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In this study thirty wood rotting and litter degrading basidiomycetes were screened for the production of lignocellulolytic enzymes
such as, laccase, peroxidase, and cellulase using rapid micro quantification assay. Out of the 30 indigenous isolates Trametes gibbosa
was identified to be a potential lignocellulolytic enzyme producer, producing a maximum amount of cellulase (299.66 ± 1.59 IU/L)
and laccase (257.94±1.79U/L).Moreover, it is the second leading producer of peroxidase enzyme (170.19±1.98U/L).Tricholomopsis
sp. a wood rot basidiomycete was found to be the leading lignin decomposer withmaximumperoxidase activity (287.84±2U/L) and
secondmaximum laccase activity (250.19±1.83U/L). However, its cellulolytic potential was found to bemoderate (100.04±1.13U/L).
A higher level of lignocellulolytic enzymes was recorded in wood rotting basidiomycetes, whereas very low levels of lignolytic
enzymes were found in litter inhabiting basidiomycetes. However, their cellulolytic potential was found to be moderate.

1. Introduction

Lignocellulosic substrates have recently gained remarkable
interest due to their wide biotechnological applications
in the agricultural industry, food processing, paper, and
fuel industries. The biotechnological process not only uses
lignocellulosic wastes as an energy feedstock but is also
associated with pollution abatement [1, 2]. These substrates
are mainly composed of cellulose, hemicellulose, and lignin
[3]. Cellulose is a biopolymer and has been widely used in
paper making, as a source of sugars, and as a precursor for
bioethanol production and for various purposes. Recovery
of cellulose from lignocellulosic substrates of physical and
chemical methods is an energy intensive process as the lignin
acts as barrier for them [4]. Naturally, the cellulose from these
lignocellulosic substrates can be utilized by a wide variety
of wood rotting and litter degrading fungi. They produce
enzymes such as laccase and peroxidase for the degradation
of lignin and cellulase for the cellulose utilization. In general,

mushrooms become accustomed to the abundant supply of
lignocellulosic substrates, digest them, utilize them for their
growth, and thereby they recycle them. The efficiency of
utilizing lignocellulosic waste materials depends on their
ability to secrete potential hydrolytic, oxidative enzymes
which differ from species to species [5]. Studies have shown
that wood rot fungi invest part of their metabolic energy to
produce lignocellulolytic enzymes for the purpose of degrad-
ing lignin [6, 7]. The enzymes produced using agroindustrial
or organic wastes from mushrooms have wide application in
the field of diagnostic medicine, textile, paper, and biofuel
industries, which accounts for 40% of global enzyme market
supply [8–10].

Themajor objective of this study is to tap out the potential
lignocellulolytic enzyme producer from various wood rot
and litter fungi and to compare them. Screening is the
major strategy to identify the efficient industrially viable
enzyme producer from environmental sources. Efficient,
rapid screening systems are needed to identify and quantify
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these classes of enzymes using specific substrate. Hence, in
this study a rapid microquantification assay has been used
for the determination of lignocellulolytic enzymes such as
laccase, peroxidase, and cellulase from wood rot and litter
degrading basidiomycetes collected indigenously from places
in and around Chennai.

2. Materials and Methods

2.1. Chemicals. 2,2-Azino-bis-3-ethylbenzothiazoline-6-
sulfonate (ABTS), 2-methoxyphenol, and carboxymethyl
cellulose were from Sigma-Aldrich, and H

2
O
2
(perhydrol,

30%) was obtained from Boehringer. All other chemicals
used were of analytical grade.

2.2. Organisms and Fermentation for Enzyme Production.
The fruiting bodies of mushrooms found growing on the
trees, decomposing logs, and soils at different places in
and around Chennai, Tamil Nadu, India, were collected
and isolated in pure cultures on PDA and revived before
every assay.The collectedmushrooms were further identified
using field characters such as substrate for growth and
occurrence of fruiting body [11], morphological characters
such as pileus, lamellae, stipe, and fruiting bodies [12], and
microscopic characters such as spore print, cystidia, and
hyphal arrangement [13]. The isolated culture was deposited
in the fungal culture collection, Centre for Advanced Studies
in Botany. The fungal isolates were precultured in Potato
dextrose agar (PDA) medium at 28∘C for 14 days and agar
plugs (10mm in diameter) were inoculated in the liquid
medium. A basal liquid medium was prepared in the fol-
lowing composition: glucose—10 g/L, yeast extract—3 g/L,
peptone—1 g/L, MgSO

4
⋅7H
2
O—1 g/L, and KH

2
PO
4
⋅3H
2
O—

1 g/L. The mycelium from the plate was inoculated with
50mL of liquid medium in a 250mL Erlenmeyer flask. The
cultures were incubated at 25∘C for 30 days under static
condition at optimum pH of 6.5 ± 0.5. The culture filtrate
was then separated and centrifuged at 5000 rpm for 15min.
The supernatant was carefully transferred and was treated as
the crude enzyme fluid and assays were performed by the
microtitre plate method.

2.3. Microquantification of Lignocellulolytic Enzymes. The
laccase activity was monitored by measuring the maxi-
mum absorption of oxidation of ABTS (2,2-azinobis-3-
ethylbenzthiazoline-6-sulfonate) substrate at 25∘C.The reac-
tion mixture (200𝜇L) containing 10 𝜇L of enzyme sample,
10 𝜇L of 10mM/L ABTS, and 180 𝜇L of 50mM/L sodium
acetate buffer solution (pH of 4.5) was incubated for 3min
and the laccase activity of crude enzyme was determined by
measuring the absorbance at 420 nm using ELISA Reader
modelMultiskan EX.One unit of enzyme activitywas defined
as the amount of enzyme catalyzing the oxidation of 1 𝜇mol
of substrate per minute [14].

Peroxidase activity was determined by monitoring the
oxidation of guaiacol at room temperature, that is, 25 ± 2∘C.
The reaction mixture (200 𝜇L) contained 100mM of citrate
phosphate buffer (pH 4.0), 1mMof 30%hydrogen peroxidase

solution, 1mM of guaiacol, and the supernatant of culture
filtrate. The absorbance was determined at 414 nm using
ELISA reader model Multiskan EX. One unit of peroxidase
activity was defined as the amount of the enzyme, which leads
to the oxidation of 1 𝜇mol of substrate per minute [15]. Both
the laccase and total peroxidase were performed inmicrotitre
plates [16, 17].

Cellulase was initially done with tubes, then the final
incubation and the absorbance were carried out in microtitre
plates. Cellulase activity was assayed by mixing 50𝜇L of
proper enzyme dilution with 50 𝜇L of 2% carboxymethyl-
cellulose solution in a 0.05M citrate buffer (pH 4.8) and
incubating the mixture for 30min at 50∘C in a water bath
with moderate shaking. Dinitrosalicylic acid was added and
boiled for 5min. The absorbance was measured at 540 nm
[18]. The sample and buffer were poured into the well using
multichannel pipettes. All the samples were measured with
microtitre plate reader model Multiskan EX [19]. One unit of
CMC activity is defined as the amount of enzyme needed to
liberate 1mol of glucose/min. Glucose was used as standard
for CMC activity.

2.4. Statistical Analysis. Values are expressed as means ±
S.D. and analyzed using one-way ANOVA for comparisons
of means. The statistical analysis was performed using SPSS
version 10 for Windows (SPSS, Inc.).

3. Results

A total of 30 indigenous collected species of basidiomycetes
were identified and substrates from which it is isolated
were mentioned in Table 1. The collected basidiomycetes
were evaluated for their extracellular lignocellulolytic enzyme
production using a microtitre plate method after submerged
fermentation. Out of these enzymes, laccase plays a dynamic
role as the best lignin upgrade in lignin degrading fungi. The
results of the screening of laccase were shown in Figure 1;
it shows that Trametes gibbosa (257.94 ± 1.79U/L) was the
highest producer of this enzyme, which was followed by
Tricholomopsis sp. (250.19 ± 1.83U/L) and Trametes hirsuta
(185.95 ± 2.33U/L), whereas a low enzyme activity was
observed in Agrocybe sp. (13.23 ± 1.45U/L) (Figure 2).

Peroxidases are one of the key enzymes responsible for
the degradation of lignocellulose, of which peroxidases are
considered to be the most effective in the removal of lignin
and were quantified in this study using rapid microtitre plate
based quantitative peroxidase assay (Figure 3). In this study,
Tricholomopsis sp. showed the highest peroxidase activity
of 287.84 ± 2U/L followed by Trametes gibbosa (170.19 ±
1.98U/L) and Lentinus edodes (117.96 ± 2.88U/L) (Figure 2).
Very least peroxidase activity was recorded in Lepiota sp.
(4.7 ± 1.11U/L) (Figure 2).

Cellulase refers to hydrolytic enzymes that catalyse the
cellulolysis. Cellulase have wide range of potential appli-
cations in various industries. Figure 3 revealed that, out
of 30 fungi, six indigenous fungi were identified with a
potential cellulolytic capacity. Trametes gibbosa, member of
the polyporus fungi, exhibited the highest cellulolytic activity
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Table 1: Fungal cultures isolated and their substrates.

Serial
number

Name of organism
isolated

Name of
substrate Group

1 Agaricus bisporus Soil

Litter degrading
basidiomycetes

2 Agaricus heterocystis Soil
3 Agaricus sp. Soil
4 Agrocybe sp. Soil
5 Cantharellus sp. Soil
6 Chlorophyllum sp. Soil
7 Coprinus sp. Soil
8 Lepiota sp. Soil
9 Leucocoprinus sp. Soil
10 Macrolepiota sp. Soil
11 Omphalina sp. Soil
12 Auricularia sp. Wood

Wood rot
basidiomycetes

13 Calocybe sp. Wood
14 Ganoderma lucidum Wood
15 Ganoderma sp. Wood
16 Hypsizygus ulmarius Wood
17 Lentinus edodes Wood
18 Lentinus tuber-regium Wood
19 Phellinus sp. Wood
20 Pleurotus eryngii Wood
21 Pleurotus florida Wood

22 Pleurotus djamor var.
roseus Wood

23 Pleurotus sp.1 Wood
24 Pleurotus sp.2 Wood
25 Pluteus sp. Wood
26 Psathyrella candolleana Wood
27 Schizophyllum commune Wood
28 Trametes gibbosa Wood
29 Trametes hirsuta Wood
30 Tricholomopsis sp. Wood

of 299.143 ± 1.59 IU/L (Figure 3). The other wood rots
Lentinus edodes and Tricholomopsis sp. Were recorded to
possess the highest enzyme activity (294.143 ± 2.08 IU/L and
101.044 ± 1.13 IU/L, resp.). However, Hypsizygus ulmarius,
Pleurotus florida, and Tramates hirsuta were also shown to
possess considerable cellulolytic activity of 98.42± 1.45 IU/L,
93.78 ± 2.6 IU/L, and 79.23 ± 2.55 IU/L, respectively.

4. Discussion

A number of research works were carried out to evaluate the
enzymatic potential by classical methods and these methods
are time consuming and require more amount of substrate
for quantification. Hence, to quantify the lignocellulolytic
enzymes in short duration, microquantification technique
is the best method of choice. Most wood inhabiting fungi
showed good laccase activity except a few species such as
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Figure 1: Quantification of Laccase activity determined using
ABTS by microtitre plate assay. Extracellular enzymes of laccase
production from cultures of basidiomycetes. All values are medium
of three replications ± standard error.

Ganoderma sp., Calocybe sp., and one wild Pleurotus sp.
where very low level of enzyme activity was recorded. Con-
versely, the litter inhabiting fungi such as Agrocybe sp. and
Agaricus sp. showed very low level of enzyme activity. This
is due to the difference in substrate in which they grow; that
is, the wood rot fungi produce more laccase enzyme than the
litter degrading fungi [20].The laccase enzyme finds itsmajor
application in processes such as delignification, biopulping,
biosorption, and wine clarification, and Trametes was the
first reported laccase producer. Out of the different cultures
screened Trametes gibbosa and Trametes hirsuta have been
proven to be potential candidates with the highest laccase
activity, in addition to Tricholomopsis sp. Thus, the results
of our study correlate with studies made by Songulashvili
et al. [21] where the study showed that the genus Trametes
expressed comparatively a higher laccase activity than the
other species of wood rot basidiomycetes. Moreover, most
common laccase producers are wood rot fungi; especially,
polyporales play amajor role in efficient degradation of lignin
[20, 22]. Similarly, in this study most of white rots including
Lentinus edodes, Pleurotus djamor var. roseus, and Pleurotus
sp. 2 cultures exhibited a comparatively better laccase activity.
Screening methods play a major role in the identifica-
tion of potential candidate for biotechnological applications.
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Figure 2: Quantification of peroxidase activity using guaiacol by
microtitre plate assay. Extracellular enzymes of peroxidase produc-
tion from cultures of basidiomycetes. All values aremedium of three
replications ± standard error.

The rapid microtitre plate screening method used in this
study showed promising results similar to those of Okino
et al. [23] where they developed a quick screening method
and isolated 116 Brazilian tropical rainforest basidiomycetes
expressing laccase enzyme. Substrate for the enzyme is
another factor for accurate quantification of the enzymes. In
case of enzyme laccase, ABTS was found to be the suitable
substrate, as it rapidly detects this enzymemore accurately in
this method.

For identification of a high level peroxidase producers,
the time and reliability are the considerable factors for
determining the activity. Rapidmicroquantification assaywas
proved to be the reliable and short time method for deter-
mination of peroxidase enzymes. In this study, the peroxi-
dase enzymes were determined by rapid microquantification
assay. Wood rot fungi showed higher production of extra-
cellular peroxidase than the litter degrading basidiomycetes.
This may due to the fact that wood rots require peroxidase
enzyme and possess high oxidative ability to degrade lignin
[24].The rapid microtitre plate based quantitative peroxidase
assay used in this study showed promising results, compa-
rable to those of classical quantitative spectrophotometric
assay based screening studies carried out by Dhouib et al.
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Figure 3: Quantification of cellulase activity using carboxymethyl
cellulose bymicrotitre plate assay. Extracellular enzymes of cellulase
production from cultures of basidiomycetes. All values are medium
of three replications ± standard error.

[25]; Taboada-Puig et al. [26]; Järvinen et al. [27]. Sometimes,
the fungal strains from white rot group are able to produce
laccase more than the peroxidase. Hence, it is essential to
quantify the target catalyst from large number of strains
which is extremely important. Accuracy for oxidative enzyme
screening depends on the chromogenic substances used
for its detection. In this study, the guaiacol was used as
the chromogenic substrate for the detection of peroxidase.
Similar studies by Mercer et al. [28] screened the peroxidase
activity of actinomycetes using rapid microquantitative assay
and demonstrated that this technique was effective in rapid
screening. Out of the 30 fungal strains screened, almost
all wood rot fungi exhibited significant peroxidase activity
except for a few species such as Pleurotus eryngii and Lepiota
sp.

Nowadays, significant attention has been devoted to the
knowledge of cellulase production and the challenges in cel-
lulase research especially in improving the process economics
of various industries [29]. Cellulase had a series of appli-
cations in food, pulp, fuel, textile, and so forth. Hence, the
screening of cellulolytic potetial fungi for its ability towards
industry level is essential nowadays. The microquantification
cellulase assay using carboxymethyl cellulose (CMC) showed
promising results in this study and was comparable with
that of classical screening assay in many wood rots and litter
fungi tested by Dhouib et al. [25] where they screened 224
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fungal strains from Zimbabwe for cellulolytic activities. The
microquantification cellulase assay using CMC was the best
method; evidence from previous studies was made by king
et al. [30] where the study compared the cellulase production
of different fungi such as Trichoderma reesei, Fusarium
oxysporum, and S. sclerotina, using microtitre plate methods.
The results showed that T. reesei showed maximum cellulase
production in CMC and arabinoxylan substrates. Wang
et al. [31] reported that three strains of Agrocybe aegerita
utilized non-lignin-cellulose more efficiently than the other
strains in the study and their cellulose-degrading activity was
slightly lower. Similar results were observed in our study
that Agrocybe sp. exhibited lower cellulase activity. White rot
fungi produced more laccase and peroxidase extracellularly
than cellulase at low rate during anamorphic phase of the
basidiomycetes. In contrast, the Trametes produces cellulase
at high levels than the litter degrading fungi, which may due
to the factors such as diversity of the environment, adaption,
evolution, and modification of genes by the organisms [32,
33].

The rapid quantification assay technique used in this
screening study identified the efficient lignocellulolytic enzy-
mes producing indigenous isolates such as Trametes gibbosa,
Tricholomopsis sp., Trametes hirsuta, Lentinus edodes, and
Pleurotus species from native environments of Tamil Nadu,
India. Nevertheless, most of the white rots and litter degrad-
ing fungi produce laccase, peroxidase and cellulase enzymes,
their level differs depends on the substrate that is wood or soil
or litter, from which it is isolated. Some of the same genus
have different level of enzyme production which is totally
based on the species variation and also the genetic modi-
fication of the strains. Thus, the study emphasis to explore
the basidiomycetes fungi and its oxidative and hydrolytic
enzymes was to evaluate the accurate efficacy of the fungi.

5. Conclusion

Thirty south Indian taxa of basidiomyceteswere collected and
screened for extracellular oxidative and hydrolytic enzymes
using microtitre plate technique. The most promising results
obtained with these ligninolytic fungal strains led to dis-
covering the hidden potentials of some of the members of
basidiomycetes. This study strives to unravel the immense
lignin-degrading potential of basidiomycetes from South
India and also to make this data available to promote future
research.
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