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The human brain undergoes complex reorganization and changes during aging. Using graph theory, scientists can find differences
in topological properties of functional brain networks between young and elderly adults. However, these differences are sometimes
significant and sometimes not. Several studies have even identified disparate differences in topological properties during normal
aging or in age-related diseases. One possible reason for this issue is that existing brain network construction methods cannot
fully extract the “intrinsic edges” to prevent useful signals from being buried into noises. This paper proposes a new subnetwork
voting (SNV) method with sliding window to construct functional brain networks for young and elderly adults. Differences in
the topological properties of brain networks constructed from the classic and SNV methods were consistent. Statistical analysis
showed that the SNV method can identify much more statistically significant differences between groups than the classic method.
Moreover, support vectormachine was utilized to classify young and elderly adults; its accuracy, based on the SNVmethod, reached
89.3%, significantly higher than that with classic method.Therefore, the SNVmethod can improve consistency within a group and
highlight differences between groups, which can be valuable for the exploration and auxiliary diagnosis of aging and age-related
diseases.

1. Introduction

Healthy aging, along with many age-related diseases, is
generally accompanied by cognitive functional deficits, such
as reduced performance in memory and motor execution
[1, 2], resulting from abnormalities in brain’s structural and
functional systems [3, 4]. Previous studies have illustrated
that, in terms of structural changes, such functional degrada-
tions are related to loss of graymatter and thinning of cerebral
cortex [5, 6]. Researchers are also currently attempting to
explore aging from the perspective of alterations in functional
system [7–9]. Owing to its noninvasive and mature data
acquisition and processing, resting-state functional mag-
netic resonance imaging (fMRI) technology has become an
important means to study these functional changes in the
brain. fMRI has been providing abundant lines of evidence
demonstrating variations in brain function during aging
[4].

Since Watts and Strogatz [10] proposed small-world
network in 1998 and Barabasi and Albert [11] proposed
scale-free network in 1999, complex network theory has
become increasingly important in exploring the nature of
complex systems. Studies on the complex network of the
brain, which is one of the most complex systems, elucidate
the brain connectivity on the level of network topological
organization, providing new insights into brain complexity
[12, 13]. Numerous meaningful results have been obtained
from exploring the changes in structural [3, 14] and func-
tional brain networks [2, 15–17] of aging, as well as of age-
related diseases, such as Alzheimer’s disease (AD), Parkin-
son’s disease, and stroke [18, 19]. Functional connectivity
focuses on the relationship among different brain regions
[20] and is usually established by the correlation of blood
oxygenation level-dependent time courses between nodes
[21]. Pearson correlation analysis, being the most frequently
used functional brain network construction method, has
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been widely applied to explore the brain mechanism of aging
and age-related diseases [7, 8, 22–24].

Numerous studies have demonstrated that reorganization
in brain networks and changes in brain connectivity occur
during aging [4, 19]. Alterations in brain network properties,
such as efficiency and clustering coefficient, are also observed
in aging [15, 16, 25, 26]. However, the consistency of the graph
properties of brain networks within a group is sometimes
not very satisfactory [27]. Some scientists cannot obtain
statistically significant differences in some graph properties
between different groups. Some studies even got disparate or
contradicting changes in normal aging or age-related diseases
[19, 28]. For example, Achard and Bullmore [25] found a
higher global efficiency but no significantly different local
efficiency was observed in the young group; this result is
inconsistent with those obtained by Wu et al., indicating
that the young group showed lower global efficiency but
higher local efficiency than the elderly group [26]. Moreover,
in terms of age-related diseases, such as AD, Stam et al.
[29] showed that, compared with the healthy control group,
the average path length of AD patients is longer, and the
clustering coefficient does not change. However, Supekar
et al. [30] showed that, compared with the healthy control
group, AD patients demonstrate lower clustering coefficient,
whereas the average shortest path does not significantly
change. In addition, Zhao et al. [24] found a significant
difference in clustering coefficient between AD patients and
healthy controls, whereas Sanz-Arigita et al. [31] could not
obtain significant changes. Given that the reproducibility of
fMRI datasets cannot be guaranteed [32], the study results
bear much uncertainty. Some studies have shown that certain
topological properties of functional brain network of the
same group at two different time periods collected in the same
test set also exhibit differences [33, 34].

The reasons for the abovementioned problems are possi-
bly the individual differences not related to research factors
we investigated within the group, as well as the differences in
data preprocessing (such as band filtering and noise removal
methods) [33, 34]. Moreover, the existing network modeling
methods cannot fully extract significant differences between
groups. Therefore, finding methods to improve SNR of data
collection, to extract meaningful features from the collected
datasets, and to explore new brain network construction
methods will be of great significance for brain network anal-
ysis to strengthen consistency within group and highlight the
differences between groups. Scientists have started working
on this endeavor. For example, Liang et al. [34] reported that
different filter bands affect the consistency of brain network
analysis; meanwhile, Braun et al. [33] illustrated that the
processing methods of MRI data possibly affect the reliability
and robustness of brain network.

This paper proposes a novel brain network construction
method, namely, subnetwork voting (SNV) method with
sliding window, to explore age-related functional reorgani-
zation. This novel brain network modeling approach aims
to reduce the impact caused by individual differences within
group in brain network analysis and consequently weaken
the differences within group and highlight the differences
between groups. We hope that this method can help improve

the reliability of brain network analysis in exploring aging and
related diseases.

2. Materials and Methods

2.1. Subjects. A dataset of 28 right-handed healthy adults,
including 14 young adults (6males, 8 females; mean age: 23.71
years old; range: 19–30 years old) and 14 elderly adults (7
males, 7 females;mean age: 67.57 years old; range: 60–79 years
old), was collected by the International Consortium for Brain
Mapping (ICBM), which is a subdataset in the 1000 Func-
tional Connectomes Project (http://fcon 1000.projects.nitrc
.org/).

2.2. Data Preprocessing. The first five images in raw data
of each subject were discarded by ICBM to ensure mag-
netization equilibrium. Data preprocessing was performed
using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). We first
conducted slice timing; that is, all the datasets were corrected
in time domain. Realignment was subsequently employed
to remove movement artifact in the fMRI time series. We
then normalized the datasets by using a standard template.
The processed images were smoothed by using a standard
4 ∗ 4 ∗ 4 FWHM kernel, drifted, and filtered to the frequency
range of 0.06–0.11 Hz [12, 17].The dataset for each subject was
then segmented into 90 brain regions defined by AAL atlas
[35].

2.3. Classic Construction Method for Functional Brain Net-
work. For the time courses of 90 regions extracted from
each subject, Pearson correlation was used to calculate the
relationship between every two time courses of brain regions;
thus, the correlation matrix of 90 ∗ 90 of each subject
can be obtained. Previous studies have indicated that the
properties of functional brain network are consistent with
the actual brain model when the functional brain network
density is 8–16% [7, 8, 17, 36]. Therefore, the functional
brain networks of the young and the elderly individuals
were established at a network density range of 8–16% to
compare the topological properties (global efficiency, mean
clustering coefficient, transfer coefficient, small-world value,
and number of long edges) of the functional brain networks
of young and old individuals in a large range of network
densities.

2.4. SNV Method to Construct Functional Brain Network. In
this study, we proposed the use of SNV method to establish
functional brain network. The specific steps are as follows.

We set the density of functional brain networks to ND%;
the length of time courses obtained by data preprocessingwas
𝐿 and the width of the sliding window was𝑊 (𝑊 < 𝐿).

For the time courses with length 𝐿 of 90 brain regions
extracted from the preprocessing datasets of each subject, we
first extracted 𝐿 − 𝑊 + 1 subseries with length 𝑊 through
window sliding (Figure 1(a)).

For all the 𝑖th (𝑖 = 1, 2, . . . , 𝐿 −𝑊 + 1) subseries of the 90
brain regions of each subject (these subseries were extracted
from the original time courses with the same starting and
ending time points), Pearson correlation method was used
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Figure 1: Process in the SNVmethod. (a) 𝐿 −𝑊+ 1 subseries with length𝑊 were extracted through window sliding; (b) binary subnetwork
matrix 𝑆

𝑖
(𝑖 = 1, 2, . . . , 𝐿 − 𝑊 + 1) with density ND% was obtained by subseries; (c) the subseries were then summed up to obtain the voting

matrix 𝑆, which was fixed to the binary voting network matrix 𝑉 with density of ND%.

to calculate 90 ∗ 90 correlation coefficient matrix 𝐶
𝑖
(𝑖 =

1, 2, . . . , 𝐿 − 𝑊 + 1), resulting in the construction of a brain
subnetwork. According to the descending absolute value, the
top ND percent elements of matrix 𝐶

𝑖
were set to 1, and the

remaining elements were set to 0. As a result, an entitled
binary subnetwork matrix 𝑆

𝑖
(𝑖 = 1, 2, . . . , 𝐿 − 𝑊 + 1) with

density ND% was obtained (Figures 1(a) and 1(b)).
We summed up all binary matrices 𝑆

1
, 𝑆
2
, 𝑆
3
, . . . , 𝑆

𝐿−𝑊+1

and obtained a voting matrix 𝑆 = 𝑆
1
+ 𝑆
2
+ 𝑆
3
+ ⋅ ⋅ ⋅ + 𝑆

𝐿−𝑊+1

(Figure 1(b)). Given that the functional brain network was
established with density ND%, the top ND percent elements
of matrix 𝑆 (whose value is between 0 and 𝐿−𝑊+1) were set
to 1, and the remaining elements were set to 0. We obtained
the final desired binary voting networkmatrix𝑉 (Figure 1(c)),
which describes the brain connectivity.

When more than one element is equal to the last one
of the top ND percent element in 𝑆 (whose value was
𝑇), then determining which elements should be set to 1
only depending on the voting matrix is difficult. We then
used weight information of subnetwork sequence to make a
decision. We calculated the absolute value of all elements in
𝐶
𝑖
and summed up these values to obtain𝐶 = |𝐶

1
|+|𝐶
2
|+⋅ ⋅ ⋅+

|𝐶
𝐿−𝑊+1
|. Among the elements in 𝑆 whose values are equal to

𝑇, we chose the ones demonstrating the largest absolute value
with the same position in𝐶; these values represent the largest
weight of connectivity and thus were set to 1.

The length of a time course in our study is 128. To obtain
the best values of window width in our modeling approach,
we constructed the brain networks by using the SNVmethod
with a window width of 10–120 and found that the rational
window width is 90–100. Therefore, the experiments in our
study were performed based on𝑊 = 90, 95, and 100. We will
give reason for the selection of windowwidth and discuss this
issue in Section 4.

2.5. Support Vector Machine (SVM) for Classification. This
study used the SVM approach to classify the young and the
elderly subjects to evaluate the SNV method in functional
brain network construction. 𝐾-fold cross-validation was
applied herein. Specifically, we randomly split the entire
population into 14 folds, each consisting of one young and
one elderly individual. We used 13 folds as training sample
set, leaving one fold as testing sample set. The training and
testing processes looped 14 times with a distinct testing
fold in each time. The accuracy, sensitivity, and specificity
were averaged across the 14 classifications. A linear kernel
was applied in SVM, and two sets of classification features
were considered in our experiments. The first set consisted
of all the five network properties mentioned above. The
other set, based on the first set, was optimized with nodal
information and removed network properties showing no
significant difference between groups (only the small-world
value was removed according to this criterion). A two-sample
𝑡-test was performed to compare the node degrees of each
node between the young and elderly groups in the training
sample set, and those showing significant difference (FDR
correction at 𝑞 value of 0.05) were appended to the feature
set. The nodes demonstrating significant difference based on
SNVmethodwere shown in Table 1 and Figure 2.The features
were scaled from 0 to 1 before inputting them into SVM in
both cases.

3. Results

3.1. Differences in the Topological Properties between the
Young and Elderly Adults. With a network density of 8–16%,
the topological properties of functional brain network in
young and elderly groups were calculated based on classic
method and SNV method (in this study, 𝑊 = 90, 95, and
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Table 1: Regions showing significant difference in node degree.

Region Hemisphere AAL ID Cluster
Precentral gyrus Left 1 Parietal-(pre)motor
Superior occipital
gyrus Left 49 Occipital

Thalamus Left 77 Subcortical
Right 78 Subcortical

Temporal pole,
superior temporal
gyrus

Right 84 Medial temporal

The last column exhibits the clusters which the region belonged to according
to the hierarchical clustering analysis in a previous study [37].

Figure 2: Regions showing significant difference in node degree.
Different colors represent different clusters to which the nodes
belong. Dark blue: parietal-(pre)motor; light blue: occipital; green:
subcortical; brown: medial temporal.

100), respectively, as shown in Figure 3 (take 𝑊 = 90,
e.g.). Compared with the topological properties of functional
brain networks of young group, the global efficiency and
the number of long edges of elderly group both declined
to different extent. In addition, the mean clustering coeffi-
cient, transfer coefficient, and small-world property showed
different degrees of increase. The difference between the
brain functional networks, which are constructed by the SNV
method, remained consistent with that by the classic method.

3.2. Statistical Analysis of Topological Properties of Brain
Networks. We performed a 𝑡-test for the topological prop-
erties based on both network construction methods to
compare the differences between the young and elderly
groups. Figure 4 shows the 𝑃 values that were uncor-
rected for multiple comparison, which are convenient for
straightforward comparison of magnitudes. Only 60 sets of
network property comparisons in the classic method showed
significant difference (𝑃 < 0.05). However, there were 92
sets showing significant difference in the SNVmethod, more
than one and a half times that in classic method. Except

Table 2: SVM accuracy in the first feature set.

Density 8% 9% 10% 11% 12% 13% 14% 15% 16%
𝑊

90 0.714 0.679 0.714 0.714 0.643 0.750 0.786 0.821 0.786
95 0.750 0.643 0.679 0.679 0.714 0.679 0.786 0.786 0.786
100 0.714 0.679 0.714 0.750 0.750 0.714 0.679 0.786 0.750

Classic 0.536 0.571 0.714 0.571 0.643 0.607 0.643 0.607 0.714
Accuracy was significantly higher in the SNV method than in the classic
method (permutation test, 𝑃 < 0.01 in all of the three window widths).

for the small-world value and the number of long edges,
98.77% of the 𝑃 values in SNV method showed significant
difference (𝑃 < 0.05), indicating that the SNV method can
identifymuchmore statistically significant differences, which
cannot be discovered when using the classic brain network
construction method. Compared with the classic method,
the 𝑃 values of various topological properties by the SNV
method significantly decreased in all of the three window
widths (permutation test, 𝑃 < 0.05 in efficiency, 𝑃 < 0.01 in
other properties). In our 135 sets of statistic comparisons, the
𝑃 values of 124 sets (91.85%) decreased. In addition, 98.89%
of the 𝑃 values decreased at a network density range of 9–
14%. When FDR correction was implemented for multiple
comparisons at 𝑞 value of 0.05, only 27 sets of comparisons
showed significant difference in the classic method. However,
there were 80 sets showing significant difference in the SNV
method, nearly three times that in classic method.

3.3. Classification Results of the Young and Elderly Individuals
Using SVM. We used the classic and SNV methods to build
a functional brain network for each subject in the young and
old groups, and then we attempted to use SVM as a classifier
to classify the testing dataset into two groups. To analyze
the impact of different window widths on classification, we
performed classification experiment at 𝑊 = 90, 95, and
100.

Table 2 and Figure 5(a) show the accuracy rate of
classification in the first set of classification features. The
overall mean accuracy rate of the classic method was 62.3%.
Compared with that classic method, the SNV method used
in this study significantly improved the accuracy to 72.8%
(permutation test, 𝑃 < 0.01 in all of the three window
widths). The highest accuracy was 82.1% (permutation test,
𝑃 < 0.01; and the 95% confidence interval was 69.6–94.7%).
Moreover, the sensitivity (Table 3 and Figure 5(b)) improved
significantly from 65.9% to 76.7% (permutation test,𝑃 < 0.01
in all of the three window widths). The specificity (Table 4
and Figure 5(c)) also improved significantly from 58.7% to
68.8% (permutation test, 𝑃 < 0.01 in all of the three window
widths).

The other set of classification features was optimized with
nodal information, and the differences in node degree were
prominent within parietal-(pre)motor, occipital, subcortical,
and medial temporal systems (Table 1 and Figure 2) as
revealed by the partition method based on a hierarchical
clustering analysis as performed by Salvador et al. [37]. With
the optimized feature set (Table 5 and Figure 6(a)), the overall
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Figure 3: Continued.
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Figure 3: Topological properties of networks constructed by (a) SNV method (𝑊 = 90) and (b) classic method. The black and red lines
represent the elderly and young groups, respectively.The error bars represent standard deviation.The difference between the networks, which
were constructed by the SNV method, of the young and elderly groups remained consistent with the classic method.
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Figure 4: Continued.
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Figure 4: Statistical analysis of topological properties of the networks produced using the SNV (𝑊 = 90, 95, and 100) and classic methods.
The blue and red lines represent 𝑃 values obtained through the classic and SNV methods, respectively. Compared with that of the networks
constructed by the classic method, 𝑃 values of topological properties of the networks constructed by the SNVmethod significantly decreased
(permutation test, 𝑃 < 0.05 in efficiency, 𝑃 < 0.01 in other properties).

mean accuracy rate of classification improved significantly
from67.5% in the classicmethod to 76.5% in the SNVmethod
(permutation test, 𝑃 < 0.001 at 𝑊 = 90, 95; 𝑃 < 0.05 at
𝑊 = 100). In addition, the highest accuracy reached up to
89.3% (permutation test, 𝑃 < 0.01; and the 95% confidence
interval was 78.5–100%) when using the SNV method at
𝑊 = 90 and density = 10%, which is consistent with or
better than those obtained by the following similar studies:
Vergun et al. [38] classified the young and elderly individuals
based on the same dataset downloaded from 1000 Functional
Connectomes Project with an accuracy of 84%. Supekar et
al. [39] and Dosenbach et al. [40] reached an accuracy of
91% in classifying the children and adults by using the SVM
method, respectively. Although these results were not that
comparable because of the methodology and differences in
raw data, they can still reflect to some extent the superiority
of the SNV method. Furthermore, the sensitivity (Table 6
and Figure 6(b)) improved significantly from 66.7% to 81.2%
(permutation test, 𝑃 < 10𝑒 − 4 at𝑊 = 90, 95; no significant
difference was observed at𝑊 = 100). The specificity (Table 7
and Figure 6(c)) improved significantly from 68.3% to 71.7%
(permutation test, 𝑃 < 0.01 at 𝑊 = 100; no significant
difference was observed at𝑊 = 90, 95).

Table 3: SVM sensitivity in the first feature set.

Density 8% 9% 10% 11% 12% 13% 14% 15% 16%
𝑊

90 0.786 0.643 0.714 0.786 0.643 0.786 0.857 0.929 0.857
95 0.714 0.643 0.714 0.714 0.786 0.714 0.857 0.857 0.857
100 0.714 0.643 0.714 0.786 0.786 0.786 0.714 0.857 0.857

Classic 0.643 0.643 0.714 0.643 0.714 0.643 0.643 0.571 0.714
Sensitivity was significantly higher in the SNV method than in the classic
method (permutation test, 𝑃 < 0.01 in all of the three window widths).

4. Discussion

4.1. Differences in Topological Properties of Brain Network
between the Young and Elderly Adults. The cognitive and
memory functions of the brain generally decline with
aging [41]. Different aspects of studies provide different
explanations for this phenomenon. In terms of structural
changes, previous studies have suggested that reduction in
gray matter density and thinning of cortex may cause the
decline in brain function during aging [5, 6]. With the
recent development in graph theory and complex network,
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Figure 5: SVM classification results of young and elderly adults in the first feature set. Compared with classic network construction method,
(a) accuracy, (b) sensitivity, and (c) specificity of classification based on the SNV method in the first feature set improved significantly.

scientists have started to study aging and related diseases
from the perspective of functional brain network, and they
generally consider the decrease in cognitive and memory
as a direct consequence of reduced efficiency and number
of long edges in functional brain network during aging
[3, 7–9, 15]. This present study observed the same results.
From the perspective of physiology, this phenomenon is

possibly caused by the changes and reconnection of the brain
synapses.

Mean clustering coefficient is the average of clustering
coefficient in all nodes in a network and indicates the extent
of local cliquishness or local efficiency of information transfer
[10, 42]. Numerous studies have demonstrated that brain
networks evolved from an integrated system to a distributed
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Table 4: SVM specificity in the first feature set.

Density 8% 9% 10% 11% 12% 13% 14% 15% 16%
𝑊

90 0.643 0.714 0.714 0.643 0.643 0.714 0.714 0.714 0.714
95 0.786 0.643 0.643 0.643 0.643 0.643 0.714 0.714 0.714
100 0.714 0.714 0.714 0.714 0.714 0.643 0.643 0.714 0.643

Classic 0.429 0.500 0.714 0.500 0.571 0.571 0.643 0.643 0.714
Specificity was significantly higher in the SNV method than in the classic
method (permutation test, 𝑃 < 0.01 in all of the three window widths).

Table 5: SVM accuracy in the optimized feature set.

Density 8% 9% 10% 11% 12% 13% 14% 15% 16%
𝑊

90 0.786 0.893 0.821 0.821 0.786 0.714 0.786 0.786 0.750
95 0.857 0.821 0.821 0.821 0.750 0.750 0.750 0.679 0.679
100 0.750 0.821 0.857 0.643 0.750 0.714 0.679 0.679 0.679

Classic 0.714 0.643 0.679 0.714 0.714 0.643 0.643 0.643 0.679
Accuracy was significantly higher in the SNV method than in the classic
method (permutation test, 𝑃 < 0.001 at𝑊= 90, 95; 𝑃 < 0.05 at𝑊= 100).

one during aging [2, 14, 16], which is consistent with
the observed increasing clustering coefficient in our study.
Although both the old and young groups showed normal
small-world architecture in the functional brain networks,
increased clustering and decreased efficiency were found in
elderly subjects, implying a degeneration process wherein the
brain system shifted from a small-world network to a regular
one along with normal aging [16, 26].

Transfer coefficient is the ratio of “triangles to triplets”
in the network [43], from another aspect to measure the
degree of tightness and easy exchange of information between
network nodes. This study found that the transfer coefficient
in the elderly group also increased to a certain degree.
This finding is possibly caused by the increased linkages in
the elderly group to maintain information transfer among
different brain regions, which can be seen as an adaptive
process of the brain during aging.

In this study, we found that the changes in the brain
network properties during aging as revealed by the SNV
method are consistent with those revealed by the classic
method, indicating the validity of the SNV method. In other
words, the SNV method did not result in false positive
differences. By combining the previous results with ours,
we consider that reorganizations occur in the brain network
during aging, and differences do exist between the young and
elderly groups on the level of functional brain network.

4.2. Analysis of 𝑃 Values. This study calculated the topo-
logical properties and then performed statistical tests to
compare the young and elderly groups. Similar experiments
were performed inmany previous studies. Sometimes studies
capture statistically significant differences in some properties,
whereas only nonsignificant differences were observed at
times. For example, Wang et al. [7, 8] found reduction in
global efficiency in the elderly group but did not observe

Table 6: SVM sensitivity in the optimized feature set.

Density 8% 9% 10% 11% 12% 13% 14% 15% 16%
𝑊

90 0.786 0.929 0.929 0.929 0.929 0.786 0.857 0.857 0.857
95 0.929 0.857 0.929 0.929 0.857 0.857 0.857 0.714 0.714
100 0.714 0.857 0.857 0.643 0.786 0.643 0.643 0.643 0.643

Classic 0.714 0.714 0.714 0.714 0.714 0.643 0.571 0.571 0.643
Sensitivity was significantly higher in the SNV method than in the classic
method (permutation test, 𝑃 < 10𝑒 − 4 at 𝑊 = 90, 95; no significant
difference was observed at𝑊= 100).

Table 7: SVM specificity in the optimized feature set.

Density 8% 9% 10% 11% 12% 13% 14% 15% 16%
𝑊

90 0.786 0.857 0.714 0.714 0.643 0.643 0.714 0.714 0.643
95 0.786 0.786 0.714 0.714 0.643 0.643 0.643 0.643 0.643
100 0.786 0.786 0.857 0.643 0.714 0.786 0.714 0.714 0.714

Classic 0.714 0.571 0.643 0.714 0.714 0.643 0.714 0.714 0.714
Specificity was significantly higher in the SNV method than in the classic
method at one window width (permutation test, 𝑃 < 0.01 at𝑊 = 100; no
significant difference was observed at𝑊= 90, 95).

significant differences in clustering coefficients. By contrast,
significant differences in clustering coefficients were found
in some other studies [2, 16]. One possible reason for this
issue is that the approach employed in constructing brain
networks cannot fully extract the “intrinsic edges” to avoid
the useful signal being buried into noises. Our results showed
that, under different network densities, the SNV method
revealed much more significant differences, which cannot be
discovered by the classic method. On this basis, the SNV
method can better highlight the differences between the
young and elderly groups according to various topological
properties.

We also utilized another independent dataset consisting
of nine AD patients and nine healthy controls to validate
the performance of the SNV method (for more demograph-
ics and experiments, see Supplementary Materials available
online at http://dx.doi.org/10.1155/2016/2429691). The brain
networks were obtained in the same manner. The SNV
method similarly revealedmuchmore significant differences,
and the 𝑃 values of the network properties obtained using
the SNV method significantly decreased compared with the
classic method (Supplementary Figure 1).

These experimental results indicated that this novel
method offers an apparent advantage in exploring significant
alterations in aging or age-related diseases. This method
reveals more differences, which the classic method cannot
discover in brain network analysis, and thus this novel
method is significant in exploring dynamic brain pathology.

4.3. SVM Classification. SVM is a machine learning method
that can be trained and is widely used in nonlinear function
classification. A good classification performance of the same
kind of SVM reveals the consistency within group and
the differences between groups. Our study used SVM to
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Figure 6: SVM classification results of young and elderly adults in the optimized feature set. Compared with classic network construction
method, (a) accuracy, (b) sensitivity, and (c) specificity of classification based on the SNV method in the optimized feature set improved
significantly.

classify the samples into young group or elderly group.
On the basis of both sets of features, the results showed
that the accuracy, sensitivity, and specificity of the SNV
method improved significantly in different sliding window
widths compared with the classic method. That is, our SNV
method can better highlight the differences between groups,

making classification into two classes easier. Particularly for
the optimized feature set, nodal information was combined
with global network properties to improve classification
accuracy. Given that the small-world value did not reveal
significant difference at any density or any window width,
which is consistent with the finding that a human brain
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Figure 7: 𝑃 values at window widths of 10–120. Dark gray dots represent 𝑡-test 𝑃 values. Red solid lines represent B-spline-based
nonparametric fits of 𝑃 values. 𝑃 values of all five network properties decreased to a relatively low level at a window width of 90–100.
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exhibits small-world architecture in both the young and the
elderly individuals [19], we removed this property from the
feature set to avoid redundant characteristics. As we can see
in Table 1, the nodes demonstrating significant difference
were found in parietal-(pre)motor, occipital, subcortical,
and medial temporal systems, which is consistent with a
study by Chou et al. [44]. Moreover, St Jacques et al. [45]
found an age-related difference in brain regions, such as the
precentral area, for subsequent memory of negative stimuli,
and Cao et al. [15] also found that brain regions showing
significant age-related changes in weighted degree centrality
were predominantly located in several default-mode regions.
These regions exhibiting changes were also found in our
results.

The highest accuracy in our study reached up to 89.3%.
Compared with homologous researches, our method pro-
vided a preferable result based on a relatively small optimized
feature set. In previous studies, Vergun et al. [38] reached 84%
with 100 connection features, Supekar et al. [39] reached 91%
with connectivity patterns between subcortical and primary
sensory regions, and Dosenbach et al. [40] reached 91% with
200 functional connections.

This study obtained similar results from the indepen-
dent dataset, indicating that our modeling method can
fully extract effective characteristics from brain networks
for classification. Furthermore, being a novel brain network
construction method, the SNV method could help explore
human normal aging or age-related diseases. Through the
SNVmethod, the optimizedmixed feature set can be possibly
regarded as a remarkable biomarker, and an effective auxiliary
diagnosis indicator based on SVM may be developed for
future study or for clinical applications.

4.4. Impact of the Sliding Window Width on Brain Network
Modeling. This study used the sliding window widths of 90,
95, and 100 to establish the functional brain network of
the young and the elderly groups. To analyze the impact of
window width on our modeling approach, we constructed
the brain networks by using the SNV method at window
widths from 10 to 120 and calculated the 𝑃 values of five
network properties between groups. For easier visualization,
we showed the results based on the middle density (12%)
in Figure 7. At window widths below 90, the 𝑃 values
were generally increasing with decreasing window width. By
contrast, at windowwidth above 100, the overall performance
rapidly deteriorated. Hence, the rational windowwidth is 90–
100.

Given that the TR of scans in our study was 2.0 s, window
width of 90 equaled the scan duration of 3min. In a review,
Birn et al. [46] mentioned that many test-retest fMRI studies
validated the reliability of functional connectivity using scan
duration of 3–11min and concluded that an increasing scan
length can improve reproducibility. Van Dijk et al. [47] stud-
ied the intrinsic functional connectivity in human brain, and
one of the most important conclusions was that correlation
strengths can be stable at an acquisition time of as brief as
5min. In addition, Gonzalez-Castillo et al. [48] suggested the
use of longer scans above approximately 10min. Although

the context and ROIs of the above studies vary, they all
suggested a relatively long but flexible scan duration of more
than at least 3min to achieve stable functional connectivity.
Therefore, when the sliding window width is considerably
narrow, the reliability of subnetworks constructed by Pear-
son correlation decreases, and thus the confidence of the
SNV method declines. On this basis, subnetwork will be
reliable when the scan duration of the subseries was longer
than 3min; that is, the window width should be above
90.

Moreover, although relatively stable brain connectivity
can be acquired under a long scan duration, the performance
of the brain network constructed by the classic method
with full-length scans remained unsatisfactory because the
effects of noise and individual difference are unavoidable
during fMRI acquisition. For example, two uncorrelated time
courses can be quite correlated when noise is added to
time courses, resulting in a spurious edge in the network.
We therefore introduced “voting” when constructing brain
network to promote the discriminability of identifying a
spurious edge. That is to say, “voting,” to a large extent,
reduces the false positive rate of identifying an edge. In
this way, we can obtain the most intrinsic edges among
those “stable edges.” The brain network composed of these
intrinsic edges can improve the consistency within group
and highlight the differences between groups. Given this,
when the sliding window width is considerably wide, the
number of subnetworks will be considerably small in our
modeling, and the active effect of the final voting process
will be reduced. The experimental results demonstrated this
inference. Figure 7 suggests that better modeling results will
be obtained when the window width is lower than 100, which
provides sufficient number of subnetworks for voting. In this
case, the number of the subnetworks was maintained above
25. The conclusion was also supported by the supplementary
dataset.

4.5. Limitations. Some limitations in our SNV method must
be clarified. First, our method can only be applied to dataset
that contains a sequence of elements, such as BOLD time
course from fMRI, and is not appropriate when applied
to single-variable dataset, such as cortex thickness from
structural MRI, in which case an individual network cannot
be constructed by correlation method. We therefore cannot
split a raw data sequence into windowed subsequences.
Second, our classification feature lacks mechanistic inter-
pretability. Although a simple or low-dimensional feature
in our study can greatly save calculating resources and
avoid overfitting, it in turn cannot comprehensively repre-
sent the whole brain network, indicating that we cannot
figure out the connectivity by nodal information in feature
vector. Third, the selection of window width in window-
sliding method is an open issue in recent years [49, 50].
We usually choose a window width through the rule of
thumb to avoid spurious fluctuation in network state [50].
Although our window widths were verified by experimental
results, a data-driven method is urgently needed to address
this issue, and that will be one of our studies in the
future.
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