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Abstract: We demonstrate an active acoustic sensor based on a high-finesse fiber Fabry–Pérot
micro-cavity with a gain medium. The sensor is a compacted device lasing around 1535 nm by
external optical pumping. The acoustic pressure acting on the sensor disturbs the emitted laser
frequency, which is subsequently transformed to beat signals through a delay-arm interferometer,
and directly detected by a photo-detector. In this configuration, the sensing device exhibits a high
sensitivity of 2.6 V/Pa and a noise equivalent acoustic signal level of 230 µPa/Hz1/2 at a frequency
of 4 kHz. Experimental results provide a wide frequency response from 100 Hz to 18 kHz. As the
sensor works at communication wavelength and the output laser can be electrically tuned in the
10 nm range, a multi-sensor network can be easily constructed with the dense wavelength division
multiplexing devices. Extra lasers or demodulators are unnecessary thus the proposed sensor is low
cost and easy fabrication. The proposed sensor shows broad applications prospect in remote oil and
gas leakage exploration, photo-acoustic spectrum detection, and sound source location.
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1. Introduction

In many practical applications, the detection of the acoustic wave is very important, such as
environmental monitoring, process control, photo-acoustic spectrum detection, and sound source
location [1–4]. Electronic sound level meters based on capacitors, piezoelectric transducers, or movable
coils are widely used. Especially, electret capacitive sound level meters are the most commonly used,
which detects acoustic waves by measuring the dynamic deformation of a vibration film by capacitance
modulation; however, this does not work well in certain situations. For example, when monitoring the
operation of a high-power transformer by detecting the acoustic waves generated by partial discharges
inside the transformers [5], the traditional electronic acoustic sensor could only be installed on the
outside of the transformer due to the large electromagnetic field inside it, which indirectly reduces
the sensor’s detection sensitivity, whereas fiber optic sensors can operate appropriately in this case.
They can also perform well in other harsh environments such as deep underwater, at high temperatures,
high voltage, and in small spaces due to having a compact size, light weight, high sensitivity, and an
immunity to electromagnetic interference [3,6–9]. In particular, optical fiber acoustic sensors can be
connected to communication cables directly, which is conducive to the integration with transmission
signals. For instance, optical fiber acoustic sensors can be integrated with optical fiber networks,
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optical wireless communication networks, and wireless optical communication networks, which can
form a remote acoustic signal monitoring network.

Several types of fiber optic acoustic sensors have been proposed [10–12]. The Mach–Zehnder
interferometer (MZI)/Michelson interferometer (MI), fiber Bragg gratings (FBGs), and Fabry–Pérot
interferometer (FPI) are three major configurations [13–15]. Early fiber optic sensors for acoustic
signal detection were based mostly on fiber optic intrinsic interferometers such as all-fiber MI and
MZI [8,16,17]. These intrinsic fiber sensors usually use single-mode fiber and coherent laser sources.
The laser source is separated into two paths that have the same intensity. One arm is exposed to
the acoustic signal and the other is shielded from the impact of the acoustic wave, serving as a
reference arm. The reflections or the transmissions of the two laser beams are recombined to generate
interference signals, which can demodulate the acoustic waves. The intrinsic fiber interferometric
sensors have shown high sensitivity when a long fiber is used in the sensing arm, which indicates that
they cannot achieve a single-point measurement. They are also unstable because of the drift of the
source wavelength and the changes of temperature-induced optical path difference. The FBG-based
sensors have also been applied in many sensing applications [18–21]. The effective refractive index
of the FBG changes due to the deformation caused by the acoustic pressure (photo-elastic effect),
which results in changes in the resonant wavelength. The sensing principle is typically based on the
intensity modulation of the transmitted laser spectrum as the sensing element under the influence of
the acoustic field; however, for practical use, the FBG-based sensor has a low sensitivity limited by
the high Young module of the optical fiber material (tens of GPa), which converts the effects of high
pressure applied on the grating into weak deformations, and they are insensitive to the low-frequency
acoustic wave [22]. More recently, fiber optic extrinsic FPI sensors have been under development for
acoustic-signal detection due to its high sensitivity. The Fabry–Pérot interferometers (FPI), which are
composed of a cleaved fiber end and a reflective diaphragm, have demonstrated high sensitivity
without the need long optical fiber cables [9,23–25]. It is one of the most versatile interferometers
since its reflective diaphragm can be made of various materials such as silica [26], polymer [27],
graphene [28], and silver [29]. The sensitivities of these sensors can be significantly improved by
designing thinner and larger diaphragms; however, the sensor needs an extra laser system to support
it, which means physically large and expensive auxiliary equipment.

Here, we propose a fiber Fabry–Pérot cavity (FFPC) based sensor with enhanced performance.
The proposed sensor is an active acoustic sensor, which is essentially a laser system with much
narrower linewidth and better sensitivity than a passive sensor [30,31]. It has a significantly lower cost
compared to traditional sensors because it eliminates the need for narrow-linewidth tunable lasers,
and only the pump source is needed, which makes the system small and more practical. Additionally,
due to the large free spectral region (FSR) of the cavity, it can realize the networking of multiple sensors
combined with wavelength division multiplexing devices. The micro-laser based sensor is made up
of a short FFPC with gain medium, which emits a single mode 1550 nm laser with a linewidth of
3 MHz when injected with 980 nm pumping. The wavelength of the output laser is swept as the
cavity length changes, thus, the external acoustic signal acting on the sensor causes the wavelength to
shift. By measuring the acoustic signal via a Michelson interferometer with unequal arms, the sensing
device achieves a wide frequency response from 100 Hz to 18 kHz. Experimental results exhibit a high
sensitivity of 2.6 V/Pa and a noise equivalent acoustic signal level of 230 µPa/Hz1/2 at the frequency
of 4 kHz. The sensor sensitivity can be further improved by using a low-noise detector and an output
fiber mirror with higher transmittance, which makes it a potential platform for acoustic sensing.

2. Sensor Design and Measurement

Compared to the typical FPI-based sensor, our active FFPC-based sensor is essentially a laser
system with a gain medium, which can emit a tunable laser radiation around 1535 nm by a 980 nm
pumping. The sensor device is a compact module with a fiber mirror and a flat mirror. Figure 1 shows
our design’s plane-concave cavity for a stable cavity structure, whose concave mirror is formed by
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fabricating a concave on the end facet of a single-mode optical fiber.The concave spherical mirror with
the curvature (ROC) of 100 µm in our cavity is fabricated by using a CO2 laser ablation process [32,33].
The flat mirror is a piece of a K9 glass. Both of the two mirrors are dielectric mirrors composed of
Ta2O5/SiO2 dielectric stacks based on thin-film coating technology and fabricated with ion beam
sputtering, whose high reflection band is in the range of 1400–1650 nm. The reflectivity of the fiber
mirror and flat mirror reaches 99.94% and 99.8% at 1550 nm and a measured finesse of the bare cavity
is 2207. When an Er3+/Yb3+ co-doped silica film with a thickness of 35.1 µm is inserted into the cavity
by bonding onto the flat mirror, which acts as the gain medium of the micro-laser, the finesse of the
cavity drops to 1035 due to absorption loss of the silica film [34]. The gain peak of the doped film is
around 1535 nm with Er3+ concentration of 1.0 wt% and Yb3+ concentration of 19.0 wt%. A sheared
piezo is glued under the fiber mirror to control the cavity length, and they are glued onto a piece of
a stainless steel substrate to form a stable FFPC. The input 980 nm pumping and output 1550 nm
emission is separated by a fiber WDM.

Fiber

Fiber mirror

Flat mirror
Gain medium

Shear piezo

Stainless steel substrate

980 nm pumping

WDM

1550 nm laser

Figure 1. Schematic diagram of the proposed acoustic sensor based on a microcavity laser.
The microcavity is a fiber Fabry–Pérot cavity composed of a concave fiber mirror and a flat mirror.
An Er3+/Yb3+ co-doped silica film acting as the gain medium is placed inside the cavity by bonding
onto the flat mirror. The fiber mirror is glued on the sheared piezo and the piezo and the flat mirror
are glued together onto a stainless steel substrate. The input 980 nm pumping and output 1550 nm
emission is separated by a fiber wavelength division multiplexer.

Figure 2 shows the laser threshold of the fiber cavity laser. When the absorbed pump power
exceeds 210 µW, the lasing emission appears obviously and increases linearly with the absorbed pump
power, which corresponds to a threshold of 210 µW.

For this FFPC, a with cavity length of Lc and doped silica film thickness of Ld, the resonant
wavelength approximately satisfies [35]

nair(Lc − Ld) + ndLd =
1
2

mλ, (1)

where Lc = 46 µm, Ld = 35.1 µm, nd = 1.58, nair = 1 is the refractive index of the silica film and
air, respectively, and m is an integer, which represents different cavity modes of the resonant cavity.
The compact cavity length corresponds to a large FSR of 16.5 nm (2.2 THz). When the cavity length is
changed by ∆Lc, the output laser wavelength shifts by ∆λ, and the relationship between them can be
expressed as

∆λ

∆Lc
=

λ

Lc + (nd − 1)Ld
, (2)
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Equation (2) shows the wavelength of the microcavity laser is proportional to its cavity length; therefore,
the external signal that causes the cavity length to change is obtained by detecting the change of laser
wavelength. An acoustic sensor is suitable for this scenario because the acoustic pressure acting on the
FFPC will lead to corresponding changes in cavity length.
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Figure 2. Laser threshold of the microcavity laser. The threshold is around 210 µW with the pump
wavelength at 980 nm.

Before acoustic sensor measurement, we measured the static cavity length displacement response
of our microcavity laser. By electrically controlling the sheared piezo to change the cavity length, the
tunable wavelength of the microcavity laser was recorded by an optical spectrum meter (HORIBA iHR
550). As the piezo actuators are known for their nonlinearity and hysteresis, the reflection spectrum of
the cavity was measured to calibrate the cavity length. We injected a tunable laser (Toptica CTL 1500)
tuning from 1488 to 1520 nm to the cavity, and the reflected laser was detected by a photodetector.
As shown in Figure 3a, three reflection spectra are measured when the piezo voltage is 120, 130,
and 140 V with their two resonant deeps at the wavelength of λ1 and λ2. By using the equation
FSR = c/λ1 − c/λ2 = c/2(Lc + (nd − 1)Ld), we can calculate the accurate cavity length of 46.4425,
46.4243, and 46.3925 µm, respectively. Figure 3b shows the wavelength shift of the microcavity laser
and how the cavity length changed by about 15 nm each step; with this information, we finally obtain
the output laser with a total cavity length shift of 0.3 µm—the resultant wavelength-tunable range
from 1531 to 1540 nm can be fitted by a linear function.

(a) (b)

λ1

λ2

Figure 3. (a) The reflection spectrum of the cavity to calibrate the cavity length. The three reflection
spectra are measured results when the piezoelectric voltage is 120, 130, and 140 V, respectively. (b) The
wavelength shift of the output laser versus cavity length change. Resultant wavelength shifts from
1531 to 1540 nm with a 0.3 µm cavity length change, corresponding to a linear slope of 28 nm/µm.
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It presents a linear relationship with a change slope of 28 nm/µm, which is in agreement with
the theoretical analysis that ∆λ/∆Lc = 23 nm/µm. Besides, the wavelength of the microcavity laser
can be electrically tuned in 10 nm (1.3 THz) range without mode hopping; the fast tuning rate was
tested as 1.6× 1017 Hz/s. The linewidth of the laser was measured to be 3.1 MHz, corresponding to a
coherence length of 66 m. These results were also found in our previous work with a microcavity laser
in [34].

3. Experimental Setup and Principle

Figure 4 shows the experimental system for acoustic sensing using our microcavity laser.
The acoustic vibrations are generated by placing a loudspeaker next to the sensor, which is driven by a
function generator. In this way, acoustic vibrations of different frequencies and amplitudes convert
into acoustic pressure acting on the sensor element. We measured the corresponding wavelength shift
based on a Michelson interferometer with unequal arms. A fiber isolator was inserted at the output of
the laser in order to stabilize the output signal of the microcavity laser. The Michelson interferometer
splits the output laser into two arms, one arm has a longer round trip delay d than the other arm.
Both arms are retro-reflected by the Faraday reflector, compensating for polarization changes that are
caused by the polarization-free fiber. A recombination of the two arms generates interference fringes
that can be detected by a photo-diode and recorded on an oscilloscope for data processing. After the
laser I0 went through the Michelson interferometer, the interference signal I can be expressed as [10]

I = I0(1 + ηcos∆ϕ), (3)

where η is the fringe contrast, ∆ϕ = ϕs + ϕ0 is the total phase difference between the two arms,
ϕs is the phase difference induced by the optical path difference between the two arms, ϕ0 is the
phase difference including original phase difference and the phase shift induced by low frequency
environmental noise. The relation between the phase difference ϕs and the delay d can be expressed as
ϕs = 4πnd/λ, where n is the refractive index of the optical fiber. When the wavelength varies with the
length of the cavity, the phase shift can be given by

∆ϕs =
4πnd

λ2 ∆λ. (4)

This means that the external signal modulating the cavity length to change can be obtained by
detecting the phase change of the interference spectrum. In addition, Equation (4) shows the phase
shift corresponding to the weak acoustic signal can be amplified by the long delay d (d = 2 m in this
work). As the laser linewidth is 3.1 MHz, corresponding to a coherence length of 66 m, the optical path
difference can reach tens of meters, which can convert the extremely weak frequency change caused
by the external signal into the detectable phase change.

The interference signal from the FFPC sensor is detected by a photodetector and the voltage V of
the signal on oscilloscope converted from the optical power should be expressed as

V = A + Bcos(ϕs + ϕ0), (5)

where A is a constant term proportional to the power of the microcavity laser source and B is a
coefficient related to the power of the laser source and the visibility of the interference fringes. ϕs is
determined by the acoustic vibrations—if we give a sinusoidal acoustic signal, then ϕs = Csinω0t,
where ω0 and C is the frequency and the amplitude related value of the acoustic signal, respectively.
C represents the modulation depth at the same time. By inserting the specific form of ϕs into
Equation (5), we obtain

V = A + Bcos(Csinω0t + ϕ0). (6)
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Expanding this equation as a series of Bessel functions [36],

V = A + BJ0(C) cos ϕ0 + B
∞

∑
n=−∞,n 6=0

Jn(C) cos(nω0t + ϕ0). (7)

If we just focus on the high frequency component of the signal, we are going to be dealing with a
mixed frequency signal of ω0 and high order terms of ω0 with the Bessel coefficient. According to
the properties of Bessel function, when the modulation depth satisfies C � 1, the measured signal is
dominated by the first order term J1(C)cos(ω0t + ϕ0), where J1(C) is approximately linear with the
amplitude of the acoustic vibration. Thus, Equation (7) can be simplified as

V = B
′
cos(ω0t + ϕ0), (8)

which shows that the acoustic vibration frequency ω0 and the voltage amplitude B
′

of the signal on
oscilloscope is proportional to the acoustic pressure P,

B
′
= kP, (9)

where k is the sensitivity of the sensor; therefore, the frequency and the acoustic pressure of the
vibration acting on the sensing element can be directly obtained from the measured interference fringes.

Fiber isolator
FFPC sensor

Photodetector

50:50 Coupler

Oscilloscope

Delay
Faraday reflector

Faraday reflector

Function generator

Loudspaeker

Figure 4. Schematic of acoustic measurement. The acoustic wave is generated by a function generator
driven loudspeaker. The Michelson interferometer with unequal arms is used to measure the acoustic
signal, which has a delay to produce an optical path difference between the two arms. Both arms are
retro-reflected by the Faraday reflector and converged on the photodetector. The resulted interference
fringes are shown on an oscilloscope.

4. Results and Discussion

In this section, we present a series of measurements to evaluate the sensitivity, the frequency
response, and the resolution of the microcavity laser-based sensor.

We applied sinusoidal signals with different levels of acoustic pressure at a frequency of 1.5 and
4 kHz to drive the loudspeaker, respectively. To determine the sensitivity, we used a decibel meter
to calibrate the acoustic pressure. The sound intensity Is was converted to acoustic pressure using
the relationship Is = 20log10(P/Pref) [37], where Pref = 20 µPa is the minimum acoustic pressure that
humans can hear. Figure 5 shows a linear relationship between the voltage amplitude of the measured
signal and the different acoustic pressure at the vibration frequency of 1.5 and 4 kHz, which shows
high sensitivity coefficient of 1.8 and 2.6 V/Pa, respectively.
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Figure 5. Measured signal amplitude under different acoustic pressure when the driving frequency for
the loudspeaker is 1.5 and 4 kHz, corresponding to sensitivity of 1.8 and 2.6 V/Pa, respectively.

Figure 6 shows the sensitivity–frequency response curve. Several measurements with different
driving frequencies were performed; the proposed sensor has a good frequency response over the
range from 100 Hz to 18 kHz, with the maximum sensitivity at 4 kHz. The detected signal is distorted
when the frequency is lower than 100 Hz, as the loudspeaker could not provide pure tone at such a
low frequency.
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Figure 6. Frequency response of the acoustic sensor from 100 Hz to 18 kHz.

The measured signals in both time-domain and frequency-domain are presented in Figure 7
by applying three different frequency sinusoidal signals at 4 kHz, 18 kHz, and 100 Hz on the
sensor. Figure 7a–c show the time-domain sine-like waveforms; Figure 7d–f show the corresponding
frequency-domain spectra, whose peak values are consistent with the driven frequencies of the
loudspeaker. The frequency-domain signal was recorded by a spectrum analyzer; Figure 7d,e show
the noise floor about −60 dBm for a 14.66 Hz resolution bandwidth (RBW); Figure 7f shows the noise
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floor about −40 dBm for a 7.82 Hz RBW. The signal-to-noise ratios (SNR) of the measured signal are
50, 35, and 24 dB, respectively. Its noise equivalent acoustic signal level can be calculated by [38]

δP =
Pre f√

RBW× SNR
, (10)

where Pre f = 288 mPa is the referenced acoustic pressure applied to the sensor, resulting δP =230
µPa/Hz1/2 at the frequency of 4 kHz, which means the minimum detectable dynamic acoustic pressure
value of the FFPC sensing system at 4 kHz frequency is 230 µPa, which can be significantly improved
by using a low-noise detector and an output fiber mirror with higher transmittance.

(d)(a)

50 dB

(e)(b)

35 dB

(f)(c)

24 dB

Figure 7. Measured signals with different frequencies shown both in time-domain and frequency-domain.
(a,b,c) Time-domain waveform of the sensor signals when the loudspeaker is driven by sinusoidal
electrical signals with frequency of 4 kHz, 18 kHz, and 100 Hz, respectively; (d,e,f) the corresponding
frequency-domain spectra of (a,b,c).

The change in air refractive index ∆n affected by acoustic pressure fluctuations p can be presented
as follows [39]:

∆n ≈ p(n0 − 1)/(γp0), (11)
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where n0 = 1.00027 is the air refractive index under static conditions, p0 = 105 Pa is the static
atmospheric pressure, γ = 1.40 is the heat capacity ratio (or ratio of specific heat) of air. By applying
an acoustic signal of 1.2 Pa, the corresponding refractive index difference is ∆n = 2.4 × 10−9.
From Equation (1), it can be deduced that ∆λ/∆n = 0.255 µm, then the acoustic pressure of 1.2 Pa
causes the wavelength shift ∆λ = 6× 10−16 m; however, in the experiment, the amplitude of the
measured signal was 3.4 V when the acoustic pressure was 1.2 Pa. As the responsivity of the
photodetector at 1535 nm is 1.02 A/W with a high gain coefficient of 7.5 × 105 V/A, this would
convert the input laser intensity I0 = 10 µW to 7.5 V. Thus, a phase difference shift of about 0.456 rad
is calculated from Equation (8), which corresponds to a wavelength shift of 3× 10−14—100 times as
large as the wavelength shift caused by the refractive index change of the air in the cavity—therefore,
the main interaction mechanism is not the refractive index change of the air, but maybe the fluctuation
of the bare fiber or or the instability of the mechanical structure of the system, resulting the cavity
length to change, which could be further investigated in future research. As the phase difference of
2π/10 is easy to detect in the Michelson interferometer, we obtain the corresponding wavelength
shift of 3.8× 10−14 m by Equation (4), resulting in a cavity length change of 1.4 pm according to
∆λ/∆Lc = 28 nm/µm measured above. It means that a change in cavity length on the pm scale can be
detected, which is due to the short length of the microcavity, the laser wavelength changes by 16.5 nm
when the cavity length varies by half a wavelength. In the case of the same deformation, this sensor is
much more sensitive than the ordinary MIZ/MI sensors, because they directly measure the change of
fiber length, which requires nearly half wavelength to generate an obvious signal, while the cavity
length change of pm scale is detectable in our microcavity. For typical FPI sensors, they usually have a
low finesse of about 10 [28], which corresponds to the much wider linewidth of the reflective spectrum
without sufficient coherence length for converting the extremely weak frequency change into the
detectable phase change. Therefore, it’s a promising device in acoustic sensor.

In the actual application process, the influence of the environment noise causes the arm length difference
of the interferometer to fluctuate, thus generating additional phase noise; therefore, the interferometer can
be well packaged to improve its anti-interference ability to the environment noise.

5. Conclusions

In summary, we have designed and fabricated an active acoustic sensor based on a fiber cavity
laser, which is a low-cost device because it eliminates the need for commercial lasers or demodulators.
Thus, it is easier to make the system small and has stronger practicality. The sensing device provides a
wide frequency response from 100 Hz to 18 kHz and exhibits a high sensitivity of 2.6 V/Pa with a noise
equivalent acoustic signal level of 230 µPa/Hz1/2 at the frequency of 4 kHz, which can be significantly
improved by using a low-noise detector and an output fiber mirror with a higher transmittance.
Additionally, due to the large tunable range of the micro-laser, it can realize the networking of multiple
sensors combined with wavelength division multiplexing devices, which makes it a good candidate in
remote oil and gas leakage exploration, photo-acoustic spectrum detection, and sound source location.
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