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ABSTRACT
In recent years, the incidence of various types of tumors has gradually increased, and it has also been
found that there is a certain correlation between abnormal glucose and lipid metabolism and tumors.
Glycolipid metabolism can promote tumor progression through multiple pathways, and the expression
of related genes also directly or indirectly affects tumor metabolism, metastasis, invasion, and apop-
tosis. There has been much research on targeted drug delivery systems designed for abnormal glucose
and lipid metabolism due to their accuracy and efficiency when used for tumor therapy. In addition,
gene mutations have become an important factor in tumorigenesis. For this reason, gene therapy con-
sisting of drugs designed for certain specifically expressed genes have been transfected into target
cells to express or silence the corresponding proteins. Targeted gene drug vectors that achieve their
corresponding therapeutic purposes are also rapidly developing. The genes related to glucose and
lipid metabolism are considered as the target, and a corresponding gene drug carrier is constructed
to influence and interfere with the expression of related genes, so as to block the tumorigenesis pro-
cess and inhibit tumor growth. Designing drugs that target genes related to glucose and lipid metab-
olism within tumors is considered to be a promising strategy for the treatment of tumor diseases. This
article summarizes the chemical drugs/gene drug delivery systems and the corresponding methods
used in recent years for the treatment of abnormal glucose and lipid metabolism of tumors, and pro-
vides a theoretical basis for the development of glucolipid metabolism related therapeutic methods.
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1. Introduction

At present, studies (Shlomai et al. 2016; Wojciechowska et al.
2016; Miao et al. 2017) have found that patients with dia-
betes have a higher incidence of related tumor diseases than
normal people. Research data show that the risk of colorectal
cancer in diabetic patients is 27% higher than that of normal
people (Gonzalez et al. 2017). Thus, researchers have con-
cluded that the occurrence of tumors is related to abnormal
glucose and lipid metabolism. In the process of glucose and
lipid metabolism, hexokinase and phosphofructokinase play
an important role in the glycolysis process (Tao et al. 2017),

and Katagiri et al. (Katagiri et al. 2017) found that the high
expression level of type II hexokinase is related to the size of
tumors. The degree of invasion and the nature of metastasis
are significantly related to the increase in tumor recurrence
rate and the overall mortality of patients.

Enzymes in various pathways of glucose and lipid metab-
olism (He et al. 2015) promote the process of glycolysis, and
by inhibiting or promoting enzymatic activity, affect tumor
growth. This is the main entry point for the current treat-
ment of abnormal glucose and lipid metabolism. Based on
this theory, constructing the corresponding chemical drug
carrier, loading the corresponding inhibitor, and targeting to
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the corresponding site have greatly increased the therapeutic
effect and efficiency of the drug.

With the deepening of genetic engineering research, gene
therapy has become another widely used method of clinical
treatment (Sankar & Cho 2015). In recent years, researchers
have discovered that gene mutations are important factors
that can induce hereditary diseases and tumors. The devel-
opment of gene editing and vector technology will provide
new treatment methods that can replace traditional treat-
ment options.

Based on a series of effects of gene therapy technology
and glucose and lipid metabolism on tumors, relevant gene
fragments can be determined, appropriate gene carriers can
be selected, and silencing RNA or interfering RNA technology
can be used (Zhang & Hua 2004), and the expression of
genes related to glucose and lipid metabolism can then be
regulated to subsequently affect the tumor growth process.
In this review, we summarize the recent research that has
determined the mechanism of the related gene therapy tech-
nology for the treatment of tumors from the perspective of
glucose and lipid metabolism, in order to further reveal the
potential connection between abnormal glucose and lipid
metabolism and tumor proliferation, metabolism, metastasis,
and apoptosis. Additionally, the identification of new glycoli-
pids, metabolism-related gene fragments, and development
of new tumor-related gene therapy technologies provide
summaries and assistance, and also indicate viable new pros-
pects for glucose and lipid metabolism-related gene therapy
for tumors.

2. Abnormal glucose metabolism and
lipid metabolism

Cancer cells preferentially undergo glycolysis when sufficient
oxygen is present, which is called the Warburg effect (Wu
et al. 2020). Abnormal metabolism is a significant marker of
cancer and can be found in many types of cancers (Pavlova
& Thompson 2016). Cancer cells can produce a great deal of
energy by increasing their metabolism (Stine et al. 2015),
and this energy is used for their growth, the irregular growth
of tumor blood vessels, and for influencing the tumor micro-
environment (TME).

2.1. Cancer and glucose metabolism

Carbohydrate metabolism is the main method of cellular cap-
acitation (Hereng et al. 2014). In cancer cells, carbohydrate
metabolism is upregulated, followed by an increase in gly-
colysis. Additionally, there are multiple carbohydrate metab-
olism pathways in cells (as shown in Figure 1), including
anaerobic glycolysis, the tricarboxylic acid (TCA) cycle, gluco-
neogenesis, and the pentose phosphate pathway (PPP)
(Zhang et al. 2020).

2.1.1. Anaerobic glycolysis
Glucose is finally converted into lactate after anaerobic gly-
colysis, and several key glycolytic enzymes and glucose

transporters (GLUTs) are involved in this process. The overex-
pression of key GLUTs mediates the enhancement of glucose
metabolism in tumor cells (J�o�zwiak et al. 2012). Thus far, 14
GLUT subtypes encoded by different genes have been identi-
fied. Different subtypes of transport enzymes possess differ-
ent affinities for glucose and other hexoses, and selectively
transport different sugar molecules. Among them, GLUT 1–4
are the most well-known four subtypes. GLUT1, GLUT2
(SLC2A2), GLUT3 (SLC2A3), and GLUT4 (SLC2A4) have com-
pletely different regulatory mechanisms and dynamic charac-
teristics, yet they are all effective in maintaining glucose
homeostasis in cells and organisms. Each of them performs a
specific function (Thorens & Mueckler 2010). When cells
uptake a large amount of glucose, it is converted into pyru-
vate by a reaction inside the cells. Three key enzymes, hexo-
kinase 2 (HK2), phosphofructokinase (PFK), and isocitrate
dehydrogenase (IDH), act as rate-limiting agents (Crousilles
et al. 2018; Fernandes et al. 2020), and their high expression
promotes the malignant development of cancer cells (O’Neal
et al. 2016; Ma et al. 2019; Yang et al. 2019).

2.1.2. TCA cycle
The TCA is the main pathway of cellular oxidative phosphor-
ylation, which meets the requirements of bioenergy, biosyn-
thesis, and redox balance (Payen et al. 2020). Although it
was previously believed that cancer cells would bypass the
TCA cycle and use aerobic glycolysis, emerging evidence sug-
gests that certain cancer cells, especially those with abnor-
mal expression of oncogenes and tumor suppressor factors,
rely heavily on the TCA cycle to generate energy and synthe-
size macro molecules (Anderson et al. 2018). Cancer cells
maintain their high proliferation rate and energy require-
ments through metabolic recombination. The TCA cycle is a
central metabolic hub necessary for the production of ATP
and the provision of precursors used in many biosynthetic
pathways (Nazaret et al. 2009). Therefore, dysregulation of
the TCA circulation flux is often observed in cancer. The
mutations of several enzymes in the TCA cycle in human
tumors, e.g. aconitase, isocitrate dehydrogenase 1 (IDH1),
fumarate hydratase, and succinate dehydrogenase have
shown that there is a direct link between this metabolic
pathway and the occurrence of cancer (Jimenez-Morales
et al. 2018). In addition, it has also been shown that chang-
ing the expression or activity of these enzymes can promote
the metabolic adaptation of cancer cells (Ciccarone
et al. 2017).

2.1.3. Gluconeogenesis
Gluconeogenesis can generate free glucose from non-carbo-
hydrate carbon substrates (such as glycerol, lactic acid, pyru-
vate, and glycogenic amino acids). Although it is less studied
than catabolic glycolysis or oxidative phosphorylation
(OXPHOS), this anabolic pathway plays the same role in con-
trolling the aerobic glycolysis of cancer cells (Seenappa et al.
2016). The complete pathway consists of 11 enzyme-cata-
lyzed reactions, of which there are 7 reactions that are the
opposite steps of glycolysis, and 3 reactions that are not
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involved in gluconeogenesis: (i) the conversion of pyruvate
to phosphoenolpyruvate, which is determined by the reac-
tion that catalyzes pyruvate carboxylase (PC) and phosphoe-
nolpyruvate carboxykinase (PEPCK); (ii) the catalyzation of
the conversion of fructose-1,6-diphosphate to fructose-6-
phosphate by fructose-1,6-bisphosphatase (FBPase); (iii) the
catalyzation of the conversion of glucose-6-phosphate to glu-
cose by glucose-6-phosphatase (G6Pase) (Icard et al. 2019).
PEPCK, FBPase, and G6Pase are the key enzymes that control
the gluconeogenesis flux, thereby affecting glycolysis, the
TCA cycle, the PPP and other branched metabolic pathways
(serine biosynthesis, glycogen health, gluconeogenesis, and
glutamine decomposition) (Kang et al. 2016; Icard
et al. 2019).

Cancer cells display a high rate of glycolysis in the pres-
ence of oxygen to promote proliferation. Gluconeogenesis is
the reverse pathway of glycolysis, and it can antagonize the

aerobic glycolysis in cancer via three key enzymes: PEPCK,
FBPase, and G6Pase (Vincent et al. 2015; Wang & Dong
2019). Recent studies have revealed that in addition to meta-
bolic regulation, these enzymes also play a vital role in sig-
naling, proliferation, and the designation of cancer stem cell
(CSC) tumor phenotypes. Multifaceted regulation of PEPCK,
FBPase, and G6Pase through transcription, epigenetics, post-
translational modification, and enzymatic activity can be
observed in different cancers (Leithner et al. 2015; Montal
et al. 2015).

2.1.4. Pentose phosphate pathway (PPP)
The pentose phosphate pathway (PPP), also known as the
hexose monophosphate bypass or phosphogluconate path-
way, branches off from glycolysis when the first step is com-
pleted (Stincone et al. 2015). Under the catalysis of

Figure 1. The glucose metabolism process. Glucose enters the cell via a glucose transporter (GLUT). The glycolysis process uses multiple enzymes, including HK,
PFK, and PK. Gluconeogenesis affects TCA, PPP, and other processes. Three key enzymes regulate this effect in gluconeogenesis, namely, glucose-6-phosphatase-
alpha (G6PC), FBP, and PEPCK. Pyruvate enters the mitochondria and generates carbon dioxide and water through the TCA pathway, which is catalyzed by three
key enzymes: IDH, CS, and ketoglutarate dehydrogenase complex (KGDHC). G6PD is a key enzyme in the oxidation process of the PPP pathway, and regulates the
reaction of the PPP process in the cytoplasm.
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hexokinase, glucose-6-phosphate (G6P) is consumed as a
main substrate. The PPP assists glycolytic cancer cells so that
their anabolic needs are met and they are resistant to oxida-
tive stress. Recently, it has been shown that some neoplastic
lesions developed and then promoted the flux of glucose to
the PPP (Patra & Hay 2014). Glucose-6-phosphate dehydro-
genase (G6PD) regulates the rate of the PPP by catalyzing an
irreversible step. The expression level of G6PD is different in
various breast cancer subtypes, and is positively correlated
with poor prognosis of patients (Pu et al. 2015).

2.2. Cancer and lipid metabolism

Decades ago, researchers discovered that tumor cells can
synthesize lipids in the same manner as normal cells (Medes
et al. 1953). Since then, studies have also found that abnor-
mal increases in lipid metabolism have become an important
hallmark of cancer (Santos & Schulze 2012). Lipid metabolism
assays showed that compared with normal cells, cancer cells
increased the expression of ATP-citrate lyase, acetyl

coenzyme A (acetyl-CoA) carboxylase, and fatty acid (FA) syn-
thase that is involved in de novo lipid synthesis (Bort et al.
2020). Lipid metabolism mainly includes de novo fatty acid
synthesis, the triglyceride synthesis pathway, and fatty acid
b-oxidation, which subsequently affect the proliferation,
metabolism, and metastasis of cancer cells (as shown in
Figure 2) (Vander Heiden et al. 2009).

2.2.1. De novo fatty acid synthesis
The synthesis of FAs is an essential cellular process that uses
glutamine or glucose as building blocks (Rohrig & Schulze
2016; Min & Lee 2018). Citrate is a major intermediate prod-
uct produced by the TCA cycle that produces FAs through
the action of several key enzymes, such as ATP citrate lyase
(ACLY) and fatty acid synthase (FASN) (Lee et al. 2015). ACLY
converts citrate into acetyl-CoA, which is an important
enzyme that can link carbohydrates and lipid metabolism by
generating acetyl-CoA from citric acid, thereby achieving the
biosynthesis of fatty acids (Feng et al. 2020). Acetyl-CoA
carboxylase (ACC) catalyzes the formation of malonyl-CoA,

Figure 2. The lipid metabolism process. FA enters the cell through CD36. FA is catalyzed by the ACSL enzyme in the cell to generate FA-CoA, which is a precursor
of acetyl-CoA and is used as a substrate in the TCA reaction in the mitochondria. The role of FA-CoA in DGAT is to generate TG and secrete lipid droplets to
store energy.
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which is an important substrate and key regulatory molecule
for fatty acid synthesis in adipose tissue (Choosangtong et al.
2015). Adenosine monophosphate (AMP)-activated protein
kinase phosphorylates and inhibits ACC, which indirectly
inhibits the synthesis of fatty acid (Lepropre et al. 2018).
FASN uses malonyl-CoA as a substrate to synthesize the final
form of fatty acids. It has been found that FASN is associated
with progression in a variety of cancers, and hence, it is an
important target for cancer therapy (Jones & Infante 2015;
Menendez & Lupu 2017).

2.2.2. Triglyceride synthesis pathway
Triglyceride is one of the main forms of fatty acid storage
and transport in the body (Alves-Bezerra & Cohen 2017), and
it is synthesized via two main pathways. One is to convert 3-
phosphotriglyceride, which is a substrate of phosphatidic
acid, and subsequently generate diacylglycerol, the precursor
to triglyceride (TG) under the catalysis of lipin-1, and finally
to produce TG. The other pathway is the stepwise reaction
of fatty acids to generate TG (Coleman et al. 2000; Zhao
et al. 2020). The resulting lipid droplets are used for energy
expenditure and/or storage (Haemmerle et al. 2002).

2.2.3. Fatty acid b-oxidation
Fatty acid b-oxidation occurs in mitochondria, and in the first
step, FAs enter the mitochondria in the form of FA-CoA. FA-
CoA reacts to generate acetyl-CoA, which is used as a sub-
strate in the TCA process (Orlando et al. 2019). Like other
metabolic pathways related to cancer, fatty acid oxidation
(FAO) is also changed in various human malignancies
(Carracedo et al. 2013; Currie et al. 2013). Cancer cells rely on
the FAO process for proliferation, survival, drug resistance,
and metastasis. In the FAO process, cancer-related immune
cells and other host cells are reprogrammed, which increases
immunosuppression and affects the TME (Qu et al. 2016; Ma
et al. 2018).

3. Genes that regulate glucose and
lipid metabolism

Reprogramming of the metabolism is a hallmark of cancer,
and we summarized the glucose or lipid metabolism path-
ways. Next, we will summarize and describe the regulation of
genes from two aspects. One is to discuss the regulation
pathways of genes related to glucose and lipid metabolism.
Another is to describe these glucolipid metabolism-related
genes in the process of tumor growth, providing some
potential targets and exploration directions for can-
cer therapy.

3.1. MiR-122

MiR-122 is an miRNA that has been studied in detail, and
was previously found to be an miRNA specifically expressed
in the liver (Thakral & Ghoshal 2015). However, it has also
been discovered that miR-122 is not only highly expressed in
the liver, but it is also involved in other processes, such as

spermatogenesis. It has been shown that miR-122 is useful
because it can be used for the prediction and detection of
liver cancer, breast cancer, and other cancers (Esau et al.
2006). The regulatory mechanism and research potential of
miR-122 in glucose and lipid metabolism will be described as
follows (Bandiera et al. 2015). MiR-122 is highly secreted by
cancer cells, highly expressed in liver cancer, and is involved
in multiple metabolic pathways.

Li et al. found that the occurrence of liver cancer is
related to the mutation of some tumor suppressor genes,
and some of them are associated with the overexpression of
apolipoprotein B mRNA editing enzyme subunit 2
(APOBEC2). However, the expression of miR-122 is negatively
correlated with the expression of APOBEC2. These results
suggest that miR-122 can specifically bind to the 30 untrans-
lated region (30 UTR) of APOBEC2 mRNA to inhibit its expres-
sion (Li et al. 2019). Fong et al. showed that cancer cells
specifically secrete high levels of miR-122 into extracellular
vesicles (EVs), such as breast cancer (Fong et al. 2015). MiR-
122 suppresses glucose metabolism by downregulating the
pyruvate kinase (PKM). Among genes that control glucose
metabolism, miR-122 significantly affected PKM2, citrate syn-
thase (CS), and GLUT1, which was consistent with the down-
regulation of PKM2. This suggests that miR-122 affected
glucose metabolism through the PKM, CS, and GLUT1 path-
way. The overexpression of miR-122 inhibits the glucose
metabolism pathway, and although it increases the meta-
static ability of cancer cells, it ultimately suppresses tumor
growth (Hsu et al. 2012).

3.2. MiR-212-5p

Studies have found that miR-212-5p is involved in the activ-
ities of various organs and is also necessary to support the
biological activities of some cells (Lin et al. 2018; Deng et al.
2019). MiR-212-5p inhibited lipid synthesis and accumulation
by targeting fatty acid synthetase and stearoyl-CoA desatur-
ase-1. In Lu et al.’s study, co-transfection results showed that
miR-212 regulated fatty acid synthetase and sterol regulatory
element binding factor 1 by targeting SIRT2, which was
found to increase the lipid content in mammary epithelial
cell lines (Lu et al. 2020). Guo et al. found that leucine defi-
ciency led to lipid loss via inhibition of the expression of
fatty acid synthetase such that miR-212-5p specifically binds
to FAS 3’UTR. Further studies showed that miR-212-5p also
can bind to the 3’UTR of stearoyl-CoA desaturase-1.
Overexpression of miR-212-5p impedes the synthesis of lipid
intermediates and ultimately reduces lipid accumulation
(Liang et al. 2013; Guo et al. 2017).

MiR-212-5p plays an important role in the regulation of
metastasis and invasion of various cancer cells. The expres-
sion of miR-212-5p was significantly increased in colorectal
cancer. Further studies showed that the expression of miR-
212-5p was negatively correlated with Drosophila mothers
against decapentaplegic 4 (SMAD4), and prevented metasta-
sis and invasion of colorectal cancer cells. With the downre-
gulation of miR-212-5p, the metastasis of colorectal cancer
cells significantly decreased (Huang et al. 2016). In addition,
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the targeting of sirtuin 2 (SIRT2) by miR-212-5p is important
because it inhibits the metastasis and proliferation of colo-
rectal cancer cells (Du et al. 2020). The same inhibitory effect
on proliferation was also found in HepG2 hepatocellular car-
cinoma cells by downregulating suppressor of cytokine sig-
naling 5 (SOCS5) (Han et al. 2020).

3.3. MiR-27b-3p

MiR-27b-3p is a key regulatory factor of lipid metabolism
that can directly control critical lipid genes and subsequently
affect lipid metabolism. For many years, targeting peroxi-
some proliferator-activated receptor c (PPAR gamma) has
been considered to be one of the main mechanisms by
which miR-27b-3p regulates lipid metabolism. MiR-17b-3p
can also suppress lipid metabolism-associated factors other
than PPAR gamma (Wang et al. 2020). MiR-27b-3p promotes
tumor proliferation and mitigates drug resistance in tumor
cells. The role of miR-27b-3p in the growth, decay, and
metastasis of tumor cells was detected by corresponding
analytical methods. In gastric cancer (GC), the silencing of
miR-27b-3p significantly inhibits the metastasis and invasion
of GC cells, and reduces GC cell viability. The downregulation
of miR-27b-3p was a method used to accurately target
GSPT1, and it subsequently alleviated the malignant behavior
of gastric cancer by abnormal DNA methylation ( Zhang
et al. 2019; Jiang et al. 2020; Li & Guo 2020; Shen et al. 2020;
Wang et al. 2020). Chemotherapy resistance is one of the
major obstacles in the treatment of cancer. Downregulation
of miR-27b-3p indirectly reverses the tumor growth process,
but it also affects the chemical sensitivity of oral squamous
cell carcinoma (OSCC) and enhances the sensitivity of OSCC
cells to cisplatin (Han et al. 2020; Ma et al. 2020). In gastric
cancer, miR-27b-3p inhibited the viability of human gastric
carcinoma cell lines by targeting vascular endothelial growth
factor C (VEGF-C). Cui et al. found that in the established het-
erotopic transplantation model, the combination of miR-27b-
3p and lipoteichoic acid significantly inhibited tumor growth
compared with either alone (Cui et al. 2021).

3.4. MiR-107-5b

MiR-107-5b is an important regulatory gene related to the
distribution of blood glucose and lipids. In the early stage of
obesity, the distribution of lipids and sugars as well as some
hormones that regulate glucose and lipid metabolism have
undergone significant changes. The expression of some regu-
latory genes has also undergone significant changes, includ-
ing miR-107-5b (Deiuliis 2016). The downregulated
expression of miR-107-5b decreases glucose and lipid metab-
olism. Under the influence of a high-glycolipid diet, the
expression of related genes in mouse adipocytes was signifi-
cantly changed, such as the upregulation of miR-107-5b and
the downregulation of miR-125a-5p, which indirectly
revealed that miR-107-5b and other genes were affected by
the changes in nutrients and other external factors.

As a primary regulator of lipid and glucose metabolism
(Youssef et al. 2020), miR-107-5b is also involved in the

formation of cholesterol. Studies have found that miR-107-5b
can affect the pathogenesis of cholesterol gallstones (Qian
et al. 2021). MiR-107-5p regulates tumor proliferation and
invasion, and abnormal expression of miR-107-5b has been
found in a variety of human tumors and is involved in mul-
tiple stages of tumor progression. A comparison of normal
endometrial tissues with endometrial carcinoma indicated
that the expression of miR-107-5b in endometrial carcinoma
is significantly higher than that in normal tissues. Blocking
miR-107-5p can directly affect the proliferation and metasta-
sis of endometrial carcinoma cells (Bao et al. 2019). The study
also found that the expression of miR-107-5p was signifi-
cantly decreased in non-small cell lung cancer tissues and
non-small cell lung cancer cell lines. MiR-107-5p inhibits
tumor invasion and proliferation by targeting epidermal
growth factor receptor (EGFR), and ultimately suppressing
tumor growth (Wang et al. 2017). These studies reveal that
miR-107-5p can be used as a potential diagnostic factor and
a target for the inhibition of tumor proliferation and metasta-
sis. In addition to the upregulation of tumor expression, miR-
107-5p was also highly expressed in acute aortic dissection
(AD) (Wang et al. 2020), and exhibited an inhibitory effect in
acute AD.

3.5. MiR-130b

Although abnormal expression of miR-130b has been
detected in a variety of cancers (Yu et al. 2015; Mu et al.
2020), the mechanism of action of miR-130b has not been
clearly elaborated until now. MiR-130b regulates the metab-
olism of nutrients and also participates in multiple growth
processes of tumors. MiR-130b can regulate metabolism-
related pathways, including fatty acid degradation, glycolipid
metabolism, and other pathways (Assmann et al. 2020). It
was found that Xiangsha Liujunzi decoction regulates choles-
terol metabolism through long-chain non-coding miR-130b,
which ultimately affects lipid accumulation. miR-130b regu-
lates the cholesterol metabolism process mediated by PPAR
gamma to decrease lipid deposition in the liver (Jiang et al.
2020; Liu et al. 2020). In addition, the miR-130 family is an
important gene that regulates the progression of cancer.
Several studies have shown that miR-130b is associated with
the growth, blood vessel growth, metastasis, and prolifer-
ation of a variety of tumor cells. For example, miR-130b was
found to act in a potential tumor network that negatively
regulates hematopoietically-expressed homeobox protein
(HHEX) expression. After downregulation of HHEX expression,
metastasis, invasion, and proliferation of breast cancer cells
was significantly higher than those of normal cell lines
(Zhang et al. 2020). The same regulatory effect was also
observed in cervical cancer, where the increase in miR-130b-
5p (miR-130b-5p is a passenger strand of miR-130b) in cer-
vical cancer stem cells downregulated ETS-like gene 1 (ELK1)
expression. Enhancing miR-130b-5p or silencing ELK1 inhib-
ited the self-renewal ability and tumor volume growth of cer-
vical cancer stem cells, and promoted cell apoptosis (Huang
& Luo 2021). However, opposite views exist. In lung
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adenocarcinoma tissues, the upregulation of miR-130b also
promoted cell metastasis and invasion (Kim et al. 2021).

In addition to its regulatory role in cancer cells, miR-130b
is also involved in the regulation of normal human cells. For
example, miR-130b can inhibit the proliferation of myoblasts
and the differentiation of corresponding stem cells. miR-130b
plays a key role in muscle replacement (Wang et al. 2021),
and miR-130b modulates tumor progression and increases
tumor sensitivity radiotherapy and chemotherapy. Inoue’s
study demonstrated that increased miR-130b expression in
clinical oropharyngeal squamous cell carcinoma resulted in
significantly longer progression-free survival and overall sur-
vival (Inoue et al. 2021). Clinically, chemical drugs such as cis-
platin face huge drug resistance barriers in the treatment of
gastric cancer and other solid tumors, and the therapeutic
effect is greatly reduced. We know that the high expression
of cytidine monophosphate kinase 1 (CMPK1) is also closely
related to the therapeutic effect of 5-fluorouracil (5-FU). MiR-
130b, a key epigenetic regulator of CMPK1, can downregu-
late CMPK1 and increase patient sensitivity to 5-FU in the
treatment of gastric cancer (Hashimoto et al. 2020; Wang
et al. 2020; 2020; Chu et al. 2021). There is sufficient evi-
dence that miR-130b can be used as a potential target for
tumor growth inhibition and new therapeutic approaches
(Wang et al. 2020).

3.6. MiR-204-5p

MiR-204-5p plays a significant regulatory role in cancer, espe-
cially in the metabolism of fat, which includes adipocyte dif-
ferentiation and adipokine metabolism, and this mechanism
has a certain associated effect on the growth and prolifer-
ation of tumor cells. MiR-204-5p is a promoter of lipid syn-
thesis, and studies have shown that miR-204-5p was highly
expressed in mammary epithelial cells, and regulated lipid
synthesis without affecting the proliferation of mammary epi-
thelial cells. The overexpression of miR-204-5p significantly
increased the number of signaling molecules in the lipid syn-
thesis pathway. MiR-204-5p regulates lipid synthesis by tar-
geting SIRT1, and the two are negatively correlated (Zhang
et al. 2020). It was also found that miR-204-5p inhibited lipo-
genesis by inhibiting adipose stem cell differentiation, and
bioinformatics analysis revealed that miR-204-5p is a poten-
tial target for the regulation of lipogenesis (Li et al. 2020). In
addition to the regulation of lipid metabolism, miR-204-5p
plays a role in the process of glycolysis by targeting myosin
heavy chain 9 (MYH9). After the knockout of MYH9, the gly-
colysis of tumor cells in the absence of oxygen was inhibited,
which was ultimately manifested as the inhibition of tumor
growth by regulation of miR-204-5p (Fang et al. 2020).

MiR-204-5p plays an important biological role in a variety
of tumors and affects the progression of tumors. Studies
have found that there is a negative correlation between the
expression of high mobility group protein A2 (HMGA2) and
miR-204-5p, and the expression of HMGA2 affects tumor vol-
ume and tumor progression stage. Comparison of gene
expression results between tumor tissues and para-cancerous
tissues showed that the expression of miR-204-5p was

significantly downregulated within tumor tissues. According
to this result, the proliferation and metastasis of tumor cells
were inhibited by the knockout of HMGA2 or the upregula-
tion of miR-204-5p expression (Zhang et al. 2021). In gastric
cancer, small nucleolar RNA host gene 4 (SNHG4) knockout
upregulated the expression of miR-204-5p, resulting in an
inhibitory effect on the growth of gastric cancer cells.
Compared with normal gastric tissues, the expression of miR-
204-5p was significantly decreased in gastric cancer tissues,
and thus, SNHG4 could be used as a potential target for
future treatment of tumors through the mechanism of miR-
204-5p affecting tumor development (Yang et al. 2020;
Cheng et al. 2021).

The same inhibitory effect on the proliferation and inva-
sion of tumors has also been explored in renal cell carcinoma
tissue samples and cell lines and cholangiocarcinoma (Lu
et al. 2020; Wu et al. 2020). In addition to regulating tumor
progression, it also affects the resistance of tumor cells to
chemotherapy (Yao et al. 2020). MiR-204-5p inhibits the pro-
liferation and invasion of tumor cells and increases the sensi-
tivity of chemotherapy by downregulating RAB22A (Yin
et al. 2014).

3.7. MiR-221-3p

MiR-221-3p is an important gene for maintaining metabolic
homeostasis, and its expression changes affect liver energy
metabolism. It is also an important regulator of drug resist-
ance to various cancer treatments. MiR-221-3p is involved in
energy transport and synthesis of novel fatty acids. In a
study of animal hibernation, in which the body continues to
function normally, the increased expression of miR-221-3p
and miR-222-3p was detected by a quantitative analysis
method. The regulation of lipid synthesis and metabolism by
miR-221-3p may occur through affecting the role of fatty
acid synthase (Nishida et al. 2021). MiR-221-3p has a certain
association with metabolic diseases, and although it has an
effect on adipocyte differentiation, the specific mechanism
has not yet been clarified. It was found that the expression
of miR-221-3p inhibited adipocyte differentiation, reduced TG
storage, and also inhibited the production of new lipids.
Overexpression of miR-221-3p inhibited lipid storage and adi-
pocyte differentiation (Ahonen et al. 2021).

MiR-221-3p is an miRNA with different expression,
depending upon whether it is involved in glycolysis or lipid
metabolism. Especially in the absence of oxygen, miR-221-3p
plays an important role in the regulation of glycolysis and
lipid accumulation (Sun et al. 2020). MiR-221-3p affects cell
proliferation and invasion for a variety of tumors. It was
found that in liver cancer, miR-221-3p enhanced the metasta-
sis and proliferation of liver cancer cells by targeting axis for-
mation inhibitor 2. Cell transcription test results confirmed
that the expression level of miR-221-3p was upregulated in
liver cancer, affecting the growth of tumors (Dong et al.
2019). The expression of the PDZ domain containing ring fin-
ger 4 (PDZRN4) was inhibited in colon cancer, and the
expression of miR-221-3p was negatively correlated with the
expression of PDZRN4. The mRNA and protein of PDZRN4
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were significantly reduced in the altered colon cancer tissues
compared with the non-cancerous colon tissues. The
increased expression of miR-221-3p significantly affected the
proliferation and differentiation of colon cancer cells (Liu &
Xing 2019).

The same phenomenon was also found in non-small cell
lung cancer (NSCLC), in which miR-221-3p was highly
expressed. Additionally, the growth and invasion of tumor
cells were significantly inhibited when miR-221-3p was
downregulated. Studies have shown that miR-221-3p affects
the growth of NSCLC cells by targeting cell cycle regulator
p27 (Yin et al. 2019). In addition to its effect on tumor
growth, miR-221-3p also plays a role in the regulation of
oncological drug resistance. Upregulated expression of miR-
221-3p has been found in thyroid cancer, and the overex-
pression of miR-221-3p leads to a decrease in radiosensitivity
during treatment. Therefore, the targeting of the suppressor
of cytokine signaling 3 (SOCS3) gene by miR-221-3p is a
potential direction that could be developed to influence the
tumor sensitivity of therapeutic drugs (Ye et al. 2021). In add-
ition to the therapeutic method, resistance to chemotherapy
is also an important obstacle to cancer treatment. The down-
regulation of miR-221-3p reduced the sensitivity of non-small
cell lung cancer to paclitaxel, and conversely, the overexpres-
sion of miR-221-3p can regulate the p53 signaling pathway
and reverse the paclitaxel resistance (Ni et al. 2021). With its
varied roles, miR-221-3p provides many potential targets for
clinical therapy, and it also plays an important role in lipid
metabolism and the regulation of tumor growth process.

Many genes involved in tumor glucolipid metabolism
exhibit significant effects, and regulate tumor proliferation,
invasion, metastasis, and metabolism to varying degrees (as
shown in Table 1). Because each gene exists in different
regulatory pathways, the extension and discovery of regula-
tory mechanisms and their effects are also seen as potential
research directions, such as drug resistance regulation, which
is considered to be an important goal of future drug resist-
ance research.

These are just a portion of the corresponding micro-RNAs
discovered at the present stage, and there is still a large

number of relevant genes to be discovered. Currently, the
gene regulation mechanism remains unclear, especially with
single genes that may affect multiple pathways. This
increases the diversity and uncertainty of confirming the
regulatory role of genes. With the development of analysis
and verification technology, the regulatory mechanisms of
the genes related to glucose and lipid metabolism will be
gradually clarified, which will also provide a theoretical basis
for the design of specialized target therapy in the future,
and increase the huge possibility for the treatment of can-
cer diseases.

4. Gene vectors designed to regulate glucose and
lipid metabolism

With the maturity of RNA interference technology, silencing
the corresponding regulatory genes of diseases by small
interfering RNA (siRNA) has become a new treatment
approach with great therapeutic potential, especially for dis-
eases with many gene mutations such as tumors (Zhang &
Yang 2020). However, gene drugs need to enter the mutated
cells to have an effect, and it is difficult for them to reach
the affected cells and be enzymatically hydrolyzed when
using the normal oral or injection route. On this basis, how
to deliver mRNA or siRNA into the body and to the disaf-
fected tissues and even to the disaffected cells has become
one of the obstacles in clinical treatment (Shao-Pu 2010).
Viral carriers such as lentiviruses, adenoviruses, and adeno-
associated viruses are traditionally used for the delivery of
gene drugs (as shown in Table 2) (Safinya 2004). The virus
has a broad spectrum of carrier series with a wide range of
applications, and also possesses high efficiency of infection
at the same time. Therefore, different virus carrier classes are
suitable for the different sizes of gene fragments. However,
there is a great demand for new viral vectors with high
safety, strong carrying capacity, and high bioavailability
(Gupta et al. 2021). To solve this problem, ordinary nanopar-
ticles used as a drug delivery system can be wrapped with
genetic drugs such as siRNA fragments. Based on the electro-
negativity of gene drugs, a cationic nanomedicine delivery

Table 1. Summary of micro-RNA regulation of abnormal glucose and lipid metabolism.

Micro-RNA Regulatory mechanism Application development Reference

MiR-122 MiR-122 specifically binds to APOBEC2 mRNA
to inhibit expression

MiR-122 affects GLUT1 and other pathways to
inhibit tumor growth

[61],[62],[63]

MiR-212-5p MiR-212-5p inhibited lipid generation and
accumulation by targeting fatty acid
synthases and stearyl co-enzyme A
desaturase 1

MiR-212-5p is an important inhibitor target to
suppress tumor metastasis and proliferation

[66],[67],[69],[70]

MiR-27b-3p MiR-27b-3p regulates lipid metabolism
mainly by influencing the mechanism of
PPAR gamma

MiR-27b-3p downregulation reverses the progression
of tumors and is an important research point in
the regulation of drug resistance of tumor cells

[72],[73],[75],[78],[79]

MiR-107-5b MiR-107-5b affects the metabolic distribution
of glycolipids by regulating the
production of steroids

MiR-107-5b targets EGFR to inhibit tumor invasion
and proliferation

[81],[83],[85]

MiR-130b MiR-130b regulates lipid metabolism, fatty
acid degradation, glucose metabolism,
and other pathways

MiR-130b regulates metastasis, invasion, and
proliferation of cancer cells depending on the
negative correlation with HHEX expression

[87],[90],[91]

MiR-204-5p MiR-204-5p affects lipid synthesis by
affecting adipose stem cell differentiation

The negative correlation between miR-204-5p and
SNHG4 can be used as a potential target for the
treatment of cancer

[100],[102],[104],[105]

MiR-221-3p MiR-221-3p acts on fatty acid synthases to
regulate lipid metabolism in the body

MiR-221-3p regulates drug resistance in the body
and is also involved in tumor cell proliferation

[109],[111],[112],[115]
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system was constructed to adsorb gene drugs on nanopar-
ticles through physical electrostatic action to realize packag-
ing and transportation (Ross & Ofri 2021). Next, we
summarize some vectors for the delivery of genes regulating
glycolipid metabolism (as shown in Table 3), briefly elucidate
their mechanisms of action, and briefly discuss their pros-
pects for development in the future. We will also describe in
detail the representative progress in the ongoing develop-
ment of gene vectors for glucose and lipid metabolism, from
the construction of simple gene vectors, to the construction
of endogenous materials into the vector, the co-delivery of
chemical drugs and gene drugs, and the exploration of the
combination of gene drugs and immunotherapy.

Salt inducible kinase 1 (SIK1) plays an important role in
the regulation of glucose and lipid metabolism, especially in
the process of liver metabolism. SIK1 expression also shows
an important effect on metabolic diseases (Hartono & Lee

2018). In diabetes studies, under the condition of high glu-
cose, SIK1 expression will be downregulated, which will fur-
ther affect the metabolic process of liver gluconeogenesis.
Under the abnormal state of this process, insulin resistance
will be produced, which will affect the treatment of diabetes
(Wang et al. 2020). Based on the above mechanism, adeno-
virus transduction constructed by Song et al. induced high
expression of SIK1. The upregulation of SIK1 expression
affects glucose metabolism, the expression of lipid genes,
the overall metabolism of the body, and changes in manifes-
tations, in some cases (Song et al. 2019).

The recombinant adenovirus was constructed by cloning
the 2,337 base-pair PCR product into linearized adenovirus
plasmid GV314 using T4 DNA ligase and transfecting into
competent Escherichia coli cells. Positive clones were
screened by ampicillin resistance and then underwent ABI
3730 sequencing analysis. SIK1-overexpressing adenovirus

Table 3. Summary of current gene vectors targeting glycolipid metabolism, including the genes involved, the types of tumors used, and the effects.

Gene Vector Cancer
Application

effect
Carrier
type Ref

MiR-122 Adeno-associated virus Liver cancer Significantly affect the process of
tumor proliferation

Viral (Thakral &
Ghoshal 2015)

MiR-7 Lentivirus Pancreatic caner Impair autophagy-derived pools of
glucose to suppress pancreatic
cancer progression

Viral (Gu et al. 2017)

SH-DX2 Lentivirus Lung cancer Suppresses Lung Cancer Cell
Growth through blocking
glucose uptake

Viral (Chang et al. 2012)

TRAIL Adenovirus Prostate cancer Induce cancer cell apoptosis by
depleting cholesterol of
lipid rafts

Viral (Liu et al. 2015)

GRP94 Adenovirus Colon cancer Regulate glucose uptake to
enhance cancer
radiation therapy

Viral (Liu et al. 2005)

MiR-130 Exosomes Breast cancer Suppress breast tumor cell invasion
and migration

Non-viral (Moradi-Chaleshtori
et al. 2021)

MiR-122 LNP-DP1(cationic lipid
nanoparticle)

Liver caner Inhibit the growth rate of tumor
cells by nearly 50 percent

Non-viral (Hsu et al. 2013)

MiR-212 Chimeric peptide-condensed
nanoparticle

Pancreatic ductal
adenocarcinoma

Enhance the sensitivity of tumor
cell to doxorubicin

Non-viral (Chen et al. 2019)

MiR-221 polyethyleneimine-capped silver
nanoclusters (PEI-AgNCs)

Liver cancer Regulate lipid metabolism to
increase the sensitivity of drugs
and exhibit the effect of
bacterial inhibition

Non-viral (Du et al. 2017)

siGRP78 DOTAP (1,2-dioleoyloxy-3-
trimethylammoniumpropane)
liposomes

Breast cancer Increase the sensitivity of tumor
cell to chemotherapy

Non-viral (Samson
et al. 2019)

Table 2. Summary of the application information of several viral vectors, such as application and safety.

Virus delivery system Adenovirus Lentivirus Adeno-associated virus

Viral genome Double-stranded DNA virus RNA virus Single-stranded DNA viruses
Replication Replication-conditional Non-replication Replication-conditional
Virus titer Maximum 1012 PFU/ml Maximum 109 TU/ml Maximum 1012–13 v.g/ml
Infected cell type Infecting dividing and non-

dividing cells
Infecting dividing and non-

dividing cells
Infecting cells do not divide as well

Expression degree High expression Moderate expression High expression
Start time of expression Quick (1–2 days) Slow (2–4 days) Slower (1–2weeks)
Duration of expression Viral genome is free from the host

genome, and immediately
expresses the exogenous genes

Viral genes are integrated into the
host genome, and express foreign
genes stably for a long time

Viral genomes are isolated from host
genomes, and can be expressed
for a long time in cells with
low division

Cloning capacity Expresses exogenous fragments less
than 5 kb

Expresses exogenous fragments less
than 4 kb

Expresses exogenous fragments less
than 2.8 kb

Immunogenicity High immunogenicity Low immunogenicity Minimal immunogenicity
Security Causes coughing and runny nose No pathogenicity has been found No pathogenicity has been found
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(Ad-SIK1) was packaged in human embryonic kidney 293 T
cells and purified with the Adenovirus X purification kit. The
virus titer was determined by an end-point dilution method
(Zhou et al. 2019). The results showed that SIK1 plays an
important role in the regulation of liver glucose and lipid
metabolism, and it inhibits liver gluconeogenesis and lipo-
genesis. SIK1 also plays a role in the regulation of metabolic
diseases and is found in tumor diseases. In cervical squa-
mous cell carcinoma cells, SIK1 inhibits the invasion and
metastasis of cancer cells (Peng et al. 2020). In colorectal
cancer, the upregulated targeting of SIK1 by miR-17 has
been found to promote the process of colorectal cancer, and
thus, this mechanism has also become a potential thera-
peutic target (Huang et al. 2019).

In addition to traditional viral carriers, there are other
types of non-viral carriers that are suitable. Exosomes, metal
nanoparticles, inorganic materials, bioorganic materials, and
polymers have been gradually used for the construction of
nano-gene carriers (as shown in Figure 3) (Boca et al. 2020;
Yan et al. 2020). Next, we will introduce cases where several
materials have been applied.

Exosomes are small membranous vesicles containing com-
plex RNA and proteins with a diameter range of 40–100 nm
and can be secreted by a variety of cells. Exosomes were
considered as a vehicle for transporting metabolic waste
when they were initially discovered. Exosomes have grad-
ually been found to participate in many physiological proc-
esses, and they are considered to have great potential

Figure 3. Summary of gene vectors constructed from various materials.
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research value because they are able to deliver RNA and pro-
tein substances (Ge et al. 2017; Hashemian et al. 2020).
Exosomes are rich in cholesterol and lecithin, which have sat-
isfactory biological activity. Additionally, exosomes can cap-
ture the mRNA secreted by human cells in vitro and
translate it into protein, indicating that the mRNA transferred
by the exosomes has biological activity and can regulate the
mRNA level of target cells (as shown in Figure 4) (Yang et al.
2019). Thus, there is increased research on the use of exo-
somes as gene carriers and for the delivery of gene drugs
(Vojtech et al. 2014; Silva and Melo 2015).

Exosomes are an endogenous substance in the body, and
therefore, the acquisition of exosomes is often accomplished
by the separation of macrophages, rather than physical or
chemical methods (Familtseva et al. 2019; Pegtel & Gould
2019). Tian et al. established a high-glucose mouse model to
observe the performance of mice, and added high-glucose
medium-induced macrophages to RAW264.7 macrophages in
culture. After the culture, the exosomes were obtained by
centrifugation (Lasser et al. 2012). The expression of miR-210
in exosomes was detected by RT-PCR and western blot ana-
lysis, and the reduction in glucose uptake was also experi-
mentally verified (Tian et al. 2020). The total amount of
exosomes in tumor tissues was significantly higher than that
in normal tissues.

Studies have found that exosomes play a certain regula-
tory role in the process of tumor growth, such as affecting

the proliferation and metastasis of tumor cells (Li et al. 2019;
Zhang & Yu 2019). Pan et al. constructed exosomes of miR-
130b and miR-130b-mv to inhibit PPAR-gamma through
translation in an obese mouse model induced by a high-fat
diet, and it was observed that epididymal fat deposition was
reduced, and glucose tolerance was partially restored (Pan
et al. 2015). Another experiment in breast cancer (4T1 cells)
showed that miR-130 loaded by exosomes significantly
inhibited the invasion and metastasis of tumor cells (Moradi-
Chaleshtori et al. 2021). Based on the abnormal manifesta-
tions of exosomes in the body of tumor patients, exosomes
or exosomal microRNAs can be used as an important detec-
tion standard, providing the possibility of early tumor detec-
tion (Nedaeinia et al. 2017; Chen et al. 2019).

As an endogenous transport carrier, exosomes exhibit sat-
isfactory biocompatibility, which can reduce the immune
response and increase the circulation time of drugs in the
body. An efficient nano-drug delivery system can be created
with exosomes that are loaded with therapeutic gene or pro-
tein drugs that target cells (Kalluri & LeBleu 2020). However,
there is greater difficulty in the process of exosome extrac-
tion, and it still faces some technical challenges. Low doses
of exosomes do not appear to induce a strong immune
response, but the effect of immune rejection needs to be
confirmed in further experiments (Batrakova & Kim 2015).
More importantly, as an exosome outside a secretion, it is a
complex and lengthy process to induce macrophages to

Figure 4. Schematic diagram of exosomes entering targeted cells. Exosomes can enter cells through a variety of signaling pathways, and their contents include
mRNA, proteins, and antigens. This figure has been adapted/reproduced from ref 135 with permission from John Wiley and Sons.
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regulate changes in their expression. Much time and energy
must be consumed for large-scale preparations because of
the difficulty of the process (Luan et al. 2017).

With the development of polymer materials, there has
been considerable pharmaceutical research on nano-drug
delivery systems for gene drugs, especially by using the elec-
trostatic adsorption of cationic materials and genes to carry
gene drugs into the body. Polymeric vectors are safer alter-
natives for gene delivery because of their advantages as
compared to viral vectors (Liu et al. 2021; Yan et al. 2021).
Xu et al. used polymer materials such as polyethylene glycol,
polylactic acid, and the cationic lipid BHEM-Chol to form a
diblock copolymer. This material was able to emulsify and
encapsulate gene drugs in siRNA aqueous solution to form
homogeneous nanoparticle gene carriers that were called
NPsiGLUT3 (as shown in Figure 5) (Xu et al. 2015). Given every
other day for a sustained period of time, the tumor volume
of the glioma (U87MG cell) mouse model was effectively
controlled compared to the blank group. There was a signifi-
cant inhibitory effect on metabolism in the experimental
group injected with NPsiGULT3.

The nanocarriers constructed from polymer materials pos-
sessed satisfactory stability, and the presence of polyethylene
glycol (PEG) prolonged the retention time in vivo. siRNA
exhibited satisfactory gene-loading capacity through electro-
static adsorption with cationic lipids. In addition to the inhib-
ition of metabolism, there were also certain inhibitory effects

on the proliferation and differentiation of tumor cells (Yang
et al. 2011; Li et al. 2014).

RGD is a neovascularization-targeting peptide that can
provide a satisfactory targeting effect; PEG provides good
biocompatibility and prolongs the action time in vivo; and
distearoyl phosphoethanolamine (DSPE) provides good lipid
solubility, which facilitates the crossing of biological barriers.
Therefore, there has been considerable research on the novel
diblock copolymer RGD-PEG-DSPE. The one constructed by
Zhang et al. contained a core of calcium phosphate (CaP),
and it was highly efficient at loading siRNA, while its dioleoyl
phosphatidic acid (DOPA) and RGD-PEG-DSPE components
are excellent for loading chemical drugs (Zhang et al. 2019)
(as shown in Figure 6). The co-loading of gene drugs and
docetaxel produced a satisfactory synergistic effect on PC
(prostate cancer)-3 cell line. The experimental group co-
loaded with DTXL and siRNA significantly improved the sen-
sitivity of chemical drugs, and tumor cells also showed many
positive changes in proliferation and apoptosis. Chemical
drug and gene drugs total load, which reduce the drug dos-
ing frequency. After gene regulation, chemical drugs can
play a role in reversing tumor cells for the sensitivity of drug,
even compared to before enhancement effect, changed the
significant problem of chemical drug resistance.

GRP87 is a glucose-regulated protein that plays a key role
in tumor cell survival, tumor progression, metastasis, and
resistance to therapy. The upregulation of GRP87 expression
is beneficial for the continuous adaptation of the

Figure 5. Schematic diagram of NPsiGLUT3 synthesis and its mechanism of action in the body. This figure has been adapted/reproduced from ref 152 with permis-
sion from ELSEVIER, Copyright 2015.
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endoplasmic reticulum (ER), which can improve glucose
metabolism (Ni et al. 2011; Lu et al. 2020). The expression of
GRP87 was silenced by siRNA technology, and the glucose
metabolism of the body was decreased. The particles also
effectively reversed multidrug resistance and inhibited tumor
proliferation and metastasis (Gifford & Hill 2018). Of course,
the inorganic material added will adsorb siRNA and produce
drug-loading effects. Compared with the polymer, its toxicity
is greatly reduced, and the biological compatibility
is increased.

Mesoporous silica nanoparticles are also commonly used
as drug delivery carriers. Due to their satisfactory drug deliv-
ery efficiency and release ability, they have been used with a
variety of drug preparations. Shi et al. constructed a gene-
loaded nanocarrier with controlled release. After the mesopo-
rous silica was loaded with chemical drugs, MDR(multi-drug
resistance)-1 siRNA was adsorbed through the physical
adsorption capacity of the material. As a well-known drug
resistant protein, MDR-1 also plays an essential role in the

regulation of lipid formation pathways(Yun et al. 2013). Then,
hyaluronic acid was coated on the outermost layer, and this
enabled the siRNA to avoid decomposition and deactivation
by the corresponding enzymes for increased efficacy (Shi
et al. 2019).

When nanoparticles enter into tumor cells by endocytosis,
TH287(MTH1 inhibitor) can damage DNA, which decreases
tumor cell proliferation. Subsequently, there is reduced MDR-
1 small interference RNA function, which greatly improves
the therapeutic effect. According to this model, this will
regulate glucolipid metabolism-related genes via the gene
drugs and/or chemicals that were carried. The delivery sys-
tem of HA-siTMSN make great progress on treating oral
squamous cell carcinoma (OSCC), the HA-siTMSN drug deliv-
ery system showed the strongest tumor inhibition in a tumor
model constructed from CAL27 cells in mice. To avoid the
low efficacy of a single pathway, a mesoporous carrier for
inorganic materials is an optimal choice because its applica-
tion cost is low, and it also exhibits satisfactory biological

Figure 6. Schematic diagram of the construction of RGD-PEG-DSPE/DOPA/CAP nanoparticles, and mechanism of action of the RGD-PEG-DSPE/DOPA/CAP nanopar-
ticle tumor treatment. This figure has been adapted/reproduced from ref 155 with permission from Dove Medical Press, Copyright 2019.
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safety and high plasticity that enables the nature of the car-
rier to be changed with only small amounts of modification.
Because of all these advantages, it is a drug carrier with
great potential (as shown in Figure 7).

With the continuous exploration of tumor treatment,
immunotherapy has gradually become the focus of research.
To improve the therapeutic efficiency of a single drug deliv-
ery system, the delivery system and immunotherapy have
been combined (Yan et al. 2021). In addition to the common
carriers for drug delivery, a nanocarrier with the ability to
activate and regulate T cells can be constructed through an
antibody-modified nanosystem to kill tumor cells. It subverts
the traditional treatment method that uses nanometer drug
delivery systems. Kim et al. used amphiphilic polyglutamic
acid to encapsulate fenofibrates into micelles by self-assem-
bly (as shown in Figure 8). The anti-CD3E F(Ab’)2 fragment
was attached to the surface of the micelles, and finally,
micelles with anti-CD3-modified drugs were formed. When
injected into the body, these micelles can bind to T cells,
enter T cells, alter the regulation of metabolism, and activate
and promote the synthesis of fatty acids in the body. The
synthetic fatty acids provide energy for the proliferation of T
cells in the absence of glucose in the tumor, and then, T

cells induce the apoptosis of cancer cells to achieve the
effect of cancer treatment (Kim et al. 2021). The construction
of the delivery system provides a good perspective for the
combination of drugs targeting glycolipid metabolism genes.
This also provides theoretical support for the construction of
vector for co-loading gene drugs targeting glycolipid metab-
olism and induced immunotherapy in the future.

The micelle carrier prepared by polymer materials, com-
bined with immunotherapy, resulted in modified antibodies
on the surface of the carrier to achieve a targeting effect.
Then, the carriers were able to successfully enter into T cells,
regulate the lipid metabolism process, and guide auto-
immune T cells to induce cell apoptosis. The drug delivery
system reduced the side effects of drugs, and maximized the
immune function of the body through internal regulation.

5. Discussion and prospects

The rapid development of gene technology provides a
powerful theoretical and technical basis for gene therapy,
which requires the construction of efficient gene carriers,
and provides the appropriate genetic drugs and a large
amount of genetic data. However, exploring the mechanisms

Figure 7. Preparation of HA-coated MDR1 siRNA/TH287-loaded MSN, and the mode of action for MDR1 siRNA/TH287-loaded MSN.
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of gene regulation is just the tip of the iceberg in the quest
to affect the regulation of the entire body, especially when
taking into account the complexity of genes, which causes
more obstacles and challenges for gene therapy. Of course,
with the continuous innovation of genetic engineering tech-
nology, the speed of gene screening steadily increases and
becomes timelier, providing more optimal gene selections
for the preparation of suitable gene drugs.

Based on the abnormal metabolic environment of a
tumor, by regulating metabolic genes, abnormal glucose and
lipid metabolism in tumors can be affected, the development
process of tumors can also be affected, and drug resistance
in tumor therapy can then be reversed. The synergistic thera-
peutic effect generated by co-loading with chemotherapy
drugs plays a significant role in clinical treatment.

Furthermore, in the preparation of gene vectors, a variety
of vector forms have been discussed. The biological carrier
possesses satisfactory biocompatibility, but there are high
requirements for its extraction technology, the process is
more complicated, and the low yield is also a problem wor-
thy of discussion. The physical drug carrier, through its
unique physical properties, can efficiently release a drug, and
a highly efficient drug delivery system is created; if biological
barriers exist, it will be difficult to efficaciously treat the
internal tumor.

In addition, polymer materials are being rapidly devel-
oped and more widely used in biomedical applications, and
the appropriate polymer materials can provide cationic prop-
erties and generate electrostatic adsorption on RNA to
achieve the purpose of delivering gene drugs. Polymer mate-
rials have high plasticity and can be used to synthesize
many functional groups through chemical reactions, which
will result in increased targeting and prolonged circulation in
the body. The drug delivery system will exhibit some charac-
teristics of environmental response due to the presence of
some chemical bonds.

With the interaction and integration of various disciplines,
the application of drug delivery systems in the field of gene
delivery is becoming increasingly thorough, which has broad
clinical application prospects and great potential for the
diagnosis and treatment of diseases. However, there remains
much work that is necessary to prepare novel gene vectors
and to continue to find and create additional nanotools for
gene therapy.
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