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LAG-3, a type of immune checkpoint receptor protein belonging to the

immunoglobulin superfamily, is confirmed to be expressed on activated

immune cells, mainly including activated T cells. LAG-3 can negatively

regulate the function of T cells, exerting important effects on maintaining the

homeostasis of the immune system under normal physiological conditions and

promoting tumor cells immune escape in the tumor microenvironment. Given

its important biological roles, LAG-3 has been regarded as a promising target

for cancer immunotherapy. To date, many LAG-3 inhibitors have been

reported, which can be divided into monoclonal antibody, double antibody,

and small molecule drug, some of which have entered the clinical research

stage. LAG-3 inhibitors can negatively regulate and suppress T cell proliferation

and activation through combination with MHC II ligand. Besides, LAG-3

inhibitors can also affect T cell function via binding to Galectin-3 and

LSECtin. In addition, LAG-3 inhibitors can prevent the FGL1-LAG-3

interaction, thereby enhancing the human body’s antitumor immune effect.

In this review, we will describe the function of LAG-3 and summarize the latest

LAG-3 inhibitors in the clinic for cancer therapy.
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Introduction

A large amount of evidence from literature has manifested

that tumor cells can effectively avoid being recognized and killed

by the immune system through immune checkpoint receptor

proteins, suggesting that blocking immune checkpoint receptors

is a new immunotherapy for human cancers (1, 2). The most

well-studied immune checkpoint receptors mainly include

programmed cell death 1/programmed cell death 1 ligand

(PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen-

4 (CTLA-4) (3–6). However, due to the treatment tolerance, low

response, or significant increase in toxicity of previously

discovered antibody drugs targeting PD-1/PD-L1 or CTLA-4

(7–9), it is very necessary to investigate new targets against

immune checkpoint receptor proteins.

Lymphocyte activation gene-3 (LAG-3, also named CD223

or FDC protein), is a new class of immune checkpoint receptors,

which was first isolated and reported by French immunologist

Frédéric Triebel and colleagues in 1990 (10). LAG-3, as a key

member of the immunoglobulin superfamily (IgSF) locating on

human chromosome 12, is a type I transmembrane protein

containing 498 amino acids, consisting of transmembrane

region, the extracellular region, and cytoplasmic region

(11). The expression level of LAG-3 is closely related to the

prognosis of human tumors. High level of LAG-3 in kidney renal

clear cell carcinoma, non-small cell lung cancer (NSCLC),

primary central nervous system lymphoma (PCNSL),

hepatocellular carcinoma (HCC) and muscle invasive bladder

cancer (MIBC) indicates a poor prognosis, whereas in gastric

carcinoma and melanoma predicts a better prognosis (12). LAG-

3 is detected to be expressed on the surface of effector T cells and

regulatory T cells (Tregs) that participate in the regulation of T

lymphocytes and antigen-presenting cells (APCs) signaling

pathways and play a crucial part in the adaptive immune

response (13). Consistent with CTLA-4 and PD-1/PD-L1,

LAG-3 is induced on CD8+ and CD4+ T cells upon persistent

antigenic stimulation, rather than expressed on naive T cells

(14). Since the inhibitory function of LAG-3 is closely associated

with its expression level on the activated immune cells, the

blockage and inhibition of LAG-3 expression through antibody

drugs or small molecule inhibitors are critical. Prolonged

infection with viruses, fungus, and bacteria results in sustained

exposure to antigens, leading to high levels of persistent

expression of LAG-3 and other inhibitory co-receptors on

CD8+ and CD4+ T cells (15). These T cells lose powerful

effector functions, known as exhausted T cells, resulting in

decreased tumor lethality and response rate, and upregulation

of Treg immunosuppressive function (15). Studies have shown

that blockage or inhibition of LAG-3 can allow T cells to regain

cytotoxic activity and reduce the function of regulating T cells to

suppress immune responses, thereby enhancing the killing effect

on tumors (16, 17). It was observed that simultaneous blockage
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of LAG-3 activity and anti-PD-1 or PD-L1 in tumor cells has

dual inhibitory effects, including inhibiting Treg activity,

promoting dendritic cells (DCs) maturation, and rescuing

dysfunctional CD4+/CD8+ T cells (18–20). LAG-3 has been

regarded as an indicator of tumor prognosis and become a novel

tumor immunotherapy target beyond PD-1/PD-L1 and CTLA-

4. Herein, we aim to describe the structure and the known

ligands of LAG-3 and summarize the immune-regulatory effects

on active T cells in tumor microenvironment, as well as the

LAG-3 inhibitors which have been evaluated in the clinic.
LAG-3 structure and ligands

LAG3 co-localizates with CD4, CD8, and CD3 molecules

within lipid rafts. The structure of LAG-3 is essentially different

from that of CD3 and CD8, whereas it is highly homologous to

CD4. LAG-3 consists of three parts: transmembrane region,

extracellular region, and cytoplasmic region. In the

transmembrane-cytoplasmic part, LAG-3 breaks away from

the cell membrane under the action of metalloproteinases

ADAM10/17, which can regulate the function of LAG-3. The

extracellular domain is responsible for binding to the ligands and

consists of four IgSF domains, namely D1, D2, D3, and D4. The

D1 domain contains a loop domain rich in proline (~30) and an

in-chain disulfide bond, which is species-specific and is known

as the V immunoglobulin superfamily. However, D2, D3, and

D4 belong to the C2 family. The cytoplasmic region of LAG-3

consists of three parts: the serine phosphorylation site S454

(substrates for protein kinase C, PKC), the highly conserved

“KIEELE” motif, and the glutamate-proline dipeptide repeat

motif (EP sequence) (Figure 1) (21, 22). Importantly, KIEELE

mutant resulted in complete loss of LAG-3 function, which

proved that the “KIEELE” motif was crucial to the function of

LAG-3 (23).

LAG-3 was detected to be mainly expressed on the surface of

activated T cells (CD8+ T cells and CD4+ T cells), naturalkiller

cells (NK cells), B cells, and DCs under physiological conditions,

and negatively regulate T cell function. Researchers also found a

small number of LAG-3+ lymphocytes in inflammatory

lymphoid tissues, such as tonsils or lymph nodes (24). In

pathological state, LAG-3 was reported to be highly expressed

on the surface of tumor-infiltrating lymphocytes (TILs), the

expression level of which was positively correlated with the

occurrence and development of human tumors, such as non-

small cell lung cancer (NSCLC) and hepatocellular carcinoma

(HCC) (25–27). LAG-3 negatively regulates the function of T

cells and plays significant roles in maintaining the homeostasis

of immune system under normal physiological conditions and

promoting tumor cells immune escape in the tumor

microenvironment, indicating a promising target for

tumor immunotherapy.
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It has been reported four ligands of LAG-3 in tumor

microenvironment mainly including galactose lectin-3

(Galectin-3), major histocompatibility complex II (MHC II),

fibrinogen-like protein 1 (FGL1), and hepatic sinusoid

endothelial cell lectin (LSECtin) (Figure 1). MHC II is the

main ligand of LAG-3 (28). Due to the high homology of

LAG3 and CD4, MHC II is the common ligand of LAG3 and

CD4. However, LGA3 and MHC II shows 100 times higher in

binding affinity than CD4, suggesting that CD4 and LAG3 may

competitively bind to MHC II, thereby negatively regulating the

function of CD4 (29, 30). Studies have shown that although

LAG3 mutants unable to bind MHC II exhibit reduced

inhibitory function (21), tail mutations in the intracellular

domain of LAG3 lead to loss of inhibitory effect, further

suggesting that the intracellular domain is critical for

inhibiting signal transduction (23). It is possible that LAG3

acts not primarily by interfering with the interaction of MHC II
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and CD4, but rather by transmitting inhibitory signals via the

cytoplasmic domain (23), although the exact character of this

signal is unclear.

Galectin-3, another ligand of LAG-3, is a 31-kDa soluble

lectin (Figure 1). Studies have shown that LAG3 is highly

glycosylated and can interact with Galectin-3, which regulates

T cell responses via several mechanisms (28). In vitro

experiments showed that LAG3 played important roles in

Galectin-3-mediated inhibition of IFN-g secretion by CD8+ T

cells (31). Furthermore, Galectin-3 expressed by a variety of cells

in the tumor microenvironment instead of the tumor itself may

interact with LAG3 on tumor-specific CD8+ T cells, thus

resulting in the modulation of anti-tumor immune responses

(32). LSECtin, a potential ligand of LAG-3, belongs to the C-type

lectin receptor superfamily and is mainly expressed in liver (33).

LSECtin has also been found in human melanoma tissues. The

interaction between LSECtin and LAG-3 promotes tumor
FIGURE 1

LAG-3 structure and ligands. LAG-3 consists of extracellular region, transmembrane region and cytoplasmic region. The extracellular domain is
composed of four IgSF domains, namely D1, D2, D3 and D4. The D1 domain contains a loop domain rich in proline and an in-chain disulfide
bond. In the transmembrane- cytoplasmic part, LAG-3 breaks away from the cell membrane under the action of metalloproteinases ADAM10/
17. The cytoplasmic region of LAG-3 consists of three parts: the serine phosphorylation site S454, the highly conserved “KIEELE” motif and the
glutamate-proline dipeptide repeat motif (EP sequence). MHC II, Galectin-3, LSECtin and FGL1 are the confirmed ligands of LAG-3 in
tumor microenvironment.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.956090
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huo et al. 10.3389/fimmu.2022.956090
growth through suppression of anti-tumor T cell response in

melanoma cells (34).

Jun Wang et al. found that FGL1 is an immune inhibitory

ligand of LAG-3 independent of MHC II (Figure 1). LAG-3

binds with FGL1 through the domains of D1 and D2. The

interaction between FGL1 and LAG-3 mutually promotes tumor

immune escape through inhibiting the activation of antigen-

specific T cell (35). Notably, a recent study has revealed that the

binding of LAG-3 to MHC II but not to FGL1 mediated the

suppression of T cells (36). Of course, other LAG3 ligands have

not yet been discovered. In addition, a study has shown that

LAG3 binds preformed fibrils of a-synuclein in the central
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nervous system, thereby promoting the pathogenesis of

Parkinson’s disease in a mouse model (37), suggesting that

LAG3 may also have functions outside the immune system.
LAG-3 immunological functions

LAG-3 interacts with its ligands to regulate the function of T

cells. The interaction between MHC II and LAG-3 can down-

regulate the cytokine secretion level and proliferation ability of

CD4+ T cells (Figure 2). The anti-LAG-3 antibody can restore

CD4+ T cells activity. Nevertheless, the specific regulatory
FIGURE 2

Roles of LAG-3 in CD+4 cells, CD8+ cells, Treg cells and DC cells in tumor microenvironment.
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mechanism remains unknown (38, 39). It is worth noting that

LAG-3 selectively binds to antigen peptide-MHC II (pMHC II),

thus inhibiting pMHC II-responsive CD4+ T cells (40, 41).

LAG-3 was found to negatively regulate the mitochondrial

activity in naive CD4+ T cells, restricting the normal

metabolism and expansion of naive CD4+ T cells and leading

to T cell exhaustion and anti-tumor response (42). In addition,

LAG-3 was also observed to be upregulated in CD8+ T cells

stimulated with tumor antigens (Figure 2) (43). CD8+ T cells in

LAG-3-deficient mice exhibited significantly higher activity than

that in normal mice, suggesting that LAG-3 has an inhibitory

effect on CD8+ T cells. LAG-3 has been demonstrated to directly

inhibit CD8+ T cells via signal transduction, independent of the

role of MHC II and CD4+ T cells (44, 45). LAG-3 can also

enhance the function of regulatory T cells (Treg cells) (Figure 2).

Treg cells play a negative role in immune regulation and can

down-regulate T cell activity. Common types of Treg cells

include natural regulatory T cells (nTreg cells) and inducible

regulatory T cells (iTreg cells). LAG-3 can positively induce Treg

cells activation and stimulate their immunosuppressive function

(46–48). LAG-3 may synergize with other inhibitory molecules

(PD-1, CTLA-4) to improve the inhibitory activity of Treg cells,

leading to APC-induced immune tolerance (49).

LAG-3 also plays immune adjuvant roles and participates in

the tumor immune escape. LAG-3 can induce the maturation

and activation of DC cells through regulation of intracellular

protein phosphorylation and promotion of the chemokines and

tumor necrosis factor a (TNFa) production (Figure 2) (50).

LAG-3 highly expressed on the TILs interacts with ligands

located on the surface of tumor cells to cause T cell

dysfunction or even exhaustion, promoting tumor immune

escape, the phenomenon of which is particularly evident in

CD8+ T cells (25, 51, 52). Moreover, it is confirmed that

LAG-3 displayed potential roles in activation of NK cells,

a l though its underl ing mechanisms remains to be

further studied.
Roles of blocking LAG-3 in the
tumor microenvironment

LAG-3 is confirmed to be highly expressed on TILs of

various solid tumors, including colon cancer, NSCLC, head

and neck cell cancer, and pancreatic cancer (18, 53–55). LAG-

3 has been revealed to play a vital role in regulating T cell

activation, proliferation, homeostasis, and T cell-depleted

immune microenvironments. LAG-3 was also found to be co-

expressed with PD-1 in the tumor microenvironment. LAG-3

and PD-1 induced T cell function inhibition through different

signaling pathways, which may synergistically lead to exhaustion

of T cells. Studies have shown that co-blockade of PD1 and

LAG3 expressed on CD8+ and CD4+ TILs exhibited enhanced
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antitumor responses in some preclinical mouse models of

ovarian cancer, colon adenocarcinoma, and melanoma (52, 56,

57). LAG3 expressed on iTreg cells induces the production of

TGF-b1 and IL-10, which contributes to tumor immune escape.

The blocking LAG3 antibodies can reduce the inhibitory effect of

Tregs, resulting in the restoration of CD8+ TIL activity (57,

58) (Figure 2).

Studies have shown that inhibition of LAG-3 can allow T

cells to regain cytotoxic activity and reduce the function of

regulating T cells to suppress immune responses, enhancing the

killing effect on tumors (59) (Figure 2). Blocking LAG-3 activity

and anti-PD-1 or PD-L1 in tumor cells has dual inhibitory

effects, including inhibiting Treg activity, promoting DC

maturation, and rescuing dysfunctional CD4+/CD8+ T cells

(60). LAG-3 has become a novel tumor immunotherapy target

beyond CTLA-4 and PD-1/PD-L1. The overall drug types of

LAG-3 inhibitors can be divided into monoclonal antibody,

double antibody, and small molecule drug, some of which

have entered the clinical research stage. More than 80 clinical

trials are underway globally to evaluate the drug candidates

targeting LAG-3.

LAG-3 inhibitors can directly bind LAG-3 molecules or their

ligands, blocking the interaction between ligands and LAG-3,

and downregulating the inhibitory efficacy of LAG-3 toward the

immune system. LAG-3 antibodies not only restore T cell

function, but also inhibit Treg cells activity. In previous

studies, antibodies against PD-1 can only activate T cells, but

cannot inhibit the activity of Treg cells (61–63). Taken together,

LAG-3 inhibitors may have a better therapeutic effect, further

demonstrating a novel tumor immunotherapy target of LAG-3

beyond PD-1/PD-L1 and CTLA-4.
Clinical development of LAG-3
targeted cancer immunotherapy

As a promising target for cancer immunotherapy, LAG3 has

been hotly pursued by academia and pharmaceutical companies. In

the past, significant progress has been made in the discovery of

many LAG3 modulators and some of them are currently in the

clinic as anticancer drugs, which are summarized in Table 1,

involving LAG3-targeted cancer immunotherapy that are either

completed, ongoing, or recruiting participants (ClinicalTrials.gov).

Eftilagimod alpha, developed by Immutep S.A.S. as the initial first-

in-class LAG3 modulator, could activate APCs via interacting with

canonical ligand (MHC class II), which has been also found to

enhance Treg immunosuppression, stimulate the proliferation of

DCs, and ameliorate antigen crosspresentation to CD8+ T cells

(64). Three clinical trials for Eftilagimod alpha have been

completed, and three others are recruiting participants as shown

in Table 1. In addition, 10 different LAG3-specific monoclonal

antibodies and six bispecific antibodies are currently under
frontiersin.org
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TABLE 1 LAG3-modulating candidatesa.

Drug Phase ClinicalTrials.gov ID Indications Status

Nivolumab/Relatlimab Phase 1 NCT04658147 Hepatocellular Carcinoma Recruiting

Phase 1 NCT02966548 Cancer Active, not recruiting

Phase 1 NCT03335540 Advanced Cancer Active, not recruiting

Phase 1 NCT03044613 Gastric Cancer Active, not recruiting

Phase 1/2 NCT03459222 Advanced Cancer Recruiting

Phase 1/2 NCT02061761 Hematologic Neoplasms Recruiting

Phase 1/2 NCT03310619 Lymphoma Recruiting

Phase 1/2 NCT02488759 Various Advanced Cancer Active, not recruiting

Phase 1/2 NCT03610711 Gastroesophageal Cancer
Immune Checkpoint Inhibition

Recruiting

Phase 1/2 NCT04611126 Metastatic Ovarian Cancer Recruiting

Phase 1/2 NCT05134948 Advanced Solid Tumors Recruiting

Phase 1/2 NCT03978611 Melanoma Recruiting

Phase 1/2 NCT05337137 Carcinoma, Hepatocellular Recruiting

Phase 1/2 NCT05255601 Lymphoma, Non-Hodgkin
Hodgkin Disease

Not yet recruiting

Phase 1/2 NCT04150965 Multiple Myeloma Recruiting

Phase 2 NCT04552223 Metastatic Uveal Melanoma Recruiting

Phase 2 NCT04095208 Soft Tissue Sarcoma Adult
Advanced Cancer

Recruiting

Phase 2 NCT03623854 Chordoma Recruiting

Phase 2 NCT03743766 Melanoma Recruiting

Phase 2 NCT04080804 Head and Neck Squamous
Cell Carcinoma

Recruiting

Phase 2 NCT04913922 Acute Myeloid Leukemia Recruiting

Phase 2 NCT05002569 Melanoma Recruiting

Phase 2 NCT04112498 Cancer Active, not recruiting

Phase 2 NCT03607890 Refractory MSI-H Solid Tumors Prior of PD-(L) 1 Therapy
MSI-H Tumors

Recruiting

Phase 2 NCT03642067 Microsatellite Stable (MSS) Colorectal Adenocarcinomas
Colorectal Adenocarcinoma

Recruiting

Phase 2 NCT03724968 Melanoma Terminated

Phase 2 NCT03704077 Gastric Cancer Withdrawn

Phase 2 NCT02750514 Advanced Cancer Terminated

Phase 2 NCT04567615 Hepatocellular Carcinoma Recruiting

Phase 2 NCT03521830 Basal Cell Carcinoma Recruiting

Phase 2 NCT04326257 Squamous Cell Carcinoma of the Head and Neck Recruiting

Phase 2 NCT04623775 Non-small Cell Lunch Cancer Recruiting

Phase 2 NCT05347212 Carcinomas Not yet recruiting

Phase 2 NCT04205552 NSCLC Stage I/II/IIIA Recruiting

Phase 2 NCT03867799 Metastatic Colorectal Cancer Active, not recruiting

Phase 2 NCT05148546 Renal Cell Carcinoma Recruiting

Phase 2 NCT01968109 Neoplasms by Site Active, not recruiting

Phase 2 NCT03662659 Gastric Cancer Active, not recruiting

Phase 2 NCT02519322 Stage IIIB-IV melanoma Active, not recruiting

Phase 2 NCT04062656 Gastric Cancer Recruiting

Phase 2 NCT02996110 Advanced Cancer Active, not recruiting

Phase 2 NCT02935634 Advanced Gastric Cancer Active, not recruiting

Phase 2 NCT02465060 solid tumors or lymphomas Recruiting

Phase 2/3 NCT03470922 Melanoma Active, not recruiting

(Continued)
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TABLE 1 Continued

Drug Phase ClinicalTrials.gov ID Indications Status

Phase 3 NCT05328908 Colorectal Neoplasms Recruiting

Not Applicable NCT04866810 Melanoma Recruiting

Tebotelimab Phase 1 NCT03219268 HER2-positive Advanced Solid Tumors Active, not recruiting

Phase 2 NCT04634825 Head and Neck Cancer, Neoplasms, Squamous Cell Carcinoma Recruiting

Phase 2/3 NCT04082364 Gastric Cancer Active, not recruiting

Chlorogenic acid Phase 1 NCT02728349 Glioblastoma Completed

Phase 1 NCT02245204 Advanced Cancer Completed

Phase 1 NCT02136342 Advanced Cancer Terminated

Phase 1/2 NCT03751592 Advanced Lung Cancer Unknown

RO-7247669 Phase 1 NCT04140500 Solid Tumors Recruiting

Phase 1/2 NCT04524871 Advanced Liver Cancers Recruiting

Phase 1/2 NCT05116202 Melanoma Recruiting

Phase 2 NCT04785820 Advanced or Metastatic Esophageal
Squamous Cell Carcinoma

Recruiting

Favezelimab Phase 1 NCT02720068 Neoplasms Active, not recruiting

Phase 1/2 NCT04938817 Small Cell Lung Carcinoma Recruiting

Phase 1/2 NCT04626479 Carcinoma, Renal Cell Recruiting

Phase 1/2 NCT05342636 Esophageal Squamous Cell Carcinoma (ESCC) Not yet recruiting

Phase 1/2 NCT03598608 Hodgkin Disease
Lymphoma

Recruiting

Phase 1/2 NCT04626518 Carcinoma, Renal Cell Recruiting

Phase 2 NCT04895722 Colorectal Cancer Recruiting

Phase 2 NCT03516981 Advanced Non-Small
Cell Lung Cancer

Active, not recruiting

Phase 3 NCT05064059 Colorectal Cancer Recruiting

INCAGN-2385 Phase 1 NCT03538028 Advanced Malignancies Completed

Phase 1/2 NCT04370704 Melanoma Recruiting

Phase 2 NCT05287113 Head and Neck Cancer Not yet recruiting

Phase 2 NCT04586244 Urothelial Carcinoma Recruiting

IBI-110 Phase 1 NCT04085185 Advanced Malignancies Recruiting

Phase 1 NCT05039658 DLBCL Not yet recruiting

Phase 2 NCT05026593 SCLC Recruiting

Phase 2 NCT05088967 Non-small Cell Lung Cancer Recruiting

Eftilagimod alpha Phase 1 NCT02676869 Stage III/IV Melanoma Completed

Phase 1 NCT04252768 Metastatic Breast Cancer Not yet recruiting

Phase 1 NCT03600090 Solid Tumor, Adult Completed

Phase 2 NCT03625323 Non-small cell lung carcinoma,
head and neck carcinoma

Active, not recruiting

Phase 2 NCT04811027 HNSCC Recruiting

Phase 2 NCT02614833 Adenocarcinoma
Breast Stage IV

Completed

Sym-022 Phase I NCT03489369 Metastatic Cancer, Solid Tumor
Lymphoma

Completed

Phase I NCT04641871 Metastatic Cancer
Solid Tumor

Recruiting

Phase 1 NCT03311412 Metastatic Cancer, Solid Tumor
Lymphoma

Completed

Phase I NCT04414150 Malignant Tumors Unknown

Phase 2 NCT05208177 Advanced Solid Tumor Not yet recruiting

LBL-007 Phase 1 NCT04640545 Advanced Melanoma Recruiting

(Continued)
Frontiers in Immunolog
y
 07
 frontiersin.org

https://doi.org/10.3389/fimmu.2022.956090
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huo et al. 10.3389/fimmu.2022.956090
investigation at various clinical stages for the treatment of cancer

(Table 1). As the first anti-LAG3 human IgG4monoclonal antibody

and novel immune checkpoint inhibitor, relatlimab, discovered by

Bristol-Myers Squibb, is currently undergoing 46 different clinical

trials for cancer therapy (65). As the first commercially developed

anti-LAG-3 antibody, relatlimab entered the clinical trials in 2013

(66). However, due to the limited efficacy of relatlimab alone, it is

generally used in combination with other checkpoint inhibitors,

including CTLA-4 inhibitors (ipilimumab) or PD-1 inhibitors

(nivolumab), to synergistically improve the efficacy (39).

Encouragingly, relatlimab in combination with the PD-1 inhibitor

nivolumab received FDA approval in March 2022 as the first

approved monoclonal antibody to treat unresectable or metastatic

melanoma (67).
Discussion

Since its discovery in 1990, LAG3 has gained widespread

interest and been regarded as a promising target for

cancer immunotherapy. LAG-3 plays an important

immunoregulatory role in a variety of human tumors, and

blocking LAG-3 can enhance the proliferation of TILs and the

secretion of cytokines, and enhance anti-tumor immunity.

Many LAG3 inhibitors have been discovered and are

currently in the clinic. Single anti-LAG3 therapy was

demonstrated to be modest benefit, supporting a potential

combination approach with other inhibitory receptors. LAG-

3 inhibitors, together with CTLA-4 or PD-1/PD-L1 inhibitors,

have been extensively explored in the different clinical trials for

cancer therapy, which can not only avoid drug tolerance but

also improve the clinical efficacy of LAG-3 inhibitors. No

evidence reveals the feasibility of the combination between

LAG-3 inhibitors and other immune checkpoint inhibitors. So

far, the regulatory mechanism of LAG-3 has not been fully

explored and the clinical efficacy of its inhibitors is uncertain.

Based on the current clinical data, the early therapeutic effect of

LAG-3 monoclonal antibody is not satisfactory. According to
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the phase I clinical data of LAG-3 monoclonal antibody MK-

4280 published by Merck, the objective response rate (ORR)

among 18 patients with solid tumors that failed other

treatments was only 6%, and the disease control rate is only

17%. Therefore, it is mainly to explore the combination

strategy, especially the combination of LAG-3 and PD-1. The

bi-functional monoclonal antibody is worthy of attention and

exploration. There are only a few interim reports of the

combination therapies targeting LAG-3 and PD-1. Evidence

revealed that the combination exerted better tolerance and

higher ORR, extended progression-free survival, as well as a

lower risk of death (13). The exact efficacy of anti-LAG-3

antibodies as monotherapy and the additive effects of anti-

LAG-3 antibodies in the combination therapy targeting PD-1

and LAG-3 need to be further explored.

Inevitably, there are still many questions that remain to be

resolved regarding the understanding of LAG3 biology, the exact

signaling pathway and the potential ligands, as well as the

mechanism underlying synergistic effect with other immune

checkpoint molecules, although the development of LAG-3

inhibitors is in full swing. If these problems could be solved,

the research on LAG-3 and its related drugs will make significant

progress for cancer therapy.
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