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Monitoring canid scent marking in 
space and time using a biologging 
and machine learning approach
Owen R. Bidder1*, Agustina di Virgilio2, Jennifer S. Hunter1, Alex McInturff1, 
Kaitlyn M. Gaynor   1, Alison M. Smith3, Janelle Dorcy1 & Frank Rosell4*

For canid species, scent marking plays a critical role in territoriality, social dynamics, and reproduction. 
However, due in part to human dependence on vision as our primary sensory modality, research on 
olfactory communication is hampered by a lack of tractable methods. In this study, we leverage a 
powerful biologging approach, using accelerometers in concert with GPS loggers to monitor and 
describe scent-marking events in time and space. We performed a validation experiment with domestic 
dogs, monitoring them by video concurrently with the novel biologging approach. We attached an 
accelerometer to the pelvis of 31 dogs (19 males and 12 females), detecting raised-leg and squat 
posture urinations by monitoring the change in device orientation. We then deployed this technique to 
describe the scent marking activity of 3 guardian dogs as they defend livestock from coyote depredation 
in California, providing an example use-case for the technique. During validation, the algorithm 
correctly classified 92% of accelerometer readings. High performance was partly due to the conspicuous 
signatures of archetypal raised-leg postures in the accelerometer data. Accuracy did not vary with the 
weight, age, and sex of the dogs, resulting in a method that is broadly applicable across canid species’ 
morphologies. We also used models trained on each individual to detect scent marking of others to 
emulate the use of captive surrogates for model training. We observed no relationship between the 
similarity in body weight between the dog pairs and the overall accuracy of predictions, although 
models performed best when trained and tested on the same individual. We discuss how existing 
methods in the field of movement ecology can be extended to use this exciting new data type. This 
paper represents an important first step in opening new avenues of research by leveraging the power of 
modern-technologies and machine-learning to this field.

Scent marking is a critically important form of olfactory communication, shaping affiliative and agonistic interac-
tions within and across species. The use of scent marks provides animals a means to defend resources1,2, advertise 
availability to mates3–5, and communicate with conspecifics6,7. It also serves to minimise the risk of injuries from 
agonistic encounters with potential competitors2. Prey species are also known to ‘eavesdrop’ on these communica-
tions to avoid contact with their predators8. Thus, scent marking is a critical communication system, the nuances 
of which dictate where animals occur on the landscape, with implications for individual fitness and, ultimately, 
population dynamics. Despite its importance, research on this and other forms of olfactory communication in 
the wild is hampered by a lack of tractable methods. This is due in part to human dependence on vision as our 
primary sensory modality. If new methods could be developed that address the deficiencies in our olfactory 
senses using modern technology, this could open up numerous avenues for future research on this significant yet 
under-served ecological strategy.
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Scent Marking in Canids
Scent marking is particularly important for canid species, which rely heavily on olfactory cues for sociality and 
territorial defence9. For territory holders, conspicuous advertisement through scent marking is a convenient, 
low-cost form of defence compared to frequent, risky physical escalation10. This active defence distinguishes a 
territory from a home-range11. Animals gain some benefits from visiting areas outside their territory, e.g. infor-
mation on the distribution and reproductive receptiveness of neighbours12, but they will obtain the most direct 
fitness benefits from resources within their territories, for which they will have almost exclusive use2,13. However, 
extra-territorial movements (i.e. ‘forays’14) can be indicative of other important ecological processes. In wolves 
for example, extra-territorial forays may be performed by entire packs in response to scarcity of resources, or by 
individuals as failed dispersal attempts15,16. As such, information about how much of an animal’s home range con-
stitutes its territory, and their time spent in and outside that territory, is germane to our understanding of these 
animals’ ecology. These topics can only be investigated by establishing the spatial distribution of scent marks in 
the landscape.

Temporal variation of scent marks efficacy is also a pertinent issue that is incorporated in theoretical treatise 
of territoriality and spatial resource partitioning17–19. However, the signal decay due to precipitation, ultraviolet 
radiation and bacterial decomposition has rarely been investigated empirically20,21. For example, free-ranging 
dogs have been observed to scent mark more during the wet season22, thus increasing the cost of territory defence 
at these times. It is possible that changes in rainfall or ultraviolet radiation, due to climate change for instance23, 
may have an impact on the economics of territory defence for scent marking species more generally10. Thus, in 
addition to information on their spatial distribution, records of when animals lay scent marks, which conspecifics 
come in to contact with these signals and for how long they are detected, are all pertinent and merit study.

Limited Methods
Gaining information about the when and where of scent marking of wild animals is a non-trivial methodological 
issue. Camera traps provide a means to study free-living animals and have provided valuable insights for wild 
canids24,25. However, these animals are prompted to scent-mark by a stimulus placed by the researcher, and so 
do not offer insight into the typical spatial distribution of scent marks or the nuances of their use in intra-species 
communication. Following individuals for direct observation has provided some insights on spatial distribution 
and the environmental context for scent marking26, but this method may suffer from observer bias27,28, limit 
observations to small areas29, and is labour intensive. To study the spatial distribution of scent marking, research-
ers have been limited to tracking field signs in snow30–33. This method may not provide information on animal 
identity that is important for social species, as their scent marking activity and strategy may differ according to 
factors such their place in the social hierarchy34. Tracking in the snow is also restrictive because it cannot be used 
in warm climates or at times of year in which snow is absent.

In summary, our ability to study the dynamics of scent marking has been greatly limited due to the challenges 
of measuring olfactory marks in the field. Studies of animal communication have been biased towards more easily 
detectable visual and auditory signals, and there are few existing tools to study olfactory communication. These 
limitations are particularly acute for canids as they can be cryptic, travel large distances over difficult terrain, 
operate nocturnally, and rely heavily on olfactory communication. Currently, researchers are unable to obtain 
adequate samples, precluding studies on species that are difficult to observe visually. Novel functional field meth-
ods for studying olfactory communication can therefore create new opportunities for inference and understand-
ing in ecology.

A Novel Approach Using Biologging Techniques
Numerous studies in behavioural ecology have benefitted from advancements in the field of biologging35. 
Biologging techniques make use of miniaturized animal-borne technologies, such as heart rate monitors36, pres-
sure sensors37 and temperature loggers38,39 to chronicle free-ranging animals’ physiology, behaviour and envi-
ronment remotely. Accelerometers are a particularly valuable tool for monitoring animal behaviour, and are 
well-suited to study the distinctive movement patterns associated with canid scent marking40. Accelerometers 
record animal movement at high sample rates (typically over 25 Hz) via tri-axial (i.e. 3-dimensional) inertial 
sensors (see41 and papers therein). The large datasets these high resolution sensors produce can be analysed using 
machine learning techniques to quickly and automatically find behaviours of interest41–44. One such machine 
learning technique, the k-Nearest Neighbour (KNN) algorithm, is a conceptually simple and effective method of 
classifying behaviours in accelerometer data45. Many male canids are renowned for the archetypal ‘leg up’ posture 
that they adopt when scent marking with urine46, and such a static posture should be relatively conspicuous in 
signals produced by an accelerometer for detection by KNN. Females often adopt a ‘squat’ posture when per-
forming urine scent marks, but whether the signal produced in this posture could be discerned from a similar 
posture adopted when defecating has yet to be established. Scent marking has not yet been studied by concurrent 
use of GPS and accelerometers (see47 for an example on livestock elimination events), but doing so may allow 
researchers to assign both time and location to scent mark observations, addressing the current methodological 
limitations identified above.

At this stage, it is vital to validate candidate methods that can discern when scent marking events occur. In 
this study, we investigate whether accelerometers and KNN analysis perform with requisite accuracy, and we 
integrate these technologies with GPS telemetry to describe the spatial distribution of scent marking behaviour 
with a biologging approach for the first time. We aim to address the deficiencies of existing methods, and intro-
duce a novel method without the need for labour intensive human observation and that is not contingent on 
environmental conditions for its use. We validate this method using domestic dogs as a tractable model, recording 
their scent marks whilst under both accelerometer and video observation. To ensure that the method is broadly 
applicable across canid species, we use a variety of dog breeds that approximate the range of body sizes observed 
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in wild canid species48. To further illustrate the utility of the method, and to provide the means to link scent 
marking records to animal location data, we apply the technique in a field trial using free-ranging guardian dogs. 
Using this case study as an example, we relate how novel information on scent marks in time and space may be 
used to address pressing questions in animal ecology, namely; how much of their home-range constitute territory 
for which they have exclusive use, how animals may perform extra-territorial movements to access mates and 
resources, and how scent mark efficacy decays over time.

Methods
Validation experiment.  We performed a comprehensive validation study of the proposed scent marking 
biologging method at the University of South-Eastern Norway, in Bø, Norway (59°24N, 9°03E). The validation 
study took place in March 2015, around a mixed path of concrete walkway and short, firm grass turf. We obtained 
a sample of 62 domestic dogs, Canis lupus familiaris (32 female, 30 males), identified through volunteers that 
were members of a local interest group. All experiments were conducted in accordance with the guidelines and 
regulations at the University of South-Eastern Norway (other ethical approvals were not required), and all owners 
provided written informed consent and remained with their animals at all times. To ensure that the method was 
broadly applicable across species, we used breeds that varied in body size (2.6 kg to 40 kg) to emulate the range 
of body sizes and morphology observed in wild canids48. We also recorded animal weight, age and sex and tested 
for a relationship between these characteristics and classification accuracy. Dogs were a variety of breeds (both 
purebred and mix) and a mean age of 5.5 years (±3.78 years), mean weight of 17.8 kg (±10.6 kg), although details 
(i.e. breed and age) for 10 of the dogs were not known to the owners. Only 1 of the 30 male dogs was castrated. 
We equipped the dogs with a X6-mini accelerometer from Gulf Coast Data Concepts (Waveland, MS, USA), set 
to record at 50 Hz on 1 Gb of memory. The device weighed 18 g, well under the 5% body weight ethical stand-
ard49,50. Devices were positioned on the lower dorsal portion using a flexible silastic harness (Thomson Bros. Ltd., 
Newcastle upon Tyne, UK) designed for this purpose. Dogs were taken along a path, where they were allowed 
to roam freely, and were monitored via a GoPro™ camera until they had scent marked at least 5 times, with at 
least one instance of each left and right leg raised scent marks for male dogs, and at least one instance of squat 
scent mark and squat defaecation for females. Sessions ranged from 13 to 50 minutes, with sessions terminated if 
dogs did not perform the requisite number of scent marks within 50 minutes. Females performed predominantly 
squat urinations, but those that also used raised-leg urinations had those postures included in their analysis. We 
included defaecations as a class in the analysis for males if the animal conducted this behaviour whilst under 
observation. All other behaviours (e.g. walking, running, sitting) were grouped in to a single behavioural class, 
termed ‘other’. These other behaviours can be discerned from each other by KNN45, but were not the focus of this 
work. KNN predictions were compared to the actual behaviour as verified by the video recording, and accuracy, 
precision and recall, f1 score and area under the receiver operator characteristic curve (AUC) calculated (see 
below).

Application experiment.  The second part of our work, in which we applied the method to free-ranging 
canids, was conducted at the Hopland Research and Extension Center (HREC; 39°00N 123°05W), in Mendocino 
County, California, USA. All experiments were conducted in accordance with the guidelines and regulations of 
HREC and after approval from the HREC Animal Care and Use Committee. The vegetation is characteristic of the 
Coast Range, composed mainly of annual grassland, chaparral, oak woodland and mixed evergreen-deciduous 
forest. HREC is a University of California field research facility for agriculture and natural resources, and at 
present maintains a research sheep flock of between 500 and 600 breeding ewes. Losses of sheep by coyote (C. 
latrans) are an issue51. To reduce the need for lethal control, the HREC uses 5 guardian dogs (e.g.52) to discourage 
predation of sheep by coyotes. These guardian dogs move freely throughout the pastures and are provided food 
daily by HREC staff. Water is available on demand.

We equipped the 5 guardian dogs (2 females and 3 males) with iGotU GT-600 GPS loggers (Mobile Action 
Technology, Inc., Taiwan) and AX3 tri-axial accelerometers (Axivity, United Kingdom). The guardian dogs expe-
rience minimal contact with their human handlers, other than to receive food or veterinary treatment. This pre-
vents the dogs from abandoning their sheep herds in preference for contact with people, and in this study serves 
to emulate the reaction wild canids might have to research equipment. The GPS devices weighed 37 g and the 
accelerometers weighed 11 g, well under the standard 5% body weight threshold for biologging devices50. GPS 
were set to record location every 5 seconds (i.e. 0.2 Hz), and accelerometers were set to register acceleration at 
50 observations per second (i.e. 50 Hz). GPS devices were attached to collars equipped to the neck. The silastic 
harness developed for the domestic dogs would have been unsuitable for free-living animals because it is not 
durable enough. To trial a method of device attachment that is broadly applicable to wild animals, accelerometers 
were affixed to the dorsal-pelvic region of the dogs via a temporary epoxy adhesive (Poxipol; Akapol, Argentina) 
directly to this region after trimming the fur (see Supplementary Material for more details). The position of the 
logger on the lower back ensured that the animal was unable to reach or tamper with the device. After device 
attachment, we video-recorded behaviour of each dog for one hour in order to obtain observations of scent 
marking that could be used to train the k-NN classifier. The devices were retrieved from the dogs after between 
3 and 7 days, by cutting the fur beneath the logger. The site of attachment was monitored for 3 weeks following 
device retrieval in order to ensure that there were no lasting deleterious effects (only some mild reddening of skin 
immediately after detachment, see Supplementary Information).

K-Nearest neighbour algorithm.  The KNN algorithm is an intuitive and conceptually simple supervised 
machine learning algorithm for classification problems45. The models are considered ‘supervised’ because they 
are trained using validated data where the class of interest in known, after which they can be applied to predict the 
classes of ‘new’ data (i.e. unlabelled data from unobserved animals). The algorithm has two main stages that are 
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repeated for each unlabelled point; first the distance between new unlabelled data points and each of the labelled 
training points is calculated. This distance can be measured in a number of ways, but the most common is to use 
the Euclidean distance in the units of measurement (in our case .g in three dimensions corresponding to the axis 
of the accelerometer). The second stage involves ranking all training points by their distance to the unlabelled 
data, and for each point, taking a sample of nearest points. The size of this sample is determined by the hyperpa-
rameter k, hence the algorithm’s name k-nearest neighbour. The class of the unlabelled data is then determined by 
a majority vote of the k-nearest neighbours, i.e. whichever class is most abundant in the k sample is assigned to 
the unlabelled data point. For an illustrated example of the KNN we refer readers to Bidder et al.45.

It is often preferable to select a value for k that is indivisible by 2, so as to avoid a potential deadlock in the 
majority vote. No sure-fire method exists for determining optimum values for k (c.f.53), but a small k is preferred 
because nearer points hold more relevant information about the potential class of the new data point. This issue 
can also be dealt with by using a voting scheme that weights training points based on their proximity to testing 
points54. KNN has been demonstrated to be an effective method of classifying accelerometer data by behaviour 
type45,55. We used the implementations of KNN available in the scikit-learn library for Python56 for both the vali-
dation experiment on domestic dogs and for the deployments on the guardian dogs. We used Python because this 
language is optimised for large datasets and scikit-learn provides a convenient framework for cross-validation and 
tuning of the k hyperparameter. However, to enable researchers to utilize the methods presented in this study we 
provide the Python code needed in the Supplementary Information.

For the validation experiment on the domestic dogs, we adapted the procedure of Bidder et al.45. We built a 
training data set using a random sample of 50 raw triaxial accelerometer records from each of the scent marking 
classes observed (e.g. left leg raised, right leg raised, squat urination, defecation) and 500 raw triaxial accelerome-
ter records from periods where no scent marking postures were observed (i.e. during locomotion, rolling, resting) 
and concatenated these in to a general ‘other’ behavioural class. We used this low proportion of available labelled 
data for training to emulate situations where only a few examples of each posture are observed prior to release. 
We then performed grid search hyperparameter tuning for k with 5 cross validation folds using the scikit-learn 
library. Finally, we used the trained model with the tuned value for k to predict the behaviour for a testing set that 
consisted of all occurrences of scent marking during observation, excluding those records used to train the model, 
and 3000 randomly selected records of ‘other’ behaviours. We randomly selected records for which ‘other’ behav-
iour was observed because these occurred 50–100 times more often than scent marking behaviours during the 
observation period, and we didn’t want the performance metric scores to be driven by ‘other’ behaviours alone. 
Had we not done this, it would be possible for our model to erroneously predict ‘other’ as the class for all records, 
and still score an accuracy that was equal to the overall proportion of ‘other’ in the data set (ca. 95% or more). As 
an additional component to our analysis, we also used the models trained for each dog to predict the classes of 
the testing data for all other dogs, trialling each training-dog testing-dog combination in a pairwise fashion. We 
did this in order to assess how similar in morphology a potential surrogate animal may need to be in cases where 
researchers aimed to study species for which captive individuals did not exist or for which a period of observation 
subsequent to release would be difficult.

By comparing the predicted classes of our testing set with the known classes (as determined by observation 
with a camera) we were able to calculate a range of performance metrics available in the scikit-learn library, 
namely; accuracy, precision, recall, f1 score and area under the receiver operator characteristic curve (AUC). 
Accuracy is the proportion of samples that were correctly classified. If y is the true class and ŷ is the predicted 
class, accuracy is calculated as;
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Given that our classification problem is a multiclass (rather than binary) one, precision, recall, f1 score and 
AUC must be calculated for each class separately and then combined using an average weighted by prevalence 
of each class to give a single metric of performance. Predictions are either positive or negative for a given class 
(i.e. they are either 1 for the class in question or 0 and thus must be one of the other classes). These positive and 
negative predictions can also be true or false based on whether they matched the known classification at that time, 
as determined through visual observation of the dogs. Thus, for each class in the data set we obtain a set of classi-
fications that must be one of either True Positive (TP), False Positive (FP), True Negative (TN) or False Negative 
(FN) values. From these we can calculate our metrics57 using the following;
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Thus, precision is the proportion of positive classification that were correct, recall the proportion of true values 
for that class that were given a positive classification, and f1 score a harmonic mean of both precision and recall. 
AUC is often used to characterize the trade-off between true positive rate (i.e. recall) and the true negative rate, 
with a score of 1 indicating no false positives or false negatives. Random guessing would return a score of 0.5. We 
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do not offer a detailed description of AUC or receiver operator characteristic analysis here, but we refer readers 
to Fawcett58 for additional details.

For the guardian dog experiment, we performed validation through an initial period of observation that con-
tained at least 1 scent marking event for females and at least 1 of each left and right leg scent marks for the males. 
We performed manual annotation of the accelerometer data using the free software ELAN (Max Planck Institute 
for Psycholinguistics, Germany), using 7 general behavioural classes: walk, run, jump, stand, lie, sit and shake; 
and either squat or right and left leg raised scent marks depending if the subject was male or female. No defaeca-
tions were observed for the guardian dogs during the observation period. The data for the observation period was 
randomly split in to training and testing sets based on a 0.66/0.33 split, and the KNN fitted to the training data 
using k tuned for each dog in a manner similar for the dogs in the validation experiment. We evaluated accuracy 
and f1 score (calculated as above) for each subject’s KNN classifier.

We then ran a smoothing function over the predictions for both observed and unobserved periods, in order 
to reduce the data volume and provide a means to synchronise with less resolute GPS location data. To do 
this, we segmented the data in to bins of 1 second in duration and then took the modal class for each bin. The 
down-sampled data classifications were also compared to known observations to calculate accuracy at a 1 Hz 
rate, and a behaviour specific accuracy. Calculating behaviour specific accuracy ensures that scent marks are 
being classified correctly (which is the aim of this study), and that high accuracy scores are not being driven by 
more frequently expressed behaviours. All the computational scripts required for these analyses are provided in 
Supplementary Information, in order to encourage uptake of this approach by the research community.

Scent marking indices and statistics.  We illustrate possible uses for this novel spatial and temporal 
description of scent marking behaviour, obtained through application of the KNN to accelerometer data obtained 
concurrently with GPS location data. The concepts of home-range and territory differ in that the latter con-
sists only of areas actively defended against competitors59, following Noble’s succinct definition that “territory is 
defended area”60. To illustrate this difference, we calculated a 95% minimum convex polygons (MCP)61 from all 
GPS telemetry locations and a second MCP using locations associated with scent marking activity only (as iden-
tified via KNN analysis). The calculation of 95% MCPs was conducted in the R statistical environment using the 
adehabitatHR package version 0.4.1462. We then calculate the area of overlap between MCP produced from the 
two data types using the ‘rgeos’ package63, expressing overlap as the proportion of the all-location MCPs that are 
also included in the scent mark only MCPs.

To examine revisits and overmarks, we used functions in the ‘rgeos’ R package to detect events in which dogs 
marked within 10 m of a previous scent mark, and calculated the time between visits based on the timestamp of 
the GPS telemetry data. We chose a 10 m buffer distance for these events because the accuracy of the GPS data 
is ca. 10 m. Canid species are known to detect scents within this distance64–66, and often overmark when they 
do29,67,68. Thus, if a scent-mark is observed within 10 m of a competitor’s, there is a high probability that the animal 
under observation will have attempted to place their scent-mark as close to it as possible. Again, the purpose of 
the present study is to illustrate possible use-cases for this novel information type, and here we avoid generalizing 
too much from the behaviour we observe.

If the area delineated by scent marks is taken as its territory, then excursions from this area may constitute 
extra-territorial forays69–71. To describe this behaviour type, we used ‘rgeos’ and ‘raster’72 R packages to count and 
time each extra-territorial excursion. We took the first location detected outside of the scent-mark delineated 95% 
MCP as the start location and time, with the last location prior to re-entry taken as the end point and time. We 
separated extra-territorial forays in to those over 10 minutes in duration and those under, although this threshold 
was selected arbitrarily in our example use-case. We report the mean duration, total duration and percent of total 
deployment time spent conducting extra-territorial forays for our guardian dogs in the results.

All of our example guardian dog use-cases are visualized using the ggmap R package73, with Google’s ‘terrain’ 
basemap (characterizing slope) used in order to provide spatial context.

Results
Domestic dog validation.  Of the 62 dogs equipped and tested, only 31 could be submitted to KNN analysis 
whilst the others were excluded for the following reasons: not enough scent marks conducted during the study 
period (n = 20), video file corruption (n = 2), accelerometer failure (n = 2), harness rejection (n = 2) and a data 
labelling issue where dogs’ files were lost (n = 5). The results for the remaining 31 dogs submitted to analysis are 
summarized in Table 1. These results suggest that using a k of 3, as determined through 5-fold cross validation, 
provides adequate performance in all of the metrics used.

The posture adopted when placing scent marks differed between male and females, as males used the arche-
typal canine ‘leg-up’ posture whilst females predominantly used the ‘squat’ posture. We wished to ensure that 
the KNN classifier was able to differentiate between female ‘squat’ posture urinations and defaecations. In con-
sideration of this, we the performance metrics for both males and females separately in Table 1, where there is 
no discernible difference in accuracy between males and females. Inspection of the signatures produced by the 
accelerometers provides some insight in to why the KNN classifier was able to perform so well. Figure 1 illustrates 
the signatures produced by left leg (panel a), right leg (panel b) and a squat to defaecate (panel c). Left and right 

Sex N Modal K Accuracy Precision Recall F1 Score AUC

F 12 3 0.926 0.931 0.928 0.928 0.929

M 19 3 0.927 0.929 0.930 0.928 0.924

Table 1.  Performance metrics by sex observed during validation experiment using domestic dogs.
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leg up postures produce polarization in the lateral y axis (i.e. sway), providing values of approximately −1 g and 
1 g respectively. The dogs hold these static postures for a few seconds, producing conspicuous signals that can 
be detected by the KNN classifier. A similar signature is observed when the animal is in the squat posture, but 
instead the signal is detected along the x axis (i.e. surge) axis, producing a value of −1 g, indicating that this axis 
is directed toward the centre of earth’s gravity.

An alternative three-dimensional view of this same data is given in the Supplementary Information 
(Fig. S4) to provide an intuitive illustration of how the KNN classifies new accelerometer data according to its 
proximity to training data. A specific aim of this study was to develop a method that was broadly applicable 
across canid species of varying morphology. Classification accuracy was unaffected by the weight, age or sex 
of the animals used in our validation study (Fig. 2), suggesting that the method does not perform any worse 
on very small or very large dogs. This leads us to conclude that the method does not suffer any reduction in 
efficacy due to morphology, and should be broadly applicable. In certain cases researchers may wish to train 
the model using a surrogate individual before detection of scent marking postures in another. To emulate this 
scenario, we used models trained on each male dog to predict the scent marking activity in all other males. 
Figure 2(c) details the results of this pairwise analysis. We found no relationship between the weight difference 
of dogs and model performance when models are trained on one dog and applied to another for prediction. 
Some dog-pairs produced comparable performance to when training and testing was performed on the same 
individual, whilst others dog-pairs performed poorly. For a detailed table of results for each surrogate, see the 
Supplementary Information (Table S1).

Guardian dog deployments.  The epoxy adhesive failed prematurely for 2 of the guardian dogs equipped 
with accelerometer and GPS loggers, so complete datasets were available for 3 guardian dogs. One of the dogs was 
moved by handlers to protect livestock in a second area mid-way through the deployment, so we separated the 
periods in each pasture for analysis. An initial period of validation was performed on each dog, and confirmed 

Figure 1.  Accelerometer signals for left leg (a), right leg (b) and squat (c) postures. Dog silhouette illustrations 
provided by Zoe Beba.

Dog Sex K
Overall 
Accuracy

Overall F1 
Score

Left 
Detections

Right 
Detections

Squat 
Detections

Dog1 F 7 98.4% 96.1% — — 7/7

Dog2 F 21 92% 91.7% — — 7/7

Dog3 M 15 90.3% 88.8% 3/4 4/6 —

Table 2.  Accuracy information for each guardian dog. Scent mark specific detection rates are for the proportion 
of total seconds in each posture that were detected.

Dog Sex
N Scent 
Marks

Deployment 
Duration (hours)

Rate (SM/
hour)

Dog1-A F 18 19.72 0.91

Dog1-B F 12 29.13 0.41

Dog2 F 21 46.89 0.45

Dog3 M 9 123.11 0.07

Table 3.  Summary of scent mark count for each guardian dog.
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high classification accuracy (Table 2). Classification of accelerometer data for the unobserved period revealed 61 
individual scent mark events across 218.76 dog-hours monitored. For a summary of scent marking rates and total 
deployment duration for each dog, see Table 3.

The spatial distribution of scent marks for each dog is shown in Fig. 3, along with a comparison between 
home-ranges (as calculated by a 95% MCP drawn around all GPS locations) and territory (derived from a 95% 
MCP using scent-mark locations). The home-range area was larger for all individuals, with the mean proportion 
of home-range overlap with territory at 46.1%. We were able to detect revisit overmarks on 4 instances each 
for both Dog1-A and Dog2. Mean revisit time for these were 5.3 hours and 12.3 hours for Dog1-A and Dog2 
respectively. We designated periods spent outside the territory MCP as extra-territorial movements. Figure 4 
shows these extra-territorial excursions for each guardian dog. The frequency and duration of excursions varied 
between the guardian dogs, and partly depended on whether they placed scent marks on the periphery of their 
home-range. Table 4 summarises the number and duration of these excursions, revealing an interesting pattern of 
short, frequent excursions and infrequent long excursions that probably were a result of each dog’s territory size, 
resting site locations and responses to sheep.

Figure 2.  Accuracy by weight (a), age (b) and sex (c), illustrating that these factors have no influence on our 
ability to detect scent marking behaviour.

Figure 3.  95% MCP derived from GPS Locations and Scent Marks. Overmarked locations shown in yellow. 
Google terrain base map included for context.
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Discussion
The novel method we present here provides a means to study scent marking in the wild by individually-identifiable 
wild animals without the need for direct observation. This new method may provide novel insights into this 
important yet understudied ecological phenomenon, one that has profound consequences for individual fitness, 
social organisation, and community ecology.

Technique validation and accuracy.  Our techniques for detecting scent marking proved effective, with 
accuracy scores above 90% for the validation trial conducted with domestic dogs (see Table 1). These high accu-
racy scores are comparable to those of studies of other taxa in which accelerometers monitor behaviour41,55,74. 
In fact, accuracy scores for this application of KNN were higher than those for other species in previous stud-
ies37,45,55,75. The high performance in this application is probably due to the marked differences in posture (and 
thus device orientation) adopted when canids scent mark. In Fig. 1, conspicuous differences in the accelerometer 
signal are visible between left-leg, right-leg, and squat postures. The fact that these postures are typically held for a 
few seconds with little dynamic movement probably aids detection, and offers significant signal contrast between 
these and other postures (see Supplementary Information for further illustration in a 3-dimensional representa-
tion). For females, we identified urination and defaecation postures separately, because wild canids may use either 
for olfactory communication (e.g.76), and because we expected less contrast between these postures compared to 
the left-leg and right-leg postures observed predominantly in males.

Our aim was to develop a method that is broadly applicable to both males and females across canid species. 
There was no reduction in accuracy between males and females (Table 1) and the KNN algorithm detects the dif-
ferent squat and raised-leg postures equally well. For females, the method is robust to small differences between 

Figure 4.  Scent Mark derived MCP with extra-territorial locations shown. Google terrain base-map shown for 
context.

Dog
N excursions 
under 10 min

N excursions 
over 10 min

Mean, Std dev excursion 
duration (min)

Total extra-territorial 
time (min)

Percent extra-
territorial

Excursion frequency 
(N per min)

Dog1-A 67 7 7.9 (±31.1) 588.05 45.1% 0.06

Dog1-B 21 20 23.9 (±50.4) 978.42 44.5% 0.02

Dog2 419 7 1.4 (±5.4) 635.67 21% 0.05

Dog3 383 54 5.4 (±14.4) 2359.74 28.5% 0.14

Table 4.  Details on the number and duration of extra-territorial forays by each of the guardian dogs.
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urination and defaecation squat postures, which is germane for species that use faecal olfactory signals76,77. We 
validated the method with breeds of a range of sizes (2.6 kg to 40 kg) that emulate those observed for most adult 
canids, (0.98 kg to 31.7 kg48), to ensure the method works equally well on canids of all sizes. Accuracy was not 
affected by weight (a proxy of animal morphological size) or age (Fig. 2), providing evidence that the method is 
broadly applicable across the various morphologies of canid species (c.f.74).

Considerations for application.  While accelerometers represent a promising methodology for studying 
scent marking behaviour, there remain limitations to its application. Like all supervised machine-learning meth-
ods, the KNN requires validated training data, typically obtained during an observation period or by using cap-
tive individuals45. This may not always be possible for species that are difficult to observe or for which few captive 
individuals are available.

There are two possible approaches to overcome this issue. The first involves using a surrogate species to obtain 
a validated training set. This approach has been demonstrated in canids, with little loss of accuracy when classifi-
ers are used on morphologically similar species74. In our study, comparison between the accelerometer signatures 
produced by the domestic dogs revealed a generalisable pattern that could be applied across individuals (Fig. 1). 
We performed pairwise application of models trained on one dog to predict the behaviour of another (Fig. 2c), 
which revealed no discernible relationship between the difference in weight (a proxy for body size) and model 
performance, with the caveat that models still performed best when the same animal was used for both training 
and testing. However, these results do raise the possibility of using dogs as surrogates for wild canids. Domestic 
dog breeds could also serve as convenient proxies for many wild canids because of their immense morphological 
variation78.

The second approach for training a classifier when validation data is difficult to obtain, is through manual 
annotation of data from wild deployment. Manual annotation can be conducted following the principles set out 
by Shepard et al.79, and does not necessitate an observational period45,80. Researchers may also use thresholding81 
or Boolean pattern matching82 to quickly identify the conspicuous signal produced during scent marking (Fig. 1), 
and build a training set after visual verification. Unsupervised methods, such as k-means clustering, may also be 
used83. In developing this method, we found that scent marking results in a distinct, easily-distinguishable pattern 
that would be straightforward to identify during manual annotation.

When deploying accelerometers to study scent marks, device placement is critical. Scent marking must be 
associated with a predictable body posture that can be detected through changes in device orientation. Typically, 
it’s impossible for the accelerometer to detect this pelvic tilt when mounted to collars around the neck, and so this 
necessitates mounting an additional accelerometer on the pelvis (preliminary trials showed no discernible signal 
from collar mounted accelerometers). Complementary GPS data is still necessary to obtain the locations of scent 
marks however, and so the devices must be used in concert. Also, the spatial accuracy of scent mark locations 
subject to the errors of GPS locations, which vary with habitat, potentially introducing bias84.

Device retrieval remains a barrier to widespread uptake of fine-scale accelerometery in general, since tech-
nology does not yet exist to facilitate the remote transmission of the gigabytes of data these devices produce85. 
Developing methods for remote download of accelerometer data represents an important frontier for the biolog-
ging community. For now, the use of accelerometers is best suited to species that have high site fidelity, including 
territorial or denning species86 or those that return to predictable haul-out sites or colonies87. If animals cannot be 
recaptured, the device must be equipped with a transmitter such as VHF, so that the device can be recovered once 
detached (e.g.88–90). Published research using the same adhesive attachment mechanism used here demonstrated 
successful attachment for ca. 30 days47. Provided a VHF transponder is used, a ca. 30-day attachment period 
should limit the animal from travelling too far and provide a manageable search area for locating the device, 
especially if animal movement is concentrated in territories or around den sites.

Research applications.  An additional aim of this study was to provide a tractable illustration of the types of 
data this technique provides. Here, we demonstrate how existing concepts in movement ecology can be extended 
to open new avenues for research on scent marking, an important form of communication. We provide an exam-
ple use-case through application of the technique on guardian dogs, tying the information gained to questions 
pertinent to animal ecology.

Territorial defence.  Home-range and territory differ in that only territories are actively defended against 
intrusion59. As a result, territories typically constitute only a portion of the larger home-range in which an ani-
mal is observed. Although there are many sophisticated methods to estimate animal home-ranges91, establish-
ing defended territory within that range is difficult. Figure 3 provides an illustration of the distinction between 
home-range and territory for our guardian dogs, through calculation of a MCP derived from GPS location data 
and another derived from scent marking locations only. While this only serves as an example using this novel 
approach, we observed the proportion of the total home-range that is demarked by defensive scent marks ranges 
from ca. 13.23% to 79.8%. Home-ranges derived from GPS data alone don’t necessarily provide information on 
what features in the environment are of utility to animals, they merely describe the probability of locating an 
animal at any given location92. Animals are territorial when critical resources are in short supply and limit pop-
ulation growth93. As such, conditions within their territories should make better predictors of productivity (i.e. 
breeding success of pairs and packs) and subsequently population change over time, than conditions measured 
from their larger home-ranges. Thus, the ability to delineate territories within home-ranges is important. The 
method presented here provides a workable means to establish which areas are being actively defended through 
scent-marking.
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The rate of scent marking at the territory boundary may provide insight into the territorial pressure exerted by 
conspecifics22. The spatial positioning of scent marks within the territory may also indicate their function. Scent 
marks on the periphery of a territory may pertain to territorial defence26,94, whilst those towards the interior may 
fulfil a variety of functions pertaining to intra-social group communication and social organisation11,29. Although 
the nuances of these interior scent marks are less understood, with the techniques introduced here, it is now 
possible to determine which scent marks are near the territory periphery and which the interior (Fig. 3). If the 
guardian dogs were actively defending territory, it is likely that we would observe greater scent marking activity 
on territorial boundaries adjacent to competitor’s territories, as has been observed in grey wolves95. An added 
benefit of our method is that it is possible to determine whether scent marks are placed using raised leg or squat 
urinations, which may also communicate whether scent marks are intended for territorial defence29,96.

Extra-territorial forays.  Once the territorial boundaries have been established, the number, length and fre-
quency of extra-territorial forays can be assessed. Figure 4 shows the locations obtained from each of the guardian 
dogs outside of their territory, and the number and duration of extra-territorial forays is described in Table 5. The 
information obtained with our approach could provide important insights on territorial behaviour of guardian 
dogs and their interaction with other species. For instance, while some researchers have stated that a guardian 
dog’s efficiency in preventing predation depends on the direct effect generated by presence97, others have shown 
that guardian dogs maintain territories and chemically respond to potential predators98. Our approach allows us 
to measure scent marking continuously through time and space and assess when and where guardian dogs display 
territorial behaviours and extra-territorial movements. With additional information on livestock movement pat-
terns, we might also assess whether guardian dogs perform extra-territorial forays to corral wandering livestock, 
challenge predators, or abandon their wards. This information is particularly valuable to practitioners hoping to 
use guardian dogs in lieu of lethal predator control. For other canid species, extra-territorial forays are important 
during dispersal, periods of food shortage, and play a role in the social dynamics between individuals that occupy 
neighbouring territories12,15,16.

Temporal dynamics of scent marking.  Scent marks collected from snow reveal only vague informa-
tion on how many animals have previously visited it, and almost none on the time between visits. In addition 
to recording location, our method describes scent mark distribution in time, providing an assessment of the 
time between over marking events. The incidence of self-over-marking was detected for two of the guardian 
dogs (Fig. 3), although none overlapped in time and space concurrently to assess over-marking between indi-
viduals. Self-overmarking may be necessary for wild animals to maintain scent-mark efficacy4, and to establish 
well defined and stable territories13. By revisiting well-placed scent marks, individuals maintain their olfactory 
signals and convey additional information about their revisitation rate and thus the likelihood that intruders will 
encounter the territory holder11. The revisitation rate may also convey to researchers the resource value of that 
location99. This contrasts with utilization distributions, which are likely to under represent important sites that 
are used infrequently or briefly92. Over-marking is an important social process, implicated in pair-bonding100,101, 
as an agonistic response to territorial encroachment32, or for amplification of within-group scent marks to con-
vey additional information on pack size and composition to would-be-intruders (e.g.34). The novel bio-logging 
approach proposed here provides a record of scent marking activity over a period long enough to assess revisita-
tion and over-marking activities for the first time.

Conclusion
We established how scent marking behaviour in canids can be detected using accelerometers and 
machine-learning techniques. This is a meaningful first step in addressing the information gap that exists for this 
important form of olfactory communication. Thus far, lack of tractable methods has prohibited progress in this 
topic. However, biologging technologies such as accelerometers have already greatly advanced our understanding 
of difficult to observe species and phenomena102. When researchers can easily leverage these technologies, a rapid 
proliferation of applications and insights has often followed103,104. Now researchers of canid behavioural ecology 
and community ecology are empowered to harness this new information source and combine it with analytical 
advances in the field of movement ecology. By doing so, researchers can shed new light on how scent marking 
functions with respect to external factors (e.g. other organisms, environment) and internal state (e.g. endocrine 
function, nutritional status). Canid species, many of which are of conservation concern105–107, the focus of intense 
management efforts108 and key to the proper functioning of ecosystems109,110, rely primarily on scent for commu-
nication. Olfactory messages are key to their social cohesion, spatial organisation and competitions for resources. 
However, as a species that depends so heavily on vision, we humans are unequipped to detect olfactory signals, 
until now limiting research on this topic. We hope with this new technique, ecologists will now be able to better 
observe these invisible conversations, leading to a greater understanding of a sensory world so different from our 
own.
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