such as only intermittently recording data at a high sampling rate for BP
estimation and recording data at a reduced sampling rate for the rest of the time. The data recorded at
the lower sampling rate may then be used to estimate the subject’s physiological state (e.g., heart rate),
and a significant state change may serve as an additional trigger for recording high throughput data
for BP estimation. The software and hardware designs developed in this work will be open-sourced to
further promote PTT research.
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Appendix A

Appendix A.1. Table Size Check

Proposition A1. If k2 (i.e., the upper limit of the table size search range) is less than or equal to the number of
bins with nonzero bin counts in the histogram of bin width = 1, divided by the selected bin width, then k2 is less
than or equal to the number of bins with nonzero bin counts in the histogram of the selected bin width, i.e.,

k2 ≤
∣∣supp(HT0 )

∣∣
2m∗ =⇒ k2 ≤

∣∣∣supp(HTm∗)
∣∣∣ m∗ ∈ Z≥0 (A1)

Proof. Proposition A1 is vacuously true for m∗ = 0, so we focus on the proof for m∗ > 0. The following
recurrence relation can be inferred from the recurrence relation in Proposition 1

∣∣∣supp(HDm )
∣∣∣ ≥ ∣∣supp(HDm−1)

∣∣
2

∀m > 0 (A2)

from which it can be shown by induction that

∣∣∣supp(HDm )
∣∣∣ ≥ ∣∣supp(HD0 )

∣∣
2m (A3)

therefore,

k >
∣∣∣supp(HDm )

∣∣∣ =⇒ k >

∣∣supp(HD0 )
∣∣

2m (A4)

and by contraposition (a =⇒ b ⇐⇒ ¬b =⇒ ¬a),

k ≤
∣∣supp(HD0 )

∣∣
2m =⇒ k ≤

∣∣∣supp(HDm )
∣∣∣ (A5)

thus,

k2 ≤
∣∣supp(HT0 )

∣∣
2m∗ =⇒ k2 ≤

∣∣∣supp(HTm∗)
∣∣∣ (A6)

Appendix A.2. Alternative Proof for Proposition 1

Proof. Bins x and y contain data that map to the same value with the transformations
⌊
|·| /2m+1⌋ and

b|·| /2mc, respectively. Therefore, it is sufficient to show that for any z ∈ Z≥0⌊ z
2m+1

⌋
=

⌊ b z
2m c
2

⌋
(A7)

Any nonnegative integer z has a unique binary representation [31], i.e., for some M > 0 and
bi ∈ {0, 1}

z =
M−1

∑
i=0

bi2i (A8)

Therefore,

z
2m =

M−1

∑
i=0

bi2i−m (A9)

=
m−1

∑
i=0

bi2i−m +
M−1

∑
j=m

bj2j−m (A10)
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but

0 ≤
m−1

∑
i=0

bi2i−m (A11)

≤
m−1

∑
i=0

2i−m (A12)

=
m

∑
k=1

2−k (A13)

= 1−
(

1
2

)m
(via (Geometric series sum)) (A14)

< 1 for 0 ≤ m < ∞ (A15)

It should be noted that k , −(i−m) in Equation (A13). Furthermore,
(

∑M−1
j=m bj2j−m

)
∈ Z≥0 for

0 ≤ m < M, which implies that the fractional component of Equation (A10) is ∑m−1
i=0 bi2i−m, i.e.,

⌊ z
2m

⌋
=

M−1

∑
j=m

bj2j−m (A16)

substituting m + 1 for m in Equation (A16) implies that the LHS of Equation (A7) is given by

⌊ z
2m+1

⌋
=

M−1

∑
j=m+1

bj2j−(m+1) (A17)

for the RHS of Equation (A7),
b z

2m c
2

=
bm

2
+

M−1

∑
j=m+1

bj2j−(m+1) (A18)

(
∑M−1

j=m+1 bj2j−(m+1)
)
∈ Z≥0 for 0 ≤ m < M− 1, which implies that

⌊ b z
2m c
2

⌋
=

M−1

∑
j=m+1

bj2j−(m+1) (A19)

thus, both Equations (A17) and (A19) are equal, which proves the equivalence in Equation (A7)

Appendix A.3. Huffman Codes for ECG (Bin→ Code (Counts))

0 → 1111b (5917), 1 → 0001b (12078), 2 → 0000b (12252), 3 → 0010b (11607), 4 → 0011 (11272),
5 → 0101b (10868), 6 → 0100b (10947), 7 → 0110b (10278), 8 → 0111b (9537), 9 → 1001b (9288),
10 → 1000b (9291), 11 → 1010b (8627), 12 → 1011b (8235), 13 → 1101b (7894), 14 → 1100b (7965),
15→ 1110b (7278).
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