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Abstract

Aging, a time‐dependent multifaceted process, affects both cell structure and

function and involves oxidative stress as well as glycation. The present investigation

focuses on the role of the band 3 protein (B3p), an anion exchanger essential to red

cells homeostasis, in a D‐galactose (D‐Gal)‐induced aging model. Anion exchange

capability, measured by the rate constant of SO₄²− uptake through B3p, levels of lipid

peroxidation, oxidation of membrane sulfhydryl groups, B3p expression, methe-

moglobin, glycated hemoglobin (Hb), and the reduced glutathione/oxidized glu-

tathione ratio were determined after exposure of human erythrocytes to 25, 35,

50, and 100mmol/L D‐Gal for 24 h. Our results show that: (i) in vitro application of

D‐Gal is useful to model early aging in human erythrocytes; (ii) assessment of B3p ion

transport function is a sensitive tool to monitor aging development; (iii) D‐Gal leads

to Hb glycation and produces substantial changes on the endogenous antioxidant

system; (iv) the impact of aging on B3p function proceeds through steps, first in-

volving Hb glycation and then oxidative events at the membrane level. These

findings offer a useful tool to understand the mechanisms of aging in human ery-

throcytes and propose B3p as a possible target for new therapeutic strategies to

counteract age‐related disturbances.
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1 | INTRODUCTION

Aging is a complex and progressive physiological alteration of the

organism characterized by the accumulation of degenerative pro-

cesses, which ultimately compromise cell and tissue function

(Wagner et al., 2016). As such, aging is the main risk factor for almost

all chronic diseases, including cardiovascular and neurological dis-

eases, cancer, and diabetes (Calcinotto et al., 2019; Ferrera

et al., 2021; Guzik & Cosentino, 2018; Kritsilis et al., 2018; La Russa

et al., 2020). The processes that contribute to aging and the
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development of age‐associated diseases comprise DNA damage,

oxidative stress, alterations in the cell redox system, glycation events,

and apoptosis (Franzke et al., 2015; Hegab et al., 2012; Luevano‐

Contreras & Chapman‐Novakofski, 2010; Simon et al., 2000). In spite

of many theories of aging, as yet none has been able to fully explain

the mechanisms that drive its main processes. Among the experi-

mental models of aging, long‐term D‐galactose (D‐Gal) exposure is the

most similar to natural aging (Azman & Zakaria, 2019). This phe-

nomenon is not related to the galactosemia condition. In fact, D‐Gal is

a reducing sugar, whose abnormally increased levels can be con-

verted into D‐galacto‐exodialdose and hydroperoxide by the ga-

lactose oxidase enzyme, thus resulting in the generation of reactive

oxygen species (ROS) and oxidative stress. Alternatively, D‐Gal can

initiate nonenzymatic glycation reactions with free amino acid groups

to form advanced glycation endproducts (AGEs) (Luevano‐Contreras

& Chapman‐Novakofski, 2010). Among the many cellular models

used to investigate the biochemical alterations during aging, as well

as the impact of oxidative stress, erythrocytes offer key advantages

(Aminoff et al., 1992; Pandey & Rizvi, 2010). Red blood cells play vital

roles in many physiological and metabolic processes. The abundance

of polyunsaturated fatty acids in the cell membrane and the con-

tinuous exposure to circulating ROS make erythrocytes a primary

target of oxidative stress (Abdallah et al., 2011). In physiological

conditions, erythrocytes possess endogenous mechanisms, that is,

many antioxidant enzymes, to effectively defend against intracellular

oxidative stress (Morabito et al., 2017; Remigante et al., 2021).

However, the rate of oxidative damage may increase during patho-

logical conditions (de Franceschi et al., 2013; Pantaleo et al., 2016;

Shan et al., 2016), and an increase of oxidative stress has been linked

to a shortening of erythrocytes life span (Rizvi et al., 2011).

During natural aging, erythrocyte volume decreases with time,

and this process is accompanied by an increase in density and a

decrease in hemoglobin content. These changes are related to a loss

of plasma membrane constituents, including cholesterol and phos-

pholipids, and a progressive decrease in the mean surface area

(Buehler & Alayash, 2005). It has also been shown that aging has a

strong impact on band 3 protein (B3p) (Stevenson et al., 2017). B3p is

an integral membrane protein and acts as an anchor able to connect

the soluble cytoplasmic proteins and the components of the cytos-

keleton to the cell membrane (Arakawa et al., 2015; Reithmeier

et al., 2016). Consequently, degradation of B3p alters the link be-

tween the cytoskeleton and the lipid bilayer, thus leading to an im-

pairment of erythrocyte functionality (Koshkaryev et al., 2020). In

addition, oxidative damage induces an abnormal erythrocyte mor-

phology and increased susceptibility to osmotic and mechanical

stress, as well as alterations of ion homeostasis, which is closely re-

lated to the chloride/bicarbonate exchange activity of B3p

(Bosman, 2018; Morabito et al., 2016). In this regard, the anion

exchange capability of B3p can be estimated by measuring the up-

take of SO4
2−, which is slower and easier to detect compared to the

uptake of bicarbonate or chloride (Jennings, 1976).

Recently, erythrocytes have been considered as a valid model to

investigate the impact of oxidative damage on human health.

The anion exchange capability of B3p has been recognized as a

sensitive tool to study the effect of oxidative stress, oxidative stress‐

related diseases, and high glucose levels on membrane transport

physiology (Morabito et al., 2020; Remigante et al., 2019). On the

basis of these considerations, the hypothesis of the present study is

that aging could affect the functional role of B3p. Exposure to high D‐

Gal concentrations (25–100mmol/L) was used here for the first time

to induce erythrocyte aging. As it is widely demonstrated that aging is

associated with increased oxidative stress as well as glycation events

(Moldogazieva et al., 2019), both processes were investigated. Con-

sidering that red cells are continually exposed to oxidizing molecules

transported within the vascular system, we suggest that the B3p

assessment could be a good tool to detect the early progression of

diseases linked to aging.

2 | MATERIALS AND METHODS

2.1 | Solutions and chemicals

Chemicals were purchased from Sigma‐Aldrich. D‐Gal was freshly

prepared in H2O and diluted from a 1mmol/L stock solution.

4,4ʹ‐diisothiocyanatostilbene‐2,2ʹ‐disulfonate (DIDS) stock solution

(10mmol/L) was prepared in dimethyl sulfoxide (DMSO). Thiobarbi-

turic acid (TBA) was freshly prepared in 0.05M NaOH.

N‐ethylmaleimide (NEM) was prepared in ethanol and diluted starting

from a 310mmol/L stock solution. 5,5‐dithio‐bis‐(2‐nitrobenzoic

acid) (DTNB) stock solution (50mmol/L) was prepared in ethanol.

The specific catalase inhibitor 3‐amino‐1,2,4‐triazole (3‐AT)

(Margoliash et al., 1960), freshly prepared H2O2 and NaNO2 were

dissolved in distilled water and diluted from, respectively, 3M,

50mmol/L, and 30% w/w stock solutions. DMSO and ethanol were

previously tested on RBC at their final concentration to exclude any

damage related to the solvent.

2.2 | Erythrocyte preparation

Human whole blood was obtained from healthy volunteers, upon

informed consent, with a plasma concentration of glycated

hemoglobin (A1c) less than 5%. Blood samples, collected in tubes

containing ethylenediaminetetraacetic acid (EDTA) as an

anticoagulant, were washed three times in isotonic solution (com-

position: 145 mmol/L NaCl, 5 mmol/L 4‐(2‐hydroxyethyl)−1‐

piperazineethanesulfonic acid (HEPES), 5 mmol/L glucose; pH 7.4,

osmotic pressure: 300 mOsm/kgH2O) and centrifuged (1200g,

5 min, Thermo Fisher Scientific) to remove both plasma and buffy

coat. Subsequently, red cells were suspended at different hemato-

crit concentrations in an isotonic solution or, alternatively, in a

D‐Gal‐containing solution and directed to several experimental

tests. After each treatment, samples were subjected to SO4
2− up-

take measurement, oxidative condition assessment, Western blot

analysis, and glycated hemoglobin determination.
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2.3 | SO4
2− uptake measurement

2.3.1 | Control condition

SO4
2− uptake through B3p was detected as described elsewhere

(Romano & Passow, 1984; Romano et al., 1998). After washing, red

cell samples were suspended to 3% hematocrit and addressed to

control conditions assessment. Successively, red cells were sus-

pended in 35 ml of an SO4
2−‐containing isotonic solution hence-

forth referred to as SO4
2− medium (composition: Na2SO4

118 mmol/L, HEPES 10 mmol/L, glucose 5 mmol/L, pH 7.4, os-

motic pressure 300 mOsm/kgH2O) and incubated at 25°C. At

specific time intervals (5, 10, 15, 30, 45, 60, 90, and 120 min), 5 ml

erythrocyte suspension was transferred in a tube containing DIDS

(10 μM) to block B3p activity (Jessen et al., 1986), and kept on ice.

After treatment with DIDS, samples were washed three times by

centrifugation (4°C, 1200g, 5 min; Thermo Fisher Scientific), re-

suspended in isotonic solution to wash SO4
2− from the external

medium, and then lysed by distilled water (1 ml). All proteins were

precipitated by treatment with perchloric acid (4% v/v). After

centrifugation (4°C, 2500g, 10 min; Thermo Fisher Scientific), the

supernatant containing SO4
2− was addressed to turbidimetric

analysis. SO4
2− precipitation was detected by mixing the following

components: 500 μl supernatant from each sample, 500 μl glycerol

(diluted in distilled water, 1:1), 1 ml 4M NaCl plus 37% hydro-

chloric acid (HCl) solution (12:1) and, finally, 500 μl 1.24M

BaCl2•2H2O. Then, the absorbance of samples was measured at

425 nm using a spectrophotometer (BioPhotometer Plus; Eppen-

dorf). A calibrated standard curve, obtained by precipitating known

SO4
2− concentrations, was used to convert the absorbance to

[SO4
2−] L cells × 10−2. Moreover, the rate constant of SO4

2− uptake

(min−1) was estimated by the following equation: Ct = C∞

(1 − e−rt) + C0, where Ct, C∞, and C0 stand for the intracellular

SO4
2− concentrations at time t, 0, and ∞, respectively, e is Neper

number (2.7182818), r is the rate constant accounting for the

process velocity, and t is the time of each sample withdrawal. The

rate constant represents the inverse of the time needed to achieve

~63% of final SO4
2− intracellular concentration (Romano

et al., 1998) and [SO4
2−] L cells × 10−2 reported in figures stands

for SO4
2− micromolar concentration trapped by 5 ml red cells (3%

hematocrit).

2.3.2 | D‐Gal‐treated erythrocytes

Once washed and suspended to 3% hematocrit and after 24 h in-

cubation at different D‐Gal concentrations added to the isotonic

solution (25, 35, 50, and 100 mmol/L, at 25°C), red cell samples

were further washed and centrifuged (4°C, 1200g, 5 min; Thermo

Fisher Scientific) to substitute the supernatant with SO4
2− med-

ium. The rate constant of SO4
2− uptake was successively de-

termined according to what was described for the control

condition.

2.4 | Thiobarbituric‐acid‐reactive substances
(TBARS) levels measurement

TBARS result from the reaction between thiobarbituric acid (TBA)

and malondialdehyde, the end product of lipid peroxidation (Almroth

et al., 2005). To test whether D‐Gal induced oxidative damage at the

lipid level, the protocol proposed by Mendanha et al. (2012) was

performed, with slight modifications. Briefly, after D‐Gal incubation at

different concentrations (25, 35, 50, and 100mmol/L), red cells were

centrifuged (1200g, 5 min; Thermo Fisher Scientific) and suspended

at 20% hematocrit. 1.5ml of red cells were treated with 10% (w/v)

trichloroacetic acid. Next, red cell samples were centrifuged (3000g,

10min; Thermo Fisher Scientific) and 1ml of TBA (1% in 0.05M

NaOH) was added to the supernatant. The mixture was heated and

kept at 95°C for 30min. Finally, TBARS levels were obtained by

subtracting 20% of the absorbance at 453 nm from the absorbance at

532 nm (BioPhotometer Plus; Eppendorf). In parallel, some ery-

throcyte samples were incubated with 10mmol/L H₂O₂, for 1 h at

25°C (positive control), as this compound is known to induce a strong

lipid peroxidative effect (Sokolowska et al., 1999). Results are in-

dicated as μM TBARS levels (1.56 × 105M−1 cm−1 molar extinction

coefficient).

2.5 | Membrane sulfhydryl (–SH) group content
measurement

Measurement of –SH groups was performed according to Aksenov

and Markesbery (2001), with some modifications. Shortly, after

24 h of incubation in D‐Gal‐containing solutions, red cell samples

(100 μl) were centrifuged (1200g, 5 min; Thermo Fisher Scientific)

and resuspended to 35% hematocrit. One milliliter of distilled water

was added, and a 50‐μl aliquot of this mixture was diluted in 1ml of

phosphate‐buffered saline (pH 7.4) containing 1mmol/L EDTA.

Thirty microliters of 10mmol/L DTNB were added to start the re-

action and the samples were incubated for 30min in a dark room at

25°C. Control samples, without proteins or DTNB, were simulta-

neously handled. After a 30min incubation at 25°C, samples were

spectrophotometrically measured at 412 nm (BioPhotometer Plus;

Eppendorf), and TNB levels were determined by comparison to blank

(DTNB absorbance). Incubation with 2mmol/L NEM for 1 h at 25°C

(positive control) was used to obtain complete oxidation of mem-

brane –SH group (Morabito et al., 2015, 2016). Results are reported

as μM TNB/mg protein and data were normalized to protein content.

2.6 | Preparation of erythrocyte membranes

Erythrocyte membrane preparation was detected as described by

other authors (Pantaleo et al., 2016), with slight modifications.

Briefly, after incubation with D‐Gal, packed red cells were diluted into

1.5ml of cold hemolysis solution (2.5 mM NaH2PO4) added with a

cocktail of protease inhibitors (1 mmol/L phenylmethylsulfonyl
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fluoride, 1mmol/L NaF, and 1mmol/L Na3VO4). Samples were cen-

trifuged several times (18,000g, 10 min, 4°C; Eppendorf) to remove

hemoglobin. The membranes obtained were solubilized by 1% (v/v)

sodium dodecyl sulfate (SDS) and kept on ice for 20min. After cen-

trifugation (13,000g, 30min, at 4°C; Eppendorf), the supernatant

containing the solubilized membrane proteins was stored at −80°C

and used for determination of protein content (Bradford, 1976).

2.6.1 | SDS‐polyacrylamide gel electrophoresis
(PAGE) preparation and Western blot analysis

Membrane proteins were solubilized in Laemmli buffer

(Laemmli, 1970) in a volume ratio of 1:1 and kept at 95°C for 10min.

The protein samples (20 μl) were separated by 7.5% (w/v) SDS‐PAGE

and transferred to polyvinylidene fluoride membrane by applying a

constant voltage (75 V) at 4°C for 2 h. Membranes were blocked in

5% bovine serum albumin diluted in Tris‐buffered saline (composi-

tion: 150mmol/L NaCl and 15mmol/L Tris‐HCl) containing 0.1%

(v/v) Tween‐20 (TBST) for 1 h at room temperature, and incubated

overnight at 4°C with a monoclonal anti‐B3p antibody (B9277;

Sigma‐Aldrich), produced in mouse and diluted 1:5000 in TBST.

Successively, membranes were incubated for 1 h at room tempera-

ture with peroxidase‐conjugated goat anti‐mouse immunoglobulin G

secondary antibodies (A9044; Sigma‐Aldrich), diluted 1:10,000 in

TBST. To confirm the presence of equal amounts of proteins, a

mouse monoclonal anti‐actin antibody (A1978; Sigma‐Aldrich) diluted

1:1000 in TBST, was incubated with the same membrane, according

to Yeung and Stanley (2009). A chemiluminescence detection system

(Super Signal West Pico Chemiluminescent Substrate; Pierce Thermo

Scientific) was employed to detect signals, and the images were im-

ported to analysis software (v2003; ImageQuant TL). The intensity of

the corresponding protein bands was determined by densitometry

(ChemiDoc™ XRS+; Bio‐Rad).

2.7 | Determination of methemoglobin (MetHb)
levels

MetHb levels were determined as reported by Naoum & Magaly da

Silva (2004), with slight modifications. The proposed assay is based

on MetHb and (oxy)‐hemoglobin (Hb) determination by spectro-

photometry at two specific wavelengths, 630 and 540 nm, respec-

tively. After incubation in D‐Gal, 25 μl of erythrocytes at 35%

hematocrit were lysed in 1975 μl hypotonic buffer (composition:

2.5 mmol/L NaH2PO4, pH 7.4; 4°C). Then, samples were centrifuged

(13,000g, 15 min, 4°C; Eppendorf) to eliminate membranes. The ab-

sorbance of the supernatant was measured (BioPhotometer Plus;

Eppendorf). Incubation with 4mmol/L NaNO2 (for 1 h at 25°C), a

well‐known MetHb‐forming agent, was used to obtain complete Hb

oxidation (Zavodnik et al., 1999). MetHb percentage (%) was

determined as follows: % MetHb = (OD630/OD540) × 100 (OD is

optical density).

2.8 | Measurement of glycated Hb (%A1c)

The glycated Hb content (%A1c) was determined with the A1c

liquidirect reagent as previously described by Sompong et al. (2015),

with slight modifications. Briefly, after incubation with D‐Gal samples

were lysed in hypotonic buffer and then incubated with latex reagent

at 37°C for 5min. The samples were spectrophotometrically mea-

sured at 610 nm (BioPhotometer Plus; Eppendorf). The A1c content,

expressed as a percentage, was calculated from a standard curve

constructed by using known A1c concentrations.

2.9 | Measurement of reduced glutathione (GSH)
content

GSH levels were assayed according to Giustarini et al. (2013), with

slight modifications. This assay is based on the oxidation of GSH by

Ellman's reagent DTNB, which produces oxidized glutathione

(GSSG) and 3‐thio‐2‐nitro‐benzoic acid (TNB), absorbing at a wa-

velength of 412 nm. After incubation with D‐Gal, the content of

GSH was measured by Cayman's GSH assay kit by an enzymatic

recycling method with glutathione reductase (Teti et al., 2005). The

amount of GSSG was calculated by the following formula: 1/2

GSSG = GSHtotal −GSHreduced. Results are expressed as a GSH/

GSSG ratio (Morabito et al., 2020).

2.10 | Experimental data and statistics

Data are represented as arithmetic means ± SEM. For statistical

analysis and graphics, GraphPad Prism (version 6.0; Windows)

and Excel (Windows; Microsoft) software were used. Significant

differences between mean values were determined by one‐way

analysis of variance, followed by Dunnet's multiple comparison

posttest. Statistically significant differences were determined at

*p < 0.05, **p < 0.01, ***p < 0.001; N corresponds to the number of

independent measurements.

3 | RESULTS

3.1 | SO4
2− uptake measurement

Figure 1 illustrates SO4
2− uptake as a function of time in untreated

(control) and 25, 35, 50, or 100 mmol/L D‐Gal‐treated erythrocytes,

after 24 h of incubation. In control conditions, SO4
2− uptake pro-

gressively increased and reached equilibrium within 45 min (rate

constant of SO4
2− uptake = 0.050 ± 0.001 min−1). The rate constant

in 25 mmol/L D‐Gal (0.067 ± 0.001min−1) was slightly, but sig-

nificantly different with respect to control (*p < 0.05). Similarly, in

35, 50, or 100mmol/L D‐Gal‐treated erythrocytes, the rate constant

was significantly higher than control (Table 1). SO4
2− uptake was

almost completely blocked by 10 μmol/L DIDS, applied at the
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beginning of incubation in SO4
2− medium (0.017 ± 0.001 min−1,

***p < 0.001, Table 1), consistent with an uptake via B3p. More

importantly than the rate constant per se, SO4
2− amounts inter-

nalized at 45 min by D‐Gal‐treated erythrocytes were progressively

smaller with increasing D‐Gal concentration (Table 1) (***p < 0.001,

Table 1). In DIDS‐treated cells, intracellular SO4
2− amount after

45 min of incubation in SO4
2− medium (4.86 ± 5.50) was significantly

lower than that determined in both control or in D‐Gal‐treated er-

ythrocytes (***p < 0.001, Table 1).

3.2 | TBARS levels

TBARS levels measured in D‐Gal‐treated erythrocytes after 24 h in-

cubation are reported in Figure 2. After treatment with 25mmol/L

D‐Gal, TBARS levels were not significantly different with respect to

those of untreated red cells. In erythrocytes treated with 35, 50, or

100mmol/L D‐Gal and in erythrocytes treated with 50mmol/L

3‐AT + 10mmol/L H2O2 (positive control), TBARS levels were sig-

nificantly higher than those measured in untreated erythrocytes.

These findings suggest that strong oxidation of membrane lipids

occurred.

3.3 | Membrane –SH group content measurement

Figure 3 shows the membrane –SH group content (μmol/L TNB/μg

protein) of red cells treated with the oxidizing compound NEM

F IGURE 1 Time course of SO4
2− uptake in untreated (control,

N = 12) and D‐Gal (D‐galactose)‐treated erythrocytes (N = 7) and in the
presence of 10 μmol/L DIDS (4,4ʹ‐diisothiocyanatostilbene‐2,2ʹ‐
disulfonate) (n = 5). *p < 0.05 and ***p < 0.001 versus control, as
determined by one‐way analysis of variance followed by Dunnett's
multiple comparisons posthoc test

TABLE 1 Rate constant of
SO4

2− uptake and amount of
SO4

2− trapped in untreated (control) and
in D‐Gal‐treated erythrocytes

Rate constant (min−1)
Time
(min) N

SO4
2− amount trapped after

45min of incubation in SO4
2−

medium [SO4
2−] L cells × 10−2

Untreated (control) 0.050 ± 0.001 19.86 12 380.85 ± 15.19

25mmol/L D‐Gal 0.067 ± 0.001* 14.79 7 342.35 ± 35.64*

35mmol/L D‐Gal 0.075 ± 0.001*** 13.22 7 264.85 ± 37.24***

50mmol/L D‐Gal 0.063 ± 0.001*** 15.67 7 244.35 ± 21.90***

100mmol/L D‐Gal 0.071 ± 0.001*** 13.60 7 241.35 ± 16.43***

10 μmol/L DIDS 0.017 ± 0.001*** 58.82 5 4.86 ± 5.50***

Note: Data are presented as means ± SEM from separate experiments (N), where *p < 0.05 and
***p < 0.001 versus control, as determined by one‐way analysis of variance followed by Dunnett's
multiple comparisons posthoc test.

Abbreviations: DIDS, 4,4ʹ‐diisothiocyanatostilbene‐2,2ʹ‐disulfonate; D‐Gal, D‐galactose.

F IGURE 2 TBARS levels (μ mmol/L) in untreated erythrocytes
(control) and in erythrocytes treated for 24 h with
D‐Gal or alternatively with 50mmol/L 3‐AT (preincubation for
10min) + 10mmol/L H2O2 for 1 h. D‐Gal, D‐Galactose; ns, not
significant versus untreated; TBARS, thiobarbituric‐acid‐reactive
substances. *p < 0.05 and ***p < 0.001 versus control, as determined
by one‐way analysis of variance followed by Dunnett's multiple
comparisons posthoc test (N = 7)
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(2 mmol/L) for 1 h or increasing concentrations of D‐Gal for 24 h. As

expected, exposure to NEM led to a significant reduction in mem-

brane –SH group content. Membrane –SH group in 25mmol/L D‐Gal‐

treated erythrocytes were not significantly different with respect to

control (untreated erythrocytes). Conversely, in 35, 50, and

100mmol/L D‐Gal‐treated erythrocytes, membrane –SH group

abundance was significantly reduced when compared to that mea-

sured in control conditions, thus denoting that strong oxidation of

cellular proteins occurred.

3.4 | B3p expression levels

Figure 4 shows B3p expression levels in erythrocytes incubated with

increasing concentrations of D‐Gal for 24 h. B3p expression levels

were not significantly different with respect to those determined in

control erythrocytes.

3.5 | MetHb level

Figure 5 shows MetHb levels (% MetHb) in red cells treated with

the well‐known MetHb‐forming agent NaNO2 (4 mmol/L) for 1 h,

or different D‐Gal concentrations for 24 h. As expected, after

exposure to NaNO2, MetHb levels (%) were significantly higher

than those measured in untreated erythrocytes (control).

In contrast, following treatment with D‐Gal, MetHb levels were

not significantly different with respect to those detected in

control.

3.6 | Glycated Hb levels

Figure 6 shows the glycated Hb levels (% A1c) measured in erythrocytes

treated with increasing concentrations of D‐Gal for 24 h. The %A1c

levels measured following D‐Gal exposure were significantly increased

with respect to those of the control (untreated erythrocytes).

3.7 | GSH/GSSG ratio measurement

Figure 7 shows the GSH/GSSG ratio measured in D‐Gal‐treated er-

ythrocytes. The GSH/GSSG ratio measured after a 24 h incubation

with D‐Gal was significantly lower with respect to that detected in

F IGURE 3 Membrane sulfhydryl group content (μmol TNB/μg
protein) in untreated erythrocytes (control) and in erythrocytes
treated with D‐Gal for 24 h or NEM for 1 h. D‐Gal, D‐Galactose;
NEM, N‐ethylmaleimide; ns, not significant versus control; TNB,
3‐thio‐2‐nitro‐benzoic acid. ***p < 0.001 versus control, as
determined by one‐way analysis of variance followed by Dunnett's
multiple comparisons posthoc test (N = 6)

F IGURE 4 Band 3 protein expression levels measured in
untreated (control) and in 25, 35, 50, and 100mol/L D‐Gal
(D‐galactose)‐treated (24 h) erythrocytes, detected by Western blot
analysis. ns, not significant versus untreated (control), as determined
by one‐way analysis of variance followed by Dunnett's multiple
comparisons posthoc test (N = 5)

F IGURE 5 Methemoglobin (MetHb) levels (%) measured in
untreated erythrocytes (control) and in erythrocytes treated with
D‐Gal (D‐galactose) for 24 h or 4mmol/L NaNO2 for 1 h. ns, not
significant versus control and 4mmol/L NaNO2. ***p < 0.001 versus
control as determined by one‐way analysis of variance followed by
Dunnett's multiple comparisons posthoc test (N = 8)
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control erythrocytes. This effect can be associated with an increased

GSSG abundance and/or decreased GSH concentration, both in-

dicative of cellular oxidative stress.

4 | DISCUSSION

Aging is a natural phenomenon that occurs in all cells, tissues, and

organs of the body (Wagner et al., 2016). Several studies suggest that

chronic administration of D‐Gal is an appropriate model to study the

effects of aging on human health (Azman & Zakaria, 2019; Park

et al., 2020). It has been widely demonstrated that aging is mediated

by oxidative and glycation events, potential conformational changes

in protein structure, increased cell density, and reduced cell volume

(Ansari & Dash, 2013; Bo‐Htay et al., 2018). All of these factors can

also contribute to inducing biochemical, physical, and structural al-

terations in red blood cells, with specific regard to B3p (Stevenson

et al., 2017). However, the effects of high concentrations of D‐Gal on

human erythrocytes and the use of erythrocytes as a model of aging

are still poorly investigated. Erythrocytes are peculiar cells lacking a

nucleus but equipped with “high‐performance” proteins ensuring

their homeostasis in oxygenated/deoxygenated medium and, in turn,

body survival. Among erythrocyte proteins, the anion exchanger

B3p involved in oxygen transport, ion balance, and cell shape main-

tenance has received the attention of researchers for years, mostly to

monitor the impact of oxidative conditions on these cells (Matte

et al., 2014; Pantaleo et al., 2016; Remigante et al., 2019). The pre-

sent study focused on B3p function after D‐Gal treatment. In parti-

cular, the purpose was to investigate the impact of D‐Gal‐induced

aging on one of the B3p functions, that is, the anion exchange cap-

ability, and in parallel to verify the potential mechanisms linked to

aging through which high D‐Gal doses could affect this function.

The first aim was to measure the SO4
2− uptake through B3p

(Morabito et al., 2016) after a 24‐h treatment with increasing con-

centrations (25, 35, 50, and 100mmol/L) of D‐Gal. In these experi-

mental conditions, the rate constant for SO4
2− uptake was

accelerated and, in parallel, SO4
2− uptake was significantly reduced

(Figure 1 and Table 1). This finding appears to be in disagreement

with what was reported by our group in a recent study (Remigante

et al., 2020), where the exposure of erythrocytes to 10mmol/L D‐Gal

for 24 h has been observed to induce a reduction (0.051 ± 0.001 in

19.60min) of the rate constant for SO4
2− uptake, not accompanied

by lipid peroxidation, oxidation of –SH membrane groups, alteration

of GSH/GSSG ratio, or MetHb formation (Remigante et al., 2020).

Therefore, it is not surprising that this different effect on the SO4
2−

transport kinetics observed in the present study could be most likely

linked to other mechanisms than oxidative stress, putatively glycated

Hb formation.

The evidence that B3p exhibits modifications in the rate constant

for SO4
2− uptake following exposure of human erythrocytes to oxidative

stress has been already demonstrated. In particular, H2O2‐induced

oxidative stress provoked a reduction in the rate constant for SO4
2−

uptake (Morabito et al., 2016), whereas treatment with high glucose

induced an acceleration of anion exchange (Morabito et al., 2020).

Therefore, it is tempting to speculate that such a two‐sided effect on

anion exchange velocity depends on the specific structure targeted by

the stressors and on the possible underlying pathways.

Similar to what was performed in the previous investigation

(Remigante et al., 2020) and to better explain the altered functional

mechanism observed in the present experiments, lipid peroxidation

and oxidation of membrane –SH groups, mainly belonging to B3p

(Roy et al., 2005) have been evaluated. In these conditions, the use of

35, 50, and 100mmol/L D‐Gal produced significant oxidation of both

F IGURE 6 Glycated hemoglobin content (% A1c) in erythrocytes
incubated for 24 h with different D‐Gal (D‐galactose) concentrations
(25, 35, 50, and 100mmol/L). **p < 0.01 and ***p < 0.001 versus
untreated (control), as determined by one‐way analysis of variuance
followed by Dunnett's multiple comparisons posthoc test (N = 10)

F IGURE 7 Estimation of the GSH/GSSG ratio measured in
erythrocytes incubated for 24 h with different concentrations (25, 35,
50, and 100mmol/L) of D‐Gal (D‐galactose). GSH, reduced glutathione;
GSSG, oxidized glutathione. ***p < 0.001 versus untreated (control)
erythrocytes, determined by one‐way analysis of variance followed by
Dunnett's multiple comparisons posthoc test (N = 8)
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lipids, and sulphydryl groups (Figures 2 and 3) of membrane proteins,

mainly belonging to B3p, present in one million copies upon ery-

throcytes membrane (Reithmeier et al., 2016). On the contrary,

25mmol/L D‐Gal dose was not sufficient to induce substantial oxi-

dative change on erythrocytes membrane, though able to cause a

functional alteration of B3p, demonstrating an increased rate of anion

exchange but reduced SO4
2− uptake. Importantly, higher D‐Gal con-

centrations (35, 50, and 100mmol/L) produced consistent effects,

including increased TBARS and decreased total antioxidant capacity,

similar to what has been observed in vitro/vivo aging models (Azman

& Zakaria, 2019). These findings suggest that 25mmol/L D‐Gal re-

presents a threshold value for differential effects on B3p. Following

10mmol/L D‐Gal treatment, the SO4
2− uptake rate was slowed,

possibly due to A1c formation (Remigante et al., 2020), while in-

creasing D‐Gal concentration to or above 25mmol/L, the impact on

B3p function is likely mediated by oxidative stress on a lipid and

protein level.

On the basis of our results, we suggest that this in vitro model of

aging induced by the D‐Gal application may give the chance to study

the impact of aging at early stages, as revealed by the mechanism

through which B3p transport efficiency is affected. The present in

vitro model of aging shows that B3p efficiency is affected by the

contribution of slight oxidative events, putatively targeting Hb.

However, the involvement of oxidative stress in B3p alterations after

D‐Gal treatment should not be excluded at all, as quercetin, an anti-

oxidant interacting with cell membranes (Sangai et al., 2018), used in

preliminary experiments (not shown), is able to bring the rate con-

stant back to the control values. The involvement of Hb glycation and

oxidative stress in B3p anion exchange acceleration is more clear

when higher D‐Gal concentrations are used.

To better clarify the behavior of B3p after D‐Gal treatment in

human red cells, B3p expression levels have also been determined

(Figure 4). No change in the protein expression level was detected.

This result, once again, shows that the anion exchange capability

through B3p could depend on TBARS levels, alteration in the oxida-

tive state on membrane proteins, and intracellular changes. Our

previous studies reported a crosslink between B3p and Hb reflecting

on the efficiency of anion exchange (Morabito et al., 2020). The af-

finity between Hb and B3p is characterized by a specific mechanism,

where the affinity of Hb for B3p is higher than that of deoxyHb,

which is the predominant form of Hb in blood microcirculation. A

partial Hb oxygenation dramatically increases the rate of Hb auto-

xidation. This oxidizing event can damage B3p and erythrocytes

membrane (Rifkind & Nagababu, 2013). The denaturation of Hb

(MetHb) in the late stage of aging produces hemichromes, which have

a much higher affinity for the erythrocyte membrane, thus producing

an irreversible cross‐linking involving both B3p and spectrin (Ferru

et al., 2011). This binding breaks the interaction between B3p and

cytoskeletal proteins (ankyrin and spectrin) and triggers B3p clus-

tering. B3p clustering increases the binding of IgG, which contributes

to the removal of erythrocytes by macrophages (Ferru et al., 2011;

Shimo et al., 2015). In this regard, although red cells have a life span

of 120 ± 20 days in blood flow, the increased oxidative stress,

involved in aging mechanisms, targets erythrocyte plasma membrane

proteins and lipids, and Hb, thus altering physiological functions and

reducing their life span.

In this respect, the % MetHb assay demonstrated that 24 h of

incubation with D‐Gal (25, 35, 50, and 100mmol/L) were not suffi-

cient to induce the formation of detectable amounts of MetHb

(Figure 5), while the % A1c assay showed increased glycated Hb

levels (Figure 6). Therefore, in the present experimental model, A1c

probably does not induce hemichromes formation or B3p clustering,

but alters its cross‐link with B3p, thus leading to partial damage on

anion exchange capability, as demonstrated by altered SO4
2− uptake

and unchanged B3p expression levels. This result is in line with what

already demonstrated by Arashiki et al. (2013), showing that both

oxidative damage and clustering of B3p on the plasma membrane

have been involved in the removal of senescent human erythrocytes

from the systemic circulation at the end of their 120‐day life span. In

this regard, both membrane peroxidation and MetHb formation were

necessary for B3p clustering.

As the clustering between MetHb and B3p represents the final

product of aging, which leads to erythrocytes death, and was not

detected in our model, we suggest for the first time that the use of

high (>25mmol/L) D‐Gal concentrations might be useful to obtain a

model of early aging. Furthermore, the presence of higher glycated

Hb levels due to D‐Gal treatment reveals the formation of AGEs.

These results show that oxidative stress on the erythrocyte mem-

brane, in addition to Hb glycation, is responsible for B3p function

alterations in this experimental model.

Finally, to understand how oxidative stress could affect the anion

exchange capability of B3p, the endogenous antioxidant system,

namely intracellular GSH, has been evaluated. The GSH/GSSG ratio

after D‐Gal treatment was lower than in untreated erythrocytes,

demonstrating that the antioxidant system in human erythrocytes

was also altered. This result confirms that high D‐Gal concentrations

have a direct effect on erythrocytes membrane and affect in-

tracellular components, that is, antioxidant system in addition to Hb.

In this regard, a recent study performed in rats reports a significant

age‐related reduction in GSH levels in the brain, associated with an

increase in GSH oxidation to GSSG and a decrease in the GSH/GSSG

ratio (Rusu et al., 2020). In agreement with the authors, we confirm

that intracellular GSH plays a pivotal role against oxidative stress in

human red cells after changes induced by age‐related phenomena.

5 | CONCLUSION

Though B3p clustering has been not investigated in the present study,

an impact of early aging on erythrocytes, detected by determining

B3p anion exchange capability along with glycation and oxidative

events, can be recognized. Following exposure to 25mmol/L D‐Gal,

anion exchange capability is accelerated and associated with glycation

of Hb, and in addition alteration of endogenous antioxidant system.

By further increasing D‐Gal concentrations, SO4
2− uptake trapped

amount is decreased, associated not only with glycation of Hb but also
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with significantly increased oxidative conditions. This means that the

measurement of anion exchange capability is a sensitive tool to detect

the early impact of aging on red cells. On this basis, we may conclude

that: (i) D‐Gal (25, 35, 50, and 100mmol/L) induces early aging in

human erythrocytes; (ii) in the experimental model of aging induced

by D‐Gal, B3p function is accelerated; (iii) D‐Gal exposure produces

substantial changes on Hb and the antioxidant system; (iv) the effect

of aging, mimicked by increasing D‐Gal concentrations, proceeds

through steps, first involving Hb glycation and then oxidative events

at the membrane level.

In this light, B3p could be considered as a potential target of

antioxidant molecules to counteract aging‐related disturbances. Fu-

ture experiments are needed to elucidate the signaling underlying

anion exchange acceleration after D‐Gal treatment, such as the in-

teraction between B3p and cytoskeletal proteins (ankirin and spec-

trin) and their potential post‐translation modifications.
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