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David Ristič 1 and Marko Gosak 1,2*

1 Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia, 2 Faculty of Medicine, University of

Maribor, Maribor, Slovenia

The firing patterns of neuronal populations often exhibit emergent collective oscillations,

which can display substantial regularity even though the dynamics of individual

elements is very stochastic. One of the many phenomena that is often studied in this

context is coherence resonance, where additional noise leads to improved regularity of

spiking activity in neurons. In this work, we investigate how the coherence resonance

phenomenon manifests itself in populations of excitatory and inhibitory neurons. In our

simulations, we use the coupled FitzHugh-Nagumo oscillators in the excitable regime

and in the presence of neuronal noise. Formally, our model is based on the concept of

a two-layered network, where one layer contains inhibitory neurons, the other excitatory

neurons, and the interlayer connections represent heterotypic interactions. The neuronal

activity is simulated in realistic coupling schemes in which neurons within each layer

are connected with undirected connections, whereas neurons of different types are

connected with directed interlayer connections. In this setting, we investigate how

different neurophysiological determinants affect the coherence resonance. Specifically,

we focus on the proportion of inhibitory neurons, the proportion of excitatory interlayer

axons, and the architecture of interlayer connections between inhibitory and excitatory

neurons. Our results reveal that the regularity of simulated neural activity can be increased

by a stronger damping of the excitatory layer. This can be accomplished with a

higher proportion of inhibitory neurons, a higher fraction of inhibitory interlayer axons,

a stronger coupling between inhibitory axons, or by a heterogeneous configuration of

interlayer connections. Our approach of modeling multilayered neuronal networks in

combination with stochastic dynamics offers a novel perspective on how the neural

architecture can affect neural information processing and provide possible applications

in designing networks of artificial neural circuits to optimize their function via noise-

induced phenomena.
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INTRODUCTION

Ensembles of neurons demonstrate a rich variety of coherent
dynamics at the macroscopic scale which results from the
input of multiple oscillatory signals and random perturbations
at the microscopic scale. How neuronal populations adjust
their dynamical responses to the superposition of these local
noisy signals is of fundamental importance for information
processing and plays a vital role in a variety of cognitive, motoric,
and linguistic tasks (Riehle et al., 1997; Oram et al., 1999;
Horwitz and Braun, 2004). Importantly, neuronal activity does
not only depend on intrinsic neuronal properties and network
architecture but is also heavily influenced by random fluctuations
(Stein et al., 2005; Chialvo, 2010). Neuronal noise is a natural
and unavoidable factor that originates from random opening
and closing of ionic channels, stochastic nature of neuronal
mechanisms, and noisy biochemical processes that underlie
synaptic transmission (Faisal et al., 2008; Guo et al., 2018). While
in most of the systems noise is mostly an undesirable component,
it is now widely accepted that its presence is crucial to the proper
functioning of neurons and can even enhance information
processing capabilities and the regularity of neuronal activity
(Lindner et al., 2004; McDonnell and Ward, 2011; Guo et al.,
2018). This has led to a tremendous interest in investigating
the sources and impact of intrinsic fluctuations in the nervous
system and stems from the advances in experimental methods for
identifying it as well as from a growing body of computational
works demonstrating its functional consequences.

Neuronal noise has been shown to give rise to
various collective dynamical behaviors, such as stochastic
synchronization (Yang and Cao, 2009; Zakharova et al., 2013) or
the induction of stochastic bifurcations (Hänggi and Bartussek,
1996; Gosak et al., 2008; Zakharova et al., 2010) and chimera
states (Semenova et al., 2016; Majhi et al., 2019). Perhaps, the
most famous examples of the so-called stochastic facilitation in
neuronal systems are stochastic and coherence resonance. The
former refers to the scenario where an appropriate intensity
of noise evokes the best correlation between a weak periodic
deterministic stimulus and the system’s response (Longtin, 1993;
McDonnell and Abbott, 2009; Calim et al., 2021), whereas the
later encompasses a noise-induced enhancement in regularity
of excited oscillations without external driving (Pikovsky and
Kurths, 1997; Lee et al., 1998). Coherence is significant for
communication within the brain (Deco and Kringelbach, 2016),
and coherence resonance was recently suggested as a mechanism
for improving neural communication (Pisarchik et al., 2019)
and visual information processing (Itzcovich et al., 2017).
Most importantly, this phenomenon is not only physiologically
important but also theoretically appealing and challenging
to understand. As a result, numerous computational models
have been developed to elucidate the underlying mechanisms
(Pradines et al., 1999; Ushakov et al., 2005; Beggs and Timme,
2012; Yu et al., 2017a; Guan et al., 2020; Baspinar et al.,
2021). While primal investigations of coherence resonance
in neuronal systems have scrutinized mainly systems with
relatively small numbers of degrees of freedom, the scope has
been shifting to coupled and spatially extended systems with

many degrees of freedom (Lindner et al., 2004; Sagués et al.,
2007; Kim et al., 2015), particularly to such complex networks
describing connections between the individual units. Specifically,
previous endeavors have revealed that the coherence resonance
phenomenon can be modulated by the network size (Toral
et al., 2003; Wang et al., 2005), as well as by the structure of
the underlying network (Kwon and Moon, 2002; Gosak et al.,
2010). Moreover, incorporating realistic neurophysiological
features into neuronal network models, such as heterogeneity,
spike-timing-dependent plasticity, and information transmission
delays, was found to crucially affect the coherence resonance
and can lead to very interesting dynamical behavior (Ozer and
Uzuntarla, 2008; Li et al., 2009; Yu et al., 2013, 2015, 2017b;
Semenova et al., 2016; Masoliver et al., 2017; Marhl and Gosak,
2019).

Neurons communicate mainly by two modalities of synaptic
transmission, that is, chemical and electrical synapses (Pereda,
2014; Alcamí and Pereda, 2019), as well as by other means
of communication, such as autaptic connections (Bacci and
Huguenard, 2006) or presumably via magnetic fields (Guo S.
et al., 2017; Ma and Tang, 2017). In a plethora of previous
theoretical and experimental studies, it has been studied how the
interplay between electrical and chemical coupling (Yilmaz et al.,
2013; Yu et al., 2020), autapses (Wang et al., 2014; Uzun et al.,
2017), and electromagnetic induction (Jia et al., 2019) affect the
collective neuronal dynamics, including the coherence resonance
(Balenzuela and García-Ojalvo, 2005; Yilmaz et al., 2016; Liu and
Yang, 2018; Jia et al., 2021). Moreover, in recent years the research
interest is shifting toward neuronal networks composed of two
populations, one excitatory and the other inhibitory. In such
networks neuronal communication can be of either excitatory or
inhibitory nature, and they have been often used as simplified
models of local networks in neocortex, hippocampus, as well
as other structures (Brea et al., 2009; Isaacson and Scanziani,
2011; Hahn et al., 2019). Most importantly, several studies have
shown that inhibition is not only responsible for diminishing
neural activity but also leads to complex dynamical patterns that
are inaccessible in systems with purely excitatory connectivity
(Assisi et al., 2005; Stefanescu and Jirsa, 2008; Ledoux and Brunel,
2011; Bittner et al., 2017; Kim and Lim, 2017; Mongillo et al.,
2018; Zhang and Liu, 2019; Rich et al., 2020; Xu et al., 2021).
Along these lines, particular attention was given to the interplay
between neuronal noise and the excitatory/inhibitory balance.
Namely, the presence of inhibitory neurons generates additional
nonlinear effects, which can lead to a rich variety of coherent
network dynamics that emerges from noisy perturbations in a
non-monotonous way (Li et al., 2009; Kawaguchi et al., 2011; Kim
et al., 2015; Sancristóbal et al., 2016) and that a fine excitation-
inhibition balance can improve the response of the neuronal
network (Wang et al., 2012; Guo D. et al., 2017; Yu et al.,
2018).

Due to the inherently compound dynamics and multiple
facets of interactions that characterize neuronal assemblies, the
standard network approach focusing on single networks in
isolation might be insufficient to assess the underlying complex
activity patterns. Recently, the multilayer network formalism
has emerged as a new research direction to engage with such
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multidimensional systems (Boccaletti et al., 2014; Kivelä et al.,
2014; Gosak et al., 2018; Battiston et al., 2020; Torres et al.,
2021), including in the field of neuroscience (Bassett and Sporns,
2017; De Domenico, 2017; Maertens et al., 2021). In the context
of neuronal networks, different types of interactions can be
represented as a multiplex network, where the nodes in all layers
are the same, whereas the connections in each layer signify
different means of intercellular communication (Gosak et al.,
2015; Nicosia and Latora, 2015; Nicosia et al., 2017). These
concepts are gaining popularity in the field of computational
neuroscience as multiplexing and different forms of interactions
between layers were reported to evoke a rich variety of collective
phenomena (Nicosia et al., 2013; Jalan and Singh, 2016; Majhi
et al., 2017; Ge et al., 2018; Rakshit et al., 2018; Kundu et al.,
2019; Parastesh et al., 2019; Sawicki et al., 2019; Bahramian et al.,
2021; Kumar Verma and Ambika, 2021). As another option, the
multilayer formalism can be used to characterize interactions
between different neuronal subpopulations (Andreev et al., 2021)
or to characterize heterologous interactions between neurons
and other cell types (Virkar et al., 2016; Maertens et al.,
2021). In this case, multilayered neuronal interaction schemes
represent interdependent networks. Some recent computational
studies have focused explicitly on the constructive role of noise
in multilayered neuronal networks. It has been shown that
multiplexing can give rise to coherence resonance in a two-
layered network of excitable neurons (Semenova and Zakharova,
2018). Moreover, the coherence resonance and self-induced
stochastic resonance in a multiplex neuronal network can be
controlled by the network topology as well as by the intra-
and interlayer time-delayed couplings (Yamakou and Jost, 2019;
Yamakou et al., 2020). In a specific scenario where only one layer
displays noise-induced spiking activity, a weak coupling between
two neuronal populations in a multiplexed configuration was
found to lead to coherence, anticoherence, and inverse stochastic
resonances, as specified by the characteristics of interlayer links
(Masoliver et al., 2021).

In this study, we make use of the multilayer network
formalism to examine the coherence resonance phenomenon
in populations of excitatory and inhibitory neurons. To
that purpose, we represent this neuronal population as a
two-layered network, where one layer contains inhibitory
neurons, the other excitatory neurons, and the interlayer
connections represent heterotypic interactions. This framework
enables us to systematically investigate how different
neurophysiological determinants influence the coherence
resonance. Specifically, we investigate how the proportion of
inhibitory neurons, the proportion of excitatory interlayer
axons, and the architecture of interlayer connections between
inhibitory and excitatory neurons affect the nature of the
noise-induced dynamics.

COMPUTATIONAL MODELS AND
METHODS

We study a two-layered network of FitzHugh-Nagumo neurons
in the excitable regime with noise. The equations that describe

the neuronal dynamics of the ith neuron are as follows:

dVi

dt
= c

(

Vi −
V3
i

3
− wi

)

+ Dη (1)

dwi

dt
=

1

c

(

Vi − bwi + a
)

(2)

where Vi mimics the membrane potential and wi the recovery
variable of the ith neuron, a, b, and c are constant parameters
related to neuron properties, chosen to be a = 0.8, b = 0.9, and
c = 4.5. The last term in Equation 1 represents noise, whereby D
is noise intensity and η stands for Gaussian white noise with zero
mean and unit variance.

We use amultilayer representation of the neuronal population
so that one layer is populated by excitatory neurons and the
other with inhibitory neurons. Formally, interactions between
neurons within the same layer are portrayed by homotypic
intralayer connections, whereas the coupling between different
types of neurons is characterized by heterotypic interlayer
connections. To model interactions between individual neurons,
we introduce four different coupling strength coefficients: KEE,
KEI , KIE, and KII . First and second indices refer to the type of
presynaptic and postsynaptic neuron, respectively (E, excitatory
and I, inhibitory), as schematically presented in Figure 1. We
set the standard value of all coupling coefficients to be 0.2. We
add coupling terms to Equation 1 and use different coupling
coefficients depending on the type of postsynaptic neuron:

dVi

dt
= c

(

Vi −
V3
i

3
− wi

)

+ Dη + KEEV
E
i − KIEV

I
i (3)

for excitatory neurons, and

dVi

dt
= c

(

Vi −
V3
i

3
− wi

)

+ Dη + KEIV
E
i − KIIV

I
i (4)

for inhibitory neurons. Equation 2 remains the same for all
neurons. VE

i and VI
i represent sums of all stimuli that the

ith neuron receives from all coupled excitatory and inhibitory
neurons, respectively, and are calculated as follows:

VE
i =

NE
∑

j=1

Mji

(

Vj − Vi

)

, (5)

VI
i =

N
∑

j=NE+1

Mji

(

Vj − Vi

)

, (6)

where N is the number of all neurons and NE the number of
excitatory neurons. Mji is the element of the binary coupling
matrix M, which indicates a connection between the jth and ith
neuron. Indices with i ≤ NE are assigned to excitatory neurons
and the rest to inhibitory neurons. The algorithm to generate
the two-layered neuronal network composed of homotypic and
heterotypic interneuronal connections is explained inmore detail
in continuation.
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FIGURE 1 | Schematic diagram showing the two-layered network formalism to model the interactions between excitatory (E) and inhibitory (I) neurons. The upper

layer is populated by inhibitory neurons and the lower layer by excitatory neurons. Intralayer connections between excitatory neurons KEE and KII are bidirectional,

whereas the interlayer connections KEI and KIE between different neuron types are directed. The directionality of interlayer connections is determined by the parameter

ξ , which indicates the probability that the connection will be directed from the excitatory to the inhibitory layer (see main text for details).

Before constructing a two-layered network, we define a
parameter γI , which describes the proportion of inhibitory
neurons so that the number of inhibitory and excitatory neurons
(NI and NE) can be expressed as

NI = NγI (7)

and

NE = N (1− γI) = N − NI (8)

In our calculations, the number of neurons is set at N = 200.
Both layers are populated with the proper number of neurons
given a particular value of γI . We set the standard fraction
of inhibitory neurons to γI = 0.2 since inhibitory neurons
were found to be less common inside a typical cortex volume
compared to excitatory neurons. The positions of neurons in the
xy-plane are assigned randomly between 0 and 1, with the lower-
and upper-layer harboring excitatory and inhibitory neurons,
respectively. Connections within the same layer are modeled as
a random geometric network where two neurons are connected
bidirectionally if the distance between them is less than Rth. We
determine the value of Rth such that in an average network with
γI = 0.1 the average value of intralayer connections per neuron is

k = 8.0. We find the appropriate value as Rth = 0.126. The same
value is chosen for both layers so that the standard values lead to

more sparsely connected neurons in the inhibitory layer, as is the
case in realistic neuronal assemblies (Börgers and Kopell, 2003).

To construct interlayer connections, wemade use of the vertex
fitness network model (Caldarelli et al., 2002; Morita, 2006). Each
neuron is assigned a fitness fi as follows:

fi =

(

i

N

)
1

1−β

(9)

where β defines the slope of potential fitness distribution and
was set to β = 2.5. After assigning fitnesses to neurons
deterministically based on their indices, the fitness values are
randomly shuffled between neurons to ensure a well-mixed
arrangement across both layers. Whether a connection between
an ith neuron from the excitatory layer and jth neuron from the
inhibitory layer exists is determined by the following condition:

2 <
fifj

Lδ
ij

(10)

where Lij is the distance between neurons in the xy-plane,
2 a connectivity threshold, and δ a network parameter
that determines the nature of interlayer connections. Small
values of δ lead to heterogeneous distribution of interlayer
connections, while larger values prefer short-range connections,
making the interlayer connectivity more homogeneous. This
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model represents an alternative to the preferential attachment
mechanism (Barabási and Albert, 1999) as it does not rely on
network growth and the links are established solely on the
assigned fitness values. It should be noted that in our study
no correlation between the node importance and dynamical
characteristics of neurons was assumed, although this might have
been a valid upgrade for heterogeneous neuronal populations.
The total number of interlayer connections depends on the value
of 2. We set the average number of interlayer connections
per neuron to be kI = 2.0 and iteratively adjust the threshold
value accordingly for each generated network. All interlayer
connections are directed whereby their directions are set
randomly, as defined by the parameter ξ , which describes the
proportion of excitatory interlayer axons or the probability
that a given connection will be directed from excitatory to
inhibitory layer. For each pair of excitatory and inhibitory
neurons that satisfies the connectivity condition (Equation 10),
we generate a random number r between 0 and 1. If r ≤ ξ ,
the connection is directed toward inhibitory layer representing
an excitatory axon coupled to an inhibitory neuron, whereas
if r > ξ the connection is directed toward the excitatory
layer representing an inhibitory axon coupled to an excitatory
neuron. We chose the standard fraction of excitatory interlayer
axons to be ξ = 0.5 such that both directionalities are equally
common. In Figure 2, we show two representative multilayer
networks generated at two different values of δ, along with the
corresponding interlayer node degree distributions. Evidently,
for δ = 0.5, the arrangement of interlayer connections is
very heterogeneous, as characterized by a scale-free-like degree
distribution. In contrast, for δ = 10 the interlayer connections
are established only between neurons that are adjacent in the
xy-plane and the corresponding degree distribution follows
a Poissonian distribution, indicating thereby a homogeneous
interaction pattern between both layers.

To determine the amount of coherence in the dynamics of the
neuronal population, we computed the autocorrelation function
for each neuron (Pikovsky and Kurths, 1997):

Ci (t) =

〈

Ṽi (t) Ṽi (t + τ)
〉

〈

V2
i

〉

− 〈Vi〉
2 (11)

where τ is time lag and Ṽi deviation of membrane potential Vi

from the temporal mean 〈Vi〉 at a particular time: Ṽi = Vi−〈Vi〉.
We qualify the coherence of an ith neuron with characteristic
correlation time Ti, defined as (Pikovsky and Kurths, 1997),

Ti =

∫

C2 (τ ) dτ (12)

We then calculated the average values of T for all neurons T,
excitatory neurons TE, and inhibitory neurons TI accordingly:

T =
1

N

N
∑

i=1

Ti , TE =
1

NE

NE
∑

i=1

Ti , TI =
1

NI

N
∑

i=NE+1

Ti

(13)

Higher values of correlation times indicate a higher degree
of periodicity in the autocorrelation functions, which signifies
a more coherent neuronal activity. In our simulations, the
quantification of the coherence for a given set of parameters was
computed on the basis of the average of T, TE, and TI across
50 independent realizations in order to reduce fluctuations due
to stochastic dynamics and from randomness incorporated in
network constructions.

RESULTS

First, we examine how coherence resonance manifests itself in
the two-layered network composed of excitatory and inhibitory
neurons. In the upper four panels of Figure 3, we show space-
time plots of neuronal activity obtained at different noise
intensities. It can be observed that the behavior reflects typical
hallmarks of coherence resonance. Low noise intensity evokes
seldom and irregular firings, high noise intensity leads to an
erratic activity, whereas intermediate values of noise evoke the
most coherent spatiotemporal patterns of neuronal dynamics.
To quantify the observed behavior, we computed the normalized
autocorrelation function (Equation 11) and the corresponding
correlation times (Equation 12). The results in the lower
row of Figure 3 clearly demonstrate that the stronger the
periodic components of the autocorrelation function and the
correlation times are the highest at intermediate noise intensities,
corroborating thereby the existence of coherence resonance. In
this simulation, we used the standard values of all parameters,
namely, D, γI , ξ , KEE, KII , KEI , KIE, and δ. In what follows,
we will investigate how variations of those parameters that
refer principally to the characteristics of the multilayer neuronal
network affect the noise-induced dynamics and the collective
response of the system.

We start by analyzing how the fraction of inhibitory neurons
γI influences neuronal dynamics. The upper two panels of
Figure 4 show space-time plots of neuronal activity for two
different fractions of γI . It is apparent that the activity of
inhibitory neurons is intrinsically higher and increases further
when their proportion is high (γI = 0.7). In addition, the
spatiotemporal patterns appear to be more ordered when the
number of inhibitory neurons is high. The lower four panels
of Figure 4 show the color-coded values of average correlation
times in dependence on the fraction of inhibitory neurons
as well as noise intensity. It can be seen that increasing the
fraction of inhibitory neurons improves the coherence in both
layers. Moreover, as the proportion of inhibitory neurons is
unrealistically high, the regularity of noise-induced oscillations
begins to increase already at lower noise intensities. To visualize
the role of the number of inhibitory neurons in further detail, we
show in the lowermost panel on the right all correlation times as
a function of γI near the optimal noise intensity.

Next, we examine how the nature of the neuronal dynamics
depends on the fraction of excitatory interlayer axons ξ . The
upper two panels of Figure 5 show space-time plots of neuronal
activity for two different values of ξ . Lower fractions of excitatory
axons seem to increase the activity in both layers. The same
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FIGURE 2 | Two-layered network representation of neuronal communication patterns in populations with excitatory (black; lower layer) and inhibitory (upper layer,

blue) neurons for two values of the interlayer connectivity parameters δ (upper row) and the corresponding degree distributions of interlayer connections (lower row).

For δ = 0.5, there are many long-range connections between both layers and the architecture is very heterogeneous, as indicated by the scale-free character of the

interlayer node degree distribution. In contrast, for δ = 10 the distribution of the interlayer excitatory and inhibitory axons is more homogeneous, and the

corresponding degree distribution obeys a Poisson distribution. The network consists of 200 neurons, of which 30% were inhibitory (γI = 0.3). The directionality of

interlayer connections was assigned at random, as specified by the parameter ξ , which was set at the standard value ξ = 0.5.

trend is observed for the coherence as seen on the lower
four panels of Figure 5 that show average correlation times in
dependence on the fraction of excitatory interlayer axons as well
as noise intensity. The lowermost right panel showing average
correlations time near the optimal noise intensity (D = 10) also
indicates a similar increase in the coherence of noise-induced
oscillation in both layers.

We continue with the analysis of interlayer coupling strengths
KEI and KIE. The upper two panels of Figure 6 show space-time

plots of neuronal activity for two different coupling strengths
of inhibitory interlayer axons KIE, where coupling strength of
excitatory interlayer axons is held constant KEI = 0.2. The lower
four panels show average correlation time values as a function
of both interlayer coupling strength, whereas the lowermost
right panel shows them only in dependence on inhibitory axons
coupling strength KIE. We see an obvious increase in regularity
when the coupling of inhibitory axons to excitatory layer gets
stronger. Notably, the increase in coherence affects the excitatory
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FIGURE 3 | Raster plots of neuronal activity at different noise intensities D (upper four panels) with corresponding autocorrelation function plots of an individual neuron

(bottom left panel). Average characteristic correlation time T as a function of noise intensity D (bottom right panel). Colored points on the resonance curve represent

specific noise intensities for which raster plots and autocorrelation plots are shown. Most coherent spiking is observed at around D = 15.
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FIGURE 4 | Raster plots of neuronal activity for two different proportions of inhibitory neurons γI (upper two panels). Quantification of the coherence resonance

phenomenon in dependence on the noise intensity D and the fraction of inhibitory neurons γI (lower four panels). The contour plots show the color-coded average

values of correlation times for all neurons T , excitatory neurons TE , and inhibitory neurons T I. The lowermost panel on the right represents the average correlation

times values near the optimal noise intensity values (D = 10).
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FIGURE 5 | Raster plots of neuronal activity for two different interlayer proportions of excitatory axons ξ (upper two panels). Quantification of the coherence

resonance phenomenon in dependence on the noise intensity D and the interlayer proportion of excitatory axons ξ (lower four panels). The contour plots show the

color-coded average values of correlation times for all neurons T, excitatory neurons TE , and inhibitory neurons T I. The lowermost panel on the right represents the

average correlation times values near the optimal noise intensity values (D = 10).
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FIGURE 6 | Raster plots of neuronal activity for two different interlayer coupling strengths KIE where KEI = 0.2 (upper two panels). Quantification of the coherence

resonance phenomenon in dependence on the interlayer coupling strengths KEI and KIE (lower four panels). The contour plots show the color-coded average values of

correlation times for all neurons T, excitatory neurons TE , and inhibitory neurons T I. The lowermost panel on the right represents the average correlation times values

in dependence on coupling strength KIE at a constant value of KEI = 0.2.
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layer more profoundly as the relative gain in average correlation
time in the inhibitory layer is significantly lower. In contrast,
enhancing the coupling strength of excitatory interlayer axons
decreases the level of regularity in both layers.

Finally, we investigate how neuronal activity is affected by the
interlayer network parameter δ. The upper two panels of Figure 7
show space-time plots of neuronal activity for two different values
of parameter δ. The lower four panels show average correlation
times in dependence on parameter δ and noise intensity, whereas
the lowermost panel on the right shows the relation between
the correlation times and interlayer network parameter δ near
optimal noise intensity. It can be seen that varying the parameter
δ affects the noise-induced neuronal dynamics so that a higher
degree of regularity is attained when the interlayer connectivity is
heterogeneous (δ < 1). The effect is slightlymore pronounced for
the inhibitory layer. These results in combination with previous
reported findings seem to point toward a general pattern where
the overall coherence of neuronal dynamics can be enhanced by
a stronger damping of the excitatory layer. This can be achieved
by either a larger fraction of inhibitory neurons, larger fraction
of inhibitory interlayer axons, a stronger coupling of inhibitory
axons with excitatory layer, or a more efficient interaction
patterns between both types of neurons.

DISCUSSION

Coherent neuronal activity is a putative mechanism whereby
neuronal populations subserving specific functions communicate
for the purpose of establishing dynamical patterns that
accomplish perception, cognition, and action (Riehle et al.,
1997; Oram et al., 1999; Horwitz and Braun, 2004). It is
nowadays a well-established fact that the creation of the neuronal
dynamics relies significantly on random fluctuations (Stein et al.,
2005; Faisal et al., 2008; Chialvo, 2010; McDonnell and Ward,
2011; Guo et al., 2018). Previous research encompassing tissue
slice preparations, whole brains, and computational models has
revealed that neural synchronization can be facilitated by the
addition of optimal amounts of neuronal noise, i.e., neurons can
exploit noise to enhance the regularity of their pulsing dynamics.
The numerous experimental evidence showing the constructive
role of noise at the microscopic (Douglass et al., 1993; Gluckman
et al., 1996; Gu et al., 2002; Manjarrez et al., 2002; Ward et al.,
2010; Sancristóbal et al., 2016) and macroscopic (Collins et al.,
1996; Simonotto et al., 1997; Russell et al., 1999; Hidaka et al.,
2000; Kitajo et al., 2003; Itzcovich et al., 2017) levels of neuronal
organization has evoked immense interest of computational
neuroscientists to investigate the underlying mechanisms and
functional implications (Lindner et al., 2004; Sagués et al., 2007;
McDonnell and Abbott, 2009; Calim et al., 2021). In recent
years, the models are becoming increasingly comprehensive
as they incorporate several types of neuronal populations,
different types of interactions, information transmission delays,
plasticity in connectivity patterns, etc. Moreover, along with
the developments in the field of network science, the scope is
shifting tomultilayer networks as this novel concept offers amore
comprehensive framework to assess the complex interactions

across multiple facets of neurophysiological relationships and the
resulting dynamical phenomena (Boccaletti et al., 2014; Kivelä
et al., 2014; Gosak et al., 2018, 2022; Battiston et al., 2020; Torres
et al., 2021).

In this study, we aimed to extend the scope of coherence
resonance in a multilayer network model of neuronal dynamics.
We considered a mixed heterogeneous and excitable neural
population composed of excitatory and inhibitory neurons.
The multilayer network formalism was used to represent
these subpopulations so that each neuron type occupied
a separate layer and the directed interlayer connections
represented excitatory or inhibitory axons. This setting enabled
us to systematically investigate how different neurophysiological
determinants affected the characteristics of the noise-driven
neuronal dynamics. We focused specifically on the proportions
of inhibitory neurons and excitatory interlayer axons as well
as on the strength and structure of the interlayer connectivity.
Our numerical calculations have revealed that the proposed
setup represents a viable route for the realization of coherence
resonance (Figure 3). The resonant behavior was found to be
quite immensely affected by the number of inhibitory neurons
so that a higher fraction of inhibitory units enhanced the
regularity of the entire system (Figure 4). Moreover, a higher
fraction of excitatory axons was found to reduce the regularity of
noise-induced oscillations (Figure 5). The accuracy of neuronal
excitations was also found to be affected by the interplay between
the coupling strength between the excitatory in inhibitory layer,
whereby the coherence resonance was more pronounced when
the influence of the inhibitory layer was promoted. Interestingly,
the regularity in the excitatory layers turned out to be affected
more (Figure 6). Finally, we investigated how neuronal activity
depends on the structure of the heterotypic interactions between
the excitatory and inhibitory neurons. By varying the parameter
for interlayer connectivity, the structure of connections between
both layers was smoothly altered between a highly heterogeneous
scale-free-like structure and a rather homogeneous organization
with no substantial differences in the number of connections
between individual neurons (Figure 2). It turned out that the
more heterogeneous configuration evoked a higher degree of
regularity in the neuronal dynamics (Figure 7). Apparently, the
more heterogeneous and scale-free-like interlayer connectivity
structure represents a more efficient setting for information
transmission as the homogeneous interlayer connectivity pattern
(Vragović et al., 2005) and as such enhances the communication
between both layers, which makes the influence of the inhibitory
neurons more pronounced. To sum up, our findings indicate that
giving prominence to the inhibitory layer, either by increasing the
number of inhibitory neurons or enhancing the coupling strength
or efficiency from the inhibitory to the excitatory layer, always
acts as a promoter of regular neuronal activity.

Previous computational studies have already investigated
collective activity in networks of interconnected excitatory and
inhibitory neurons as such networks are ubiquitous in the brain
(Best et al., 2007; Sukenik et al., 2021). In the last decade,
computational models and analyses have played an important
role in identifying the nature of neuronal rhythmicity that
orientates from the complex interplay between subpopulations
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Ristič and Gosak CR in a Two-Layer Neuronal Network

FIGURE 7 | Raster plots of neuronal activity for two different values of parameter δ (upper two panels). Quantification of the coherence resonance phenomenon in

dependence on the noise intensity D and parameter δ (lower four panels). The contour plots show the color-coded average values of correlation times for all neurons
T, excitatory neurons TE , and inhibitory neurons T I. The lowermost panel on the right represents the average correlation times values near the optimal noise intensity

values (D = 10).
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Ristič and Gosak CR in a Two-Layer Neuronal Network

of inhibitory and excitatory cells (Jadi and Sejnowski, 2014;
Hahn et al., 2019; Sukenik et al., 2021). It has been shown
that the presence of inhibitory neurons can facilitate rhythmic
activity in neural networks (Shimokawa and Shinomoto, 2006;
Cheng and Cao, 2017; Ma and Tang, 2017) and that the
presence of heterogeneous inhibitory neurons can optimize their
responsiveness to external stimuli (Di Volo and Destexhe, 2021).
In particular, the architecture of the neuronal network was
reported to play a major role in this respect (Rich et al., 2020).

Furthermore, in the context of stochastic facilitation, it
has been reported that fine-tuning of inhibitory synapses can
improve frequency-difference-dependent stochastic resonance in
neuronal networks (Guo D. et al., 2017) and that the presence
of inhibitory chemical synapses at the intralayer levels optimizes
stochastic resonance in multiplex neural networks (Yamakou
et al., 2020). It has also been shown that the presence of inhibitory
neurons can enhance the coherence resonance behavior in
neuronal networks, but the effect is rather complex and depends
on the interplay between the coupling characteristics and noise
(Yu et al., 2018). Along similar lines, inhibitory autapses have
been recently recognized as another suppressive agent that can
facilitate coherence resonance in neuronal networks (Jia et al.,
2021).

CONCLUSION

Our results demonstrate another example of how the influence
of inhibitory neurons can lead to an improved regularity
of the noise-driven neuronal dynamics, which we expand to
a multilayer network concept. The proposed computational
model enabled us to systematically investigate the role of
different neuronal network parameters and allowed us to

gain a better understanding on how the architecture of

interlayer connections between inhibitory and excitatory neurons
affected the nature of neuronal activity patterns, even though
future studies will be required to gain further insights into
the underlying mechanisms. Furthermore, interesting future
research directions on the topic would be to use more realistic
neuronal models that could incorporate a detailed description
of neuronal heterogeneity, synaptic plasticity, information
transmission delays, and signaling via autaptic connections. All
these features are genuine neurophysiological determinants that
have been shown to affect the collective dynamics of neuronal
networks. Most importantly, the proposed multilayer network
representation of the neuronal subpopulations can serve as a
solid ground for further upgrades in this direction.
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