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a b s t r a c t

Tumor heterogeneity remains a major challenge for disease subtyping, risk stratification, and accurate 
clinical management. Exosome-based liquid biopsy can effectively overcome the limitations of tissue 
biopsy, achieving minimal invasion, multi-point dynamic monitoring, and good prognosis assessment, and 
has broad clinical prospects. However, there is still lacking comprehensive analysis of tumor-derived exo-
some (TDE)-based stratification of risk patients and prognostic assessment for breast cancer with sys-
tematic dissection of biological heterogeneity. In this study, the robust corroborative analysis for biomarker 
discovery (RCABD) strategy was used for the identification of exosome molecules, differential expression 
verification, risk prediction modeling, heterogenous dissection with multi-ome (6101 molecules), our 
ExoBCD database (306 molecules), and 53 independent studies (481 molecules). Our results showed that a 
10-molecule exosome-derived signature (exoSIG) could successfully fulfill breast cancer risk stratification, 
making it a novel and accurate exosome prognostic indicator (Cox P = 9.9E-04, HR = 3.3, 95% CI 1.6–6.8). 
Interestingly, HLA-DQB2 and COL17A1, closely related to tumor metastasis, achieved high performance in 
prognosis prediction (86.35% contribution) and accuracy (Log-rank P = 0.028, AUC = 85.42%). With the 
combined information of patient age and tumor stage, they formed a bimolecular risk signature (Clinmin- 
exoSIG) and a convenient nomogram as operable tools for clinical applications. In conclusion, as an ex-
tension of ExoBCD, this study conducted systematic analyses to identify prognostic multi-molecular panel 
and risk signature, stratify patients and dissect biological heterogeneity based on breast cancer exosomes 
from a multi-omics perspective. Our results provide an important reference for in-depth exploration of the 
"biological heterogeneity - risk stratification - prognosis prediction".

© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/).

1. Introduction

Breast cancer (BC) is the most common cancer with a high in-
cidence rate and the leading cause of death in women [1]. Its spatio- 
temporal heterogeneity at the molecular level is an important factor 
in cancer cell metastasis, drug resistance, recurrence, and poor 
prognosis after treatment [2–5]. Therefore, an in-depth 

understanding of the heterogeneity will greatly benefit accurate 
clinical management and therapeutic decision-making [6].

Currently, many studies have been conducted to identify risk 
factors and prognosis-related subtype-specific genes in terms of 
genomic alterations, gene expression, and tumor microenvironment 
through tissue biopsy, which realizes the tumor grade diagnosis and 
the risk assessment of patients. Based on the expression profiles 
(microarray data) of 8102 genes, Perou et al. first classified breast 
cancer into Luminal, HER2+, Basal-like, and normal-like types [7]. In 
2003, Sorlie et al. subdivided the Luminal type into Luminal A and 
Luminal B subtypes [8]. In 2009, Parker et al. discovered an array of 
50 genes for rapid differentiation of five types of breast cancer and 
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Fig. 1. Schematic diagram of this study. (A) Integration of multi-omics data and differential expression analysis. (i) Integration of data from literatures and databases (ExoBCD, 
GEO, and PRIDE). (ii)Differential expression analysis of 6010 differential exoMols. (B) Key exoMols screening based on the RCABD strategy. (i) Identification of hub exo-RNAs or 
exo-proteins was performed based on the PPI network, miRNA-mRNA network, and lncRNA regulation network. (ii) Functional enrichment analysis of 373 key exoMols. (C) 
Exosome-derived prognostic signature (exoSIG) established by survival analysis, tissue-exosome expression filtration, and LASSO analysis. (D) Multi-dimensional heterogeneity 
analysis of risk patients.
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named it PAM 50 [9]. In 2017, triple-negative breast cancer (TNBC) 
was divided into basal-like immunosuppressive, im-
munomodulatory, mesenchymal, and androgen-dependent subtypes 
[10]. Although the molecular typing of breast cancer has con-
tinuously improved with the development of high-throughput se-
quencing technology, its classification is still controversial.

The deficiencies of tissue biopsy are barriers to accurate mole-
cular stratification and disease typing of heterogeneous tumors. 
Tissue biopsy cannot achieve multi-point, real-time, and repeated 
sampling, which inevitably leads to sampling and detection bias, 
resulting in changes in heterogeneity and the ineffective character-
ization of tumors [11,12]. Ultimately, it affects the accuracy of the at- 
risk patient classification and prognostic assessment, leading to in-
appropriate treatment or wrong treatment decisions. Fortunately, 
tumor liquid biopsy technologies, such as the detection of circulating 
tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-de-
rived exosomes (TDEs), have been developed as a novel diagnostic 
method to monitor tumor progression in a non-invasive manner 
[13–15]. Compared to CTCs and ctDNA, TDEs are more abundant, 
stable and provide a higher level of information, as they contain 
proteins, nucleotides, lipids, oligosaccharides and metabolites 
[16,17]. These biomarkers on exosomes can reflect the physiological 
state and disease progression of their source cells. Therefore, TDEs 
can generate molecular profiles of heterogeneous tumors regarding 
transcriptomic, genetic, and proteomic useful for diagnosis, dynamic 
monitoring, risk stratification, and prognostic evaluation [18,19]. And 
a comprehensive understanding of tumor heterogeneity in a biolo-
gical context and its clinical application value based on TDEs will 
contribute to better management of BC patients to improve treat-
ment response and prognosis.

Presently, some studies have focused on the identification of 
molecular biomarkers in BC exosomes for diagnosis and prognosis 
[20]. Stevic et al. found that the HER2+ and TNBC patients had their 
own distinct exosomal miRNA expression profiles and specifically 
dysregulated exosomal miRNA networks [21]. 18 exo-miRNAs with 
diagnostic or prognostic value were identified, of which miR-155 and 
miR-301 showed excellent prognostic effects on pathological re-
gression. Recent studies have revealed that aberrant miRNA ex-
pressions are closely associated with genomic instability (GI), such 
as genomic amplification or deletion, chromosomal translocation, 
microsatellite instability, high mutation level, and other GI events. 
Bao et al. identified three GI-derived signatures (miGISig) (miR-421, 
miR-128–1, and miR-128–2) through a comprehensive analysis of 
genome-wide miRNA expression profiles and somatic mutations of 
plasma exosomes, which enables early detection and prognostic risk 
stratification with minimal invasion for breast cancer [22]. Moreover, 
some other combined proteins located on the surface of or within 
exosomes, such as CD63 and miR-21 [23], endothelial locus-1 protein 
(Del-1) and fibronectin [24,25], EpCAM and CD24 [26], as well as 
tetraspanin CD9, ADAM10, heat-shock protein HSP70 and Annexin-1 
[27], could be detected as cancer biomarkers in serum, urine or 
pleural effusion-derived exosomes.

However, these non-multi-omics studies are limited to the single 
mapping of molecular profiles of TDEs and the identification of re-
levant markers for breast cancer [28]. There is still a lack of sys-
tematic analysis of stratified patients and their risk prognosis in a 
biological context of tumor heterogeneity based on exosome-derived 
factors. In particular, whether exosome-derived markers have higher 
sensitivity and specificity than traditional markers is a question we 
need to keep in mind [29]. Therefore, a robust corroborative analysis 
for biomarker discovery strategy (RCABD) was proposed to identify 
novel exosome-derived BC risk signatures. A 10-molecule panel, as 
the exosome-derived risk signature (exoSIG), was obtained based on 
RNA-seq and proteomic datasets (95 samples), 53 independent 
studies, and our ExoBCD database [30]. Our results suggest that the 
two of exosome molecules, HLA-DQB2 and COL17A1, whose 

downregulation is significantly associated with BC metastasis and 
can form a clinical minimal exoSIG (Clinmin-exoSIG) combined with 
patient age and tumor stage for accurate prognostic prediction. In 
addition, exoSIG was found to have a high performance in stratified 
risk and prognosis prediction, which was characterized and wit-
nessed by biological heterogeneities of risk patients in genomic al-
terations, functional enrichment, and immune and hypoxic 
microenvironment. In conclusion, a multi-dimensional analysis was 
carried out to identify prognostic exosome signatures, stratify risk 
patients, and characterize the BC heterogeneity. Our results provide 
a valuable reference for the in-depth exploration of the "biological 
heterogeneity - risk stratification - prognosis prediction".

2. Materials and methods

Based on our previous paradigm of the "data-driven and litera-
ture-based paradigm with corroborative analysis" [30], a multi- 
omics-based strategy and pipeline were proposed: the robust cor-
roborative analysis for biomarker discovery (RCABD). It mainly in-
cluded data collection, selection and analysis, robust molecular 
identification, machine learning-based risk model building, and 
systematic insights into the risk heterogeneity of BC patients (Fig. 1). 
The description was as follows:

2.1. Joint data-based differential expression analysis

Differentially expressed exosomal molecules (exoMols) were 
identified by integrating published results, high-throughput RNA- 
seq, and proteomic data (Fig. 1A)：(i) 481 and 306 breast cancer- 
associated exoMols were obtained from 53 independent studies 
(Table S2) and the ExoBCD database (https://exobcd.liumwei.org/ 
Download), respectively; (ii) four microarray datasets [GSE60714 
(n = 4), GSE60715 (n = 6), GSE93070 (n = 4), and GSE114329 (n = 18)], 
one RNA-seq dataset [SRP061372 (n = 8)], and one proteomic dataset 
[PXD012162 (n = 55)] of BC exosomes were retrieved from the GEO 
(http://www.ncbi.nlm.nih.gov/geo) and the PRIDE (https://www.e-
bi.ac.uk/pride) database, respectively (Table S3). After the format 
conversion, quality control, index comparison, and normalization, 
differential expression analysis was performed to identify key mo-
lecules in BC-associated exosomes.

2.2. Robust identification of key exoMols

Differentially expressed molecules were divided into key exo- 
RNAs or exo-proteins with multi-network-based analysis, including 
STRING PPI, tPOMA miRNA-mRNA, lncRNA-protein regulatory, and 
ceRNA (Fig. 1B).

2.3. Exosome-derived risk signature and risk stratification

The determination of exoSIG risk signature and the identification 
of corresponding molecule panels were realized by LASSO regression 
and multivariate Cox analysis (Fig. 1C). Risk stratification was per-
formed using the exoSIG score calculated by the following formula:

=exoSIG Coefficient Candidate Expression Candidate( )* ( )
i

i i

2.4. Insights into biological heterogeneity of risk patients

Risk grouping of breast cancer patients was performed based on 
the exoSIG score. Then, biological heterogeneities between risk pa-
tients were compared in terms of tumor mutation burden, SNP, CNV, 
enriched function, immune filtration, and hypoxia state (Fig. 1D).
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Detailed descriptions of the above processes were presented in 
Supplementary Methods. And the involved tools and sources were 
included shown in Table S1.

3. Results

3.1. Functional overview on key exoMols

A total of 373 molecules were identified as key exoMols (Table S4, 
see the Supplementary Methods for details). GO & KEGG enrichment 
analysis revealed that they were associated with receptor recogni-
tion, stimulus response, transcriptional activation, metabolism, ex-
tracellular vesicles, and cancer-related pathways (Fig. 2A). Further 
modular analysis revealed that the regulatory networks downstream 
of key exoMols were significantly diverse (Fig. 2B, Table S5). Com-
pared with exo-mRNAs (4 modules) and exo-proteins (11 modules), 
the pathways regulated by exo-miRNAs (21 modules) and exo- 
lncRNAs (38 modules) were more diverse. Further analysis revealed 
that exo-miRNAs are associated with mismatch repair and DNA 

replication. While, exo-lncRNAs are involved in the diabetes process, 
transcriptional disorder, and cancer pathways (such as the Notch and 
TGF-β signalling pathways). Exo-mRNAs are associated with endo-
crine pathways (such as insulin, renin and salivary secretion, and 
regulation of lipolysis in adipocytes). Exo-proteins are closely asso-
ciated with the regulation of "p53 signalling pathway", "fatty acid 
degradation", "valine, leucine and isoleucine degradation", and 
"alanine, aspartate and glutamate metabolism" (Fig. S1).

A pathway map consisting of 27 key exoMols was obtained by 
KEGG Mapper analysis (Fig. 2C). ADRB, GNAS, and ADCY9 are im-
portant in chemical carcinogenesis. Norepinephrine (NE)-induced 
activation of the β2 adrenergic receptor 1 (ADRB1) has been shown 
to accelerate tumor growth via activating GNAS and ADCY9. The 
binding of BMP4 can activate the TGF-β signaling pathway to reg-
ulate DNA replication. In the canonical Wnt pathway, the binding of 
Wnt protein to the Frizzled receptor (FZD5) activates the Dishvelled 
(DVL1) and regulates cell proliferation. The activated JAK-STAT 
pathway by ERBB2 can trigger angiogenesis and cell apoptosis. In 

Fig. 2. Functional analysis of 373 key exoMols. (A) GO and KEGG enrichment analysis of key exoMols. (B) Interaction network mediated by key mRNAs, miRNAs, lncRNAs, and 
proteins in exosomes. (C) Signaling pathway networks of key molecules were generated by KEGG Mapper, including 16 exo-mRNAs (blue) and 11 exo-proteins (yellow).
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addition, survival molecules, such as FLT3LG, P2RX1, COL17A1, and 
AURKA, were enriched in the PI3K-Akt signaling pathway.

4. Exosome-derived risk signature (exoSIG)

For the indicative effect of the above 373 key exoMols on patient 
survival, survival analyses were performed, and 34 key exoMols 
were identified, including four mRNAs, ten miRNAs, three lncRNAs, 
and 17 proteins (Table S6). Validated expression of 16 of 34 key 
exoMols was further analyzed to identify those highly correlated 
with patient survival based on TCGA. Subsequently, a risk signature 
panel consisting of ten molecules was obtained by LASSO regression 
analysis [31] (Table S7). Finally, the exoSIG multivariate Cox survival 
model was constructed based on the obtained panel:

= +

+

exoSIG

EXP EXP

EXP EXP EXP

EXP EXP EXP

EXP EXP

0.022* 0.001* 0.062

* 0.025* 0.012* 0.136

* 0.031* 0.011* 0.063

* 0.017*

miR p miR a p

HLA DQB P RX AURKA

RTCA LINC

_324_5 _99 _5

_ 2 2 1

01055 SLC1A5

COL17A1 C3

The Kaplan-Meyer analysis [32] showed that the above 10 mo-
lecules were all strongly associated with the overall survival (OS) in 
BC patients (Fig. S2). Among them, HLA-DQB2 was strongly asso-
ciated with the survival (Log-rank P = 0.0029, HR = 0.91, 95% CI 
0.84–0.99), then followed by COL17A1 (Log-rank P = 0.015, HR = 0.92, 
95% CI 0.87–0.97). Survival analysis based on the exoSIG score 
showed that high-risk patients had a worse survival prognosis than 
low-risk patients (discovery dataset: Log-rank P = 0.0079, HR = 2.9, 
95% CI 1.5–5.8; test set: Log-rank P = 0.011, HR = 3.1, 95% CI 1.5–6.2) 
(Fig. S2).

Univariate Cox analysis showed that exoSIG, AJCC stage, patient 
age, metastasis coded, and node coded were significantly associated 
with patient survival, among which metastasis coded had the 
highest hazard ratio (Cox P = 1.6E-07, HR = 5.9, 95% CI 3–12) (Fig. 3A). 
Multivariate Cox analysis showed that, except for node, the re-
maining four factors were significantly associated with the patient 
survival. Among them, exoSIG had the highest hazard ratio (Cox 
P = 9.9E-04, HR = 3.3, 95% CI 1.6–6.8) (Fig. 3B).

Clinical survival features of high-risk patients were worse than 
those of low-risk patients, such as estrogen-receptor (ER) status 
(Chi-square test, P  <  0.001), progesterone-receptor (PR) status (Chi- 
square test, P  <  0.001), node coded (Chi-square test, P  <  0.05), AJCC 
stage (Chi-square test, P  <  0.001), 50-gene signature (PAM50) (Chi- 
square test, P  <  0.001) and age (Student T test, P  <  0.01) (Fig. 3C). 
High-risk patients with ER-, PR-, high stage, PAM50-LumB, or 
PAM50-Basal subtypes had a higher ratio than low-risk patients 
(Fig. 3D). Concurrently, patients with ER-, PR-, high stage, PAM50- 
LumB, or PAM50-Basal subtype had higher exoSIG score (Fig. 3E).

5. Tumor risk heterogeneity in patients

5.1. Genomic changes

Higher non-synonymous tumor mutation burden (TMB) was 
found in protein-coding regions of the genome of high-risk patients 
(Fig. 4A). Seventeen of the top 25 genes with the highest mutation 
frequency (3–41%) were presented in both risk patients (Fig. 4B). 
Interestingly, the opposite frequency was observed for PIK3CA (high / 
low risk, 27% / 40%) and TP53 (high / low risk, 41% / 26%). And eight 
mutation types are shared, of which the nonsense mutation is the 
most dominant in patients, while nonstop mutation occurs in the 
GATA3 gene of the high-risk ones. SNP scanning of gene coding re-
gions revealed that C >  T mutation was common for BC patients, but 
the frequency of C >  G mutation was higher in the high-risk patients 

(Fig. 4B). Mutually exclusive mutations were detected in TP53- 
GATA3, TP53-MAP3K1, and TP53-CDH1 in both risk patients. However, 
the co-mutation of PIK3CA-MAP3K1 and PIK3CA-KMT2C was unique 
for the low- and high-risk patients, respectively (Fig. 4C). Mutations 
enriched in the DNA binding domain (Fig. 4D) of the corresponding 
protein may be an important reason for the deterioration of tumor 
suppression efficiency and the decrease in patient survival (Log-rank 
P = 0.042) (Fig. 4E).

CNV analysis showed that high-risk patients had more pro-
nounced CNV events (Fig. 4F), and copy-number amplifications were 
significantly enriched in oncogenes (MDM2, MYC, MYBL1, and ERBB2) 
and immune-related genes (CD24 and CD79B) (Fig. 4G). Deletions 
were found in tumor suppression genes (NFRSF10A/B/C/D, RB1, and 
TNFSF11) and other immune-related genes (PDCD1 and LCP1). 
Moreover, genes with significant copy number variation were also 
closely associated with many cancer-related biological processes/ 
pathways, such as mitochondrial electron transport chain (SDHC), 
histone modification (CBX2/4/8), WNT signalling pathway (FZD3, 
APC2), cell adhesion (NECTIN4, PECAM1) and lipid transport (APOA2) 
(Fig. 4G).

5.2. Differences in immune capacity and cell proliferation of risk 
patients

Gene expression analysis showed that most of the genes (top 50 
differentially expressed genes between two risk groups) were 
downregulated in the high-risk patients (Fig. 5A), including COL17A1, 
COL14A1, and MFAP4 related to extracellular matrix and SOX17, GLI1, 
TNN involved in the negative regulation of WNT signalling pathway 
(Fig. 5B). GSVA analysis showed that several immune-related terms 
were highly enriched in low-risk patients, such as dendritic cell 
apoptotic process, regulation of natural killer cell differentiation, 
MHC class II protein complex, T cell receptor complex, and immune 
receptor activity (Fig. 5C). However, cell proliferation-associated 
terms were enriched in the high-risk patients, such as mismatch 
repair and DNA replication (Fig. 5C). The result of GSEA analysis 
revealed that 14 signaling pathways were generally inhibited in 
high-risk patients, including inflammatory response, interferon- 
gamma response, and TNFA signalling via NFKB (Fig. 5D). In con-
clusion, compared with the low-risk patients, immunosuppression 
and increased cell proliferation may be important contributing fac-
tors to the poor survival outcomes.

5.3. Heterogeneity of immune infiltration and changes in the hypoxic 
microenvironment

Immune infiltration analysis showed that the proportion of 28 
types of immune cells significantly decreased in high-risk patients 
(Wilcoxon test, P  <  0.05) (Fig. 6A), suggesting that they had lower 
levels of immune cell infiltration. Notably, the immune infiltration 
level of M1 macrophages was significantly reduced in high-risk pa-
tients, while that of M0 and M2 macrophages increased (Wilcoxon 
test, P  <  0.05) (Fig. 6B & C). In addition, immune subtype analysis 
found that more low-risk patients were included in the C3 in-
flammatory subtype characterized by increased Th1/Th17 expression 
[33]. However, more high-risk patients were included in C4 lym-
phocyte-depleted subtype with low Th1 expression and high M2 
infiltration. According to tumor microenvironment subtyping stan-
dard described by Bagaev et al. [34], correspondence analysis 
showed that more high-risk patients were the immune desert sub-
types, while low-risk patients were IE/F (immune-enriched, fibrotic) 
subtypes (Fig. 6D). The ESTIMATE score also supported that the low- 
risk patients were the IE/F subtype with a higher stromal score and 
stromal cell infiltration (Fig. 6E). Hypoxia-responsive gene expres-
sion analysis revealed that high-risk patients had a higher hypoxia 
score (Fig. 6F & G, Table S8). These results strongly demonstrated the 
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negative correlation of the hypoxic microenvironment with immune 
cell infiltration.

5.4. Differential expression of immune-related molecules

Several immune chemotactic factors (CCL4, CCL5, CXCR3, CXCL9, 
and CXCL10) [35] have been studied to understand the differences in 
immune infiltration-related molecules among risk patients. The re-
sults showed that their expression significantly decreased in the 
high-risk patients compared with the low-risk ones (Fig. 6H). There 
were, however, significant increases of expression of five immune 
checkpoint genes (CTLA4, LAG3, PDCD1, CD274, and TIGIT) [36] in 
low-risk patients (Fig. 6I). And a significant up-regulation of T cell 
dysfunction-associated genes (TGFB1 and SERPINB9) and a significant 
down-regulation of CCDC43 and TRIT1 [37] were also observed 
(Fig. 6 J). In addition, tumor immune dysfunction and exclusion 
(TIDE) score [37] in low-risk patients was significantly higher than 
that of high-risk patients (T-test, P  <  0.0001), suggesting a poor ef-
ficacy of immunotherapy (Fig. 6K). The ESTIMATE analysis revealed 
that low-risk patients had a higher stromal score (Fig. 6E), consistent 
with the TIDE prediction.

In conclusion, there were significant differences in the expression 
profiles of immunochemokines and immune checkpoint-related 
genes among risk patients. These heterogeneities may contribute to 

more precise tumor immunotherapy. However, immune escape and 
stromal infiltration in low-risk patients may be the main obstacles to 
immunotherapy.

5.5. Response to targeted drugs varies by risk group

Exploring chemotherapy/targeted drugs for patients in different 
exoSIG risk groups may help to prolong patient survival. We further 
performed a drug response profile analysis based on 198 GDSC 
chemotherapy/targeted therapeutic drugs for exoSIG risk groups. It 
was found that most of the drugs were more sensitive to patients in 
the low exoSIG risk group (Fig. S3A), and patients in the low-risk 
group were sensitive to gemcitabine, mitoxantrone, teniposide, and 
camptothecin (Fig. S3B), while patients in the high-risk group were 
sensitive to axitinib, tozasertib, lapatinib and sapitinib (Fig. S3C). We 
further investigate the expression of exoSIG molecules between la-
patinib drug-tolerant persisters (DTP) and parental (P) BC cell lines 
from GSE155341. COL17A1 demonstrated high expression in DTP 
cells while RTCA, AURKA and SLC1A5 decreased (Fig. S3D), which 
echoed their expression patterns of two risk groups. Personalized 
drug treatment strategies for patients at different exoSIG risk groups 
will further improve their survival. Concurrently, we predicted 9 
small molecule drugs, including YC-1, EMD-1214063, naphazoline, 
lisinopril, and BRD-series (K22478004, K17893805, K05096562, 

Fig. 3. Association of exoSIG risk score with characteristics of breast cancer patients. (A & B) Univariate and multivariate cox hazard ratio (HR) distributions of exoSIG risk scores 
versus seven clinical characteristics. (C) Risk grouping based on exoSIG risk scores. Up-panel: correlation between risk grouping and risk score; Middle-panel: correlation between 
survival status and survival time; Low-panel: Heatmap of expression patterns of 10 exoMols in risk patients. (D) Distribution of different clinical characteristics in the low-risk and 
high-risk patients. (E) Correlation of clinical characteristics of breast cancer patients with exoSIG risk scores. Breast cancer patients with ER-, PR-, high stage, high age, PAM50- 
LumB, and PAM50-Basal subtype had higher exoSIG risk scores.
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Fig. 4. Genomic alterations in risk patients with low exoSIG or high-exoSIG score. (A) Comparison of tumor mutation burden (TMB). (B) Oncoplot of mutation, deletion, insertion, 
and frameshift. (C) Gene co-occurrence and mutually exclusive mutation of genes associated with breast cancers. (D) Comparison of different mutation sites of TP53, PIK3CA, 
KMT2C, GATA3, MAP3K1, and CDH1. (E) Relationship between mutations in TP53 and patient survival. (F) Copy number variation (CNV) patterns in different risk cohorts. (G) 
Association of CNV with signaling pathways. Genes with high-level CNV were highly correlated with cancers.
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Fig. 5. Functional analysis of differentially expressed genes (DEGs) in low and high-risk patient groups. (A) Heatmap of the top 50 DEGs with the highest fold change. (B) PPI 
network of top 50 DEGs based on the STRING website. (C) Heatmap of enriched GO terms by GSVA. Immune-related terms were highly enriched in low-score patients, but not 
tumor proliferation-associated terms. (D) Volcano plot of enriched cancer hallmarks by GSEA. 14 hallmark pathways were significantly suppressed in the high-score patients, 
while 13 pathways were activated (P  <  0.01, FDR < 0.05).
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Fig. 6. Immune infiltration and tumor microenvironment (TME) analysis of low and high-risk patients. (A) The boxplot of 28 infiltrated immune cell types was calculated by 
ssGSEA. (B) The boxplot of 22 infiltrated immune cell types was calculated by CIBERSORT. (C) Distribution of 22 infiltrated immune cell types. (D) The Sankey diagram visualized 
the association between risk patients and immune subtypes, and TME subtypes. (E) The violin plot shows lower immune infiltration, stromal, and ESTIMATE score in high-risk 
patients (T-test; ****, P  <  0.0001). (F & G) Violin and density plot of significantly increased hypoxic score in high-risk patients (Wilcoxon test; *P  <  0.05; **, P  <  0.01; ***, P  <  0.001). 
(H) Violin plot of expression levels of antitumor-related immune genes in high-risk patients. (I) Box plot of expression levels of immune checkpoint-associated genes. (J & K) Box 
plot of expression levels of immune escape-related genes and TIDE scores. (L) Heat map of associations of 28 immune cell types with 10 exoSIG molecules (*, P  <  0.05; **, 
P  <  0.01). (M) Differential expression levels of 10 exoSIG molecules in tissues and exosomes in health and tumor patients of breast cancer.
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K68988758, K52340217) to reverse the gene expression profile of 
patients at high exoSIG risk group based on the CLUE database (Fig. 
S3E). Moreover, HIF1A, MET and DRD2 were identified as potential 
targets for the small molecule drugs YC-1, EMD-1214063 and na-
phazoline via molecular docking, respectively ((Fig. S3F-H)).

6. Relationship between the immune heterogeneity and 
prognosis based on exoSIG molecules

Given the association between exoSIG scores and immune in-
filtration, the potential role of ten exoSIG molecules in the immune 
microenvironment was further explored. With increasing exoSIG 
score, six molecules (HLA-DQB2, COL17A1, LINC01055, C3, P2RX1, and 
miR-99a-5p) were down-regulated, while the other four molecules 
(AURKA, SLC1A5, RTCA, and miR-324–5p) were up-regulated (Fig. 3C).

Subsequently, the correlation of gene expression profiles and 
immune cell abundance was assessed and revealed that four exoSIG 
molecules (RTCA, SLC1A5, miR-324–5p, and AURKA) were highly ne-
gatively correlated with the abundance of most immune infiltrating 
cells. However, the other six molecules (HLA-DQB2, P2RX1, COL17A1, 
miR-99a-5p, LINC01055, and C3) showed the opposite relationship 
(Fig. 6L & M). Notably, the UALCAN analysis [38] confirmed that only 
HLA-DQB2, a hypomethylated gene, was positively correlated with 
immune cell infiltration (Fig. S4A). The tumor purity of BC patients 
with high HLA-DQB2 expression (Wilcoxon test, P  <  0.0001) was 
lower, and its expression level decreased with cancer stage (Fig. S4B- 
F). In addition, high expression of HLA-DQB2 had a positive asso-
ciation with the abundance of monocytes and macrophages in 
cancer patients (Fig. S4G-I). Further analysis showed that several 
immune-related signalling pathways or entries were enriched, such 
as the T-cell antigen receptor (TCR) signalling pathway (NES = 2.84, 
FDR = 5.76E-09), chemokine signalling pathway (NES = 2.75, FDR = 
5.76E-09), and immune cells-microRNAs interactions in tumor mi-
croenvironment (NES = 2.45, FDR = 8.17E-07) (Fig. S4J). These results 
were well supported by the survival analysis (Fig. S2) and provided 
evidence that HLA-DQB2 might be a player in tumor suppression by 
activating monocytes and, or macrophages.

Taken together, the above ten exoSIG molecules have their 
characteristics in tumor promotion or tumor suppression, which 
fully reflects a closer relationship between the heterogeneity in 
tumor immune and patient prognosis. Among them, HLA-DQB2 (Log- 
rank test, P = 0.0029) and COL17A1 (Log-rank test, P = 0.015) were the 
most prominent candidates with a high clinical prognostic value 
(Table S7, Fig. S2).

7. Bimolecular clinical prognostic signature - Clinmin-exoSIG

Further analysis showed that the prognostic result of minimal 
exoSIG (min-exoSIG) (COL17A1 + HLA-DQB2) was in good agreement 
with that of 10-molecule exoSIG (86.35%) (Fig. S5). The fitted formula 
for min-exoSIG was:

=exoSIG EXP EXPmin _ 0.078* 0.075*COL A HLA DQB17 1 _ 2

As shown in Fig. 7A-C, min-exoSIG showed a good prediction 
performance in the overall survival (OS) evaluation (discovery data: 
Log-rank P = 0.0079; test dataset: Log-rank P = 0.022; validation da-
taset: Log-rank P = 0.021). In addition, min-exoSIG also has a good 
performance in the analyses of RFS, DRFS, DMFS based on dataset 
GSE1456 (Log-rank P = 0.022), GSE22219 (Log-rank P = 0.020) and 
GSE11121 (Log-rank P = 0.018), indicating that it has the value of 
predicting the recurrence and metastasis of breast cancer (Fig. 7D-F).

To further increase the accuracy of prognosis, a combined prog-
nostic signature (Clinmin-exoSIG) was constructed by integrating 
min-exoSIG, AJCC stage, and age of BC patients. The results revealed 
that the Clinmin-exoSIG had a good prognosis in the discovery da-
taset (Log-rank P = 0.0027), test dataset (Log-rank P = 0.0036) and 

validation dataset (Log-rank P = 0.028) (Fig. 7G-I). The fitted for-
mula was:

= + +
Clinmin exoSIG

exoSIG score stage age

_

1.114*min _ 0.935* 0.031*

Time-dependent ROC (tdROC) analysis found that the Clinmin- 
exoSIG had the best prognostic performance, compared with min- 
exoSIG, AJCC stage, age, and the commonly used prognostic in-
dicators (CEA, CA153, and HER2). The average AUC value for tdROC 
analysis of the Clinmin-exoSIG was 72.89% (discovery dataset), 
72.62% (test dataset), and 85.42% (validation dataset), respectively 
(Fig. 7J-L). Moreover, four external signatures that were assessed as 
having good prognostic performance were compared with Clinmin- 
exoSIG, which showed that Clinmin-exoSIG had a high AUC, al-
though Oncotype DX demonstrated the best predictive performance 
(Fig. S6A-D). Concurrently, we found that Clinmin-exoSIG also has 
prognostic predictive potential in pan-cancer (Fig. S7A-C). For the 
facilitation of clinical application, a nomogram was generated to 
predict 3-, 5-, 7-, and 10-year overall survival by the comprehensive 
analysis of Clinmin-exoSIG, age, AJCC stage, ER status, PR status, and 
HER2 status (Fig. S8A). The C-index of this model was 0.756, and the 
calibration curve confirmed that the predicted results were con-
sistent with the actual survival (Fig. S8B).

8. Discussion

Tumor heterogeneity remains a major challenge for accurate 
subtyping, risk stratification, and effective treatment [39], which 
urgently requires a systematic dissection of tumor heterogeneity in a 
biological context [40,41]. Tissue biopsy is currently the gold stan-
dard for molecular analysis and characterization of breast cancer, but 
its inherent defects, such as single-point invasive surgery and dis-
continuous detection, seriously affect the diagnostic accuracy of 
tumor heterogeneity. Exosome-based liquid biopsy enables non-in-
vasive, reproducible, and spatiotemporal dynamic molecular mon-
itoring, and has become a new technology for early diagnosis, 
prognostic stratification, and precise treatment [42]. In this study, 
the identification of prognostic molecules in exosomes and the 
construction of a risk model were performed based on multi-omics 
data on breast cancer, and the risk stratification and risk hetero-
geneity of stratified patients were performed.

In-depth molecular characterization of tumor heterogeneity is an 
effective means of patient risk stratification. Our findings suggested 
that high-risk patients belong to a type of PAM50-LumB/Basal 
[HR+(ER+/PR+)/HER+ or TNBC] subtype, lymphocyte depleted (C4) 
immune subtype (Th1 suppressed and high M2 response), or im-
mune desert subtype, comparing with the low-risk ones (Table S9). 
High risk ones are also characterized by high TNM stage and en-
riched in cancer-promoting factors: i) A higher mutation frequency 
was found in tumor suppressor genes (e.g. TP53), but lower in 
tumor-promoting genes (e.g. PIK3CA). ii) Expression levels of genes 
involved in immunity, immune chemotaxis, cell epidermal adhesion, 
and immune checkpoint were significantly downregulated, while 
expression levels of genes associated with hypoxia were significantly 
up-regulated. iii) Infiltration of immune cells decreased remarkably, 
whereas that of macrophages M0 and M2 macrophages were in-
creased. These biological carcinogenic factors may be the root cause 
of high-risk patients’ relative sensitivity to pathway-related enzyme 
inhibitors (such as axitinib, tozasertib, lapatinib, and sapitinib etc.) 
and their poor prognosis. On the contrary, patients with low exoSIG 
scores showed prominent tumor suppressor factors, including ER+ , 
PR+ , low stage and PAM50-Luminal/Normal subtypes, and were 
sensitive to DNA replication, genomic mutations, and cell cycle in-
hibitors (such as gemcitabine, mitoxantrone, teniposide, and 
camptothecin, etc.). Moreover, functional insights of the 10-molecule 

F. Long, H. Ma, Y. Hao et al. Computational and Structural Biotechnology Journal 21 (2023) 3010–3023

3019



Fig. 7. Survival analysis based on min-exoSIG and Clinmin-exoSIG signatures. (A-C) Overall survival analysis based on min-exoSIG signatures from discovery-, test- and validation- 
dataset. (D-F) Survival analysis based on RFS, DRFS, and DMFS calculated by min-exoSIG signatures. (G-I) Overall survival analysis based on Clinmin-exoSIG signatures. (J-L) Time- 
dependent receiver operating characteristic (tdROC) curve of 3-, 5-, 7-, 10-year overall survival.
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prognostic panel and risk prediction modeling proved that exoSIG 
can be used as a novel TDEs-based indicator for BC patient stratifi-
cation. Especially, this prognostic panel contains two functional 
molecular groups: tumor-promotion factors (TPF) (miR-324–5p, 
AURKA, RTCA, and SLC1A5), and immune-related molecules (IRM) 
(miR-99a-5p, LINC01055, P2RX1, HLA-DQB2, C3, and COL17A1). Among 
TPF, The AURKA gene encodes a serine/threonine kinase, which be-
longs to the Aurora kinase family. AURKA is involved in centrosome 
replication, segregation, and maturation, and plays an important role 
in the mitotic cell cycle of eukaryotes [43]. The abnormally ex-
pressed AURKA often leads to the instability of the genome, in-
creasing the frequency of gene mutations, and can participate in 
various intracellular signaling pathways directly or indirectly pro-
moting tumorigenesis, which makes it be one of the reasons for the 
occurrence of malignant tumors [44]. SLC1A5 (also known as ASCT2), 
coding as solute carrier family 1 member 5 located in the plasma 
membrane, is an important amino acid transporter highly expressed 
in various tumor tissues and cells, such as breast cancer [45] and 
lung cancer [46], and responsible for transporting glutamine for the 
nutritional requirements when inflammation, high proliferation and 
metabolic reprogramming in stem and cancer cells [47]. In addition, 
studies also found that the high expression of SLC1A5 is closely as-
sociated with the biological characteristics and poor prognosis of 
tumor malignancy [48,49], so it can be used as an important prog-
nostic indicator for predicting malignant tumors. Among IRM, miR- 
99a-5p has been found to suppress γδ T cell activation and their 
cytotoxicity to tumor cells, and rapidly respond to tumorigenesis, 
which has implications for interventional approaches to γδ T cell- 
mediated cancer therapy [50]. Ma et al. reported that the expression 
of P2RX1 (a member of the ATP-gated ion channel receptor family) 
was closely related to the prognosis of lung adenocarcinoma and the 
activation of mast and B cells in the microenvironment [51]. In 
pancreatic cancer liver metastases TME, the infiltration of P2RX1- 
negative neutrophil subsets increases and mediates the metastasis 
of cancer cells by expressing PD-L1 immunosuppressive mole-
cules [52].

As the functions on cancer reviewed above, these two groups of 
molecules showed their great value in monitoring at-risk patients. 
Our findings manifested that the expression of TPF and IRM in-
creased and decreased in high-risk patients with poor prognosis, 
respectively, while there were the opposite expressions in low-risk 
patients. Particularly in IRM, HLA-DQB2 and COL17A1 are biomole-
cules closely related to immune regulation and tumor metastasis, 
whose low expression levels were strongly associated with the poor 
prognosis of high-risk patients. Being a member of the MHC class II 
family, HLA-DQB2 is an important molecule involved in the T cell 
immune response and antigen presentation. It also plays an im-
portant role in immunotherapy with anti-PD-1 and anti-CTLA-4 
antibodies and the treatment of TNBC patients with progression-free 
survival (PFS) [53,54]. COL17A1 (collagen type XVII alpha 1 chain） 
plays a critical role in maintaining the link between the intracellular 
and the extracellular structural elements involved in epidermal ad-
hesion. And the aberrant expression of COL17A1 has been reported in 
epithelial, squamous, and colorectal cancers [55–57]. In breast 
cancer, it was also found that COL17A1 is suppressed by DNA me-
thylation in the promoter region and inactivation of p53 [57,58], and 
the high expression of COL17A1 inhibits the cell growth and pro-
liferation through deactivation of the AKT/mTOR signalling pathway, 
which is closely associated with the overall survival of breast cancer 
patients [59]. Taken together, combining with the clinical informa-
tion, the bimolecular risk signature Clinmin-exoSIG has a high 
prognostic accuracy (validation dataset：Log-rank P = 0.028, AUC = 
85.42%). And the generated nomogram has a good clinical applica-
tion value.

In this study, we proposed a strategy of robust corroborative 
analysis for biomarker discovery (RCABD), which includes i) joint- 

data-based differential expression analysis and identification of risk 
signatures. Coinciding with this strategy, Qiu et al. identified three 
prognostic exosome molecules (IVL, CXCL13, and AP2S1) from our 
ExoBCD database to successfully perform TNBC risk signature dis-
covery and prognostic evaluation of tumor immune microenviron-
ment [60]. ii) comprehensive multi-approach-based analysis, 
including multi-network-based identification, consistent DE valida-
tion, survival & risk model prediction, and multiple large cohort 
verification strongly supports the robust identification of prognostic 
panel and exoSIG, as well as comprehensive insights into risk het-
erogeneity at the level of the genome, transcriptome, immunity, and 
hypoxic microenvironment providing the strong evidence for the 
stratification of risk patients. Personalized dosing strategies for pa-
tients at different risk will further improve their survival.

As an extension of ExoBCD, this study attempts to address the 
issues related to tumor heterogeneity and exosome-based tumor 
liquid biopsy. We also achieved stratification prediction and risk 
assessment related to breast cancer exosomes, which lays a foun-
dation for the ExoBCD update. In addition, our results also pointed 
out the directions for follow-up studies on the molecular mechan-
isms of HLA-DQB2 and COL17A1 in tumor immune regulation and 
metastasis, as well as functional exploration of key exoSIG molecules 
(P2RX1, AURKA, RTCA, miR-99a-5p, miR-324–5p, LINC01055, and 
SLC1A5) in the immune microenvironment or in promoting tumor 
progression. Of course, the limitations of this study are the limited 
number of publicly available breast cancer exosome datasets. In 
addition, although Clinmin-exoSIG has the potential advantage of 
achieving convenient clinical prognostic prediction with "minimal 
molecular detection", it still needs to be validated in a larger clinical 
cohort. In future work, exosome-based molecular identification, lo-
calization and functional analysis will help to further confirm the 
important functions of these key exoSIG molecules and their me-
chanisms of action.

In summary, we obtained an exosome-derived risk signature 
(exoSIG) on breast cancer and multi-molecular panels through a 
multi-omics-based RCABD strategy. Based on a comprehensive dis-
section of biological heterogeneity and the existing typing factors, 
we found that exoSIG can be used as a novel prognostic indicator for 
the stratified patients of breast cancer. Combining clinical informa-
tion, the bimolecular risk signature, Clinmin- exoSIG (HLA-DQB2 + 
COL17A1), enables accurate prognostic evaluation and stratification 
of risk patients. In conclusion, our findings provide a valuable re-
ference for in-depth exploration of the "biological heterogeneity - 
risk stratification - prognosis prediction" and further advance the 
implementation of precision therapy.
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