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Chimeric antigen receptor (CAR)-T cell therapy is a progressive new pillar in

immune cell therapy for cancer. It has yielded remarkable clinical responses in

patients with B-cell leukemia or lymphoma. Unfortunately, many challenges

remain to be addressed to overcome its ineffectiveness in the treatment of

other hematological and solidtumor malignancies. The major hurdles of CAR

T-cell therapy are the associated severe life-threatening toxicities such as

cytokine release syndrome and limited anti-tumor efficacy. In this review, we

briefly discuss cancer immunotherapy and the genetic engineering of T cells

and, In detail, the current innovations in CAR T-cell strategies to improve

efficacy in treating solid tumors and hematologic malignancies. Furthermore,

we also discuss the current challenges in CAR T-cell therapy and new CAR T-

cell-derived nanovesicle therapy. Finally, strategies to overcome the current

clinical challenges associated with CAR T-cell therapy are included as well.

KEYWORDS

immunotherapy, gene therapy, CAR T-cell therapy, solid cancers, hematologic
malignancies
1 Cancer immunotherapy

The immune component plays a critical role in maintaining a balance between

recognizing cancer cells as foreign bodies and showing tolerance towards self-antigens.

The cancer immunity cycle depends on the ability of T-cells to attack and eliminate

cancer cells. Antibodies against PD-1 and PD-L1 have significantly improved the

outcomes of patients with melanoma and lung cancer (1, 2).
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Cancer immunotherapy relies on the immune system of

patients to recognize and attack cancer cells. Cancer

immunotherapies potentiate immune cells by relieving their

suppression or directly activating them to perform their

immune function more effectively. There are different cancer

immunotherapies based on the targeted immune components.
1.1 Cytokines

In the 1970s, tumor necrosis factor (TNF) was systemically

injected into patients with cancer as a cancer immunotherapy

modality. However, toxicities due to TNF infusion, such as fever,

rigors, and pulmonary edema, limited its use in cancer treatment

(3). Interleukin 2 (IL-2) is another cytokine that demonstrated

efficacy and was approved by the Food and Drug Administration

(FDA) for metastatic renal cell cancer in 1992 and metastatic

melanoma in 1998. However, similar to TNF, the use of IL-2 was

limited due to the severe toxicities it induced in the patients,

which outweighed the benefits of the treatment (4).
1.2 Vaccines

The Bacillus Calmette-Guerin (BCG) vaccine was the first

vaccine approved by the FDA in 1990 for the treatment of

superficial bladder cancer. In 2010, the FDA approved a

sipuleucel-T vaccine for castrate-resistant prostate cancer to

extend the overall survival of patients. However, these vaccines

failed to confer durable responses (5). This was perhaps due to

the limited knowledge on dosing, vaccine availability in the

tumor microenvironment, and engagement of T cells.
1.3 Checkpoint inhibitors

The discovery of immune checkpoint inhibitors was a

breakthrough in cancer research. Allison showed that blocking

cytotoxic T lymphocyte antigen 4 (CTLA-4) releases the brake

on the immune system and boosts the immune response against

cancer cells (6). Ipilimumab, a CTLA-4 checkpoint inhibitor,

significantly improves survival in patients with metastatic

melanoma (7). The CTLA-4 receptor is induced on T cells 48-

72 h after T-cell receptors are engaged with antigen-presenting

cells. The CTLA-4 receptor is also expressed on FOXP3 positive

regulatory T cells (8). Mechanistically, CTLA-4 is known to have

a PI3K-like motif, implying that it may interact with the PI3K,

MAPK, and NF-kB pathways (9). Following CTLA-4 treatment,

the FDA approved the inhibition of programmed death-1 (PD-

1) and its ligand PD-L1 as immune checkpoint inhibitors for

metastatic melanoma and lung cancers (10). PD-1 and PD-L1

interactions regulate immune escape in the tumor and tumor

microenvironment. PD-1 expression on T-cells is a marker of
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antigen-experienced exhausted T-cells (11). Mechanistically,

ligation of TCR and PD-1 leads to phosphorylation of a

tyrosine residue located within the immunoreceptor tyrosin-

based switch motifs (ITSM) of the PD-1 cytoplasmic tail. These

events, including binding of phosphatases and augmentation of

PTEN, expression contribute to decreased T-cell proliferation,

survival, protein synthesis, and IL-2 production (12). An

increasing number of clinical trials are being launched every

year using these checkpoint inhibitors as monotherapies or in

combination with standard of care or targeted therapies for

various malignancies.
1.4 Adoptive cell therapy

CAR T-cell therapy is an adoptive cell-transfer-based

immunotherapy developed by genetically modifying T cells.

CAR T-cell therapy is directed against tumor-associated

antigen and is independent of MHC-receptor presentation by

the. This therapy has revolutionized the treatment of patients

with B-cell lymphomas by conferring durable clinical responses.

Several ongoing clinical trials have tested the efficacy of CAR T-

cell therapy for different malignancies (13).
2 Genetic engineering of T-Cells

The source of T cells for CAR T-cell production can be either

the patient (autologous) or a donor (allogenic). Blood is collected

by venipuncture or apheresis from the patient and donor. The T

cells undergo purification and are subjected to genetic

engineering (14). CARs are artificially generated receptors that

have been built to specifically target antigens expressed on the

cell surface (15). T cells are typically engineered to express CARs

by transducing patient T cells with a virus that encodes aDNA

construct. The resulting CAR T cells are then expanded ex vivo

and infused back into the patient (Figure 1A). Genetic

engineering is performed using viral or non-viral methods to

eliminate the expression of proteins such as HLA class I and II,

in allogeneic T cells (16). This helps mitigate rejection by the

hosts’ immune system. These vectors are also co-delivered with

transposase to enable the integration of transgenes into the

genome in a random fashion (17). Transgenes are typically

introduced under the control of endogenous promoters. A

typical CAR consists of a single-chain variable fragment (scFv)

with a flexible hinge domain, transmembrane domain, and

CD3z activation domain (14) (Figure 1A) and several CAR T-

cell generations have been engineered (18) (Figure 1B). The key

raw material for CAR T-cell products is the viral vector. The

viral vector is stored in large quantities at −80°C for up to 9 years

(19). Safety, sterility, titer, purity, and potency of the vector are

crucial for infusion into patients (20). Lentiviral and retroviral

vectors are potentially oncogenic however, vectors are associated
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with a lower risk of mutagenesis (21). It is also important to

increase the safety of CAR T-cell therapy to improve the

specificity of modified T cells.
3 CAR T-Cell therapy

3.1 Solid tumors

Tumors can suppress T-cells activity through various

methods, and several studies have examined engineering cells

to overcome this suppression. We evaluated clinical trials for the

adequacy of CAR T-cell therapies in solid tumors (Table 1) and

important targeted surface markers (Figure 2).

CAR T, chimeric antigen receptor-T; CAE, carcinoembryonic

antigen; CD276, cluster of differentiation 276; CT 041, claudin

18.2; BPX-601, PSCA-Targeted CAR T-Cells; hCD70, human

cluster of differentiation 70; 4S CAR T, fourth-generation safety-

designed CAR; GFRA4, GDNF Family Receptor Alpha 4; EGFR,

epidermal growth factor receptor and CD133, cluster of

differentiation 133.
3.1.1 Pancreatic tumor
CAR T-cells have demonstrated therapeutic efficacy both in

vitro and in orthotopic or metastatic xenograft mouse models.

Studies have hypothesized that chemokine receptors CXCR2-

expressing CAR T-cells could traffic towards IL-8 more

efficiently. In xenograft animal models, CAR T-cells expressing

CXCR2 showed significant antitumor activity against avb6-
expressing pancreatic tumors (23). Interestingly, 4-1BB co-

stimulation can lower PD-1 expression in the generated T
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cells, showing more potent antitumor activity against PD-L1-

expressing tumor cells (24, 25). Additionally, clinical trials for

pancreatic, colorectal, and hepatocellular carcinomas

demonstrated the inhibitory effect of CD133-CAR T-cells on

the metastatic potential of the cancers (26). In addition, other

varieties of antigen targets for pancreatic cancer CART-cell

therapy, such as CD24 (27), MUC-1 (28), PSCA (29),

mesothelin (30), and FAP (31), have been investigated in

preclinical studies and clinical trials.

3.1.2 Breast cancer
Several studies have shown that, CAR T-cells are very potent

at killing triple-negative breast cancer (TNBC) tumor cells in an

exceedingly tMUC1-highly specific manner. MUC28z CAR T-

cells, a specifically contain CAR with both CD3z and CD28

signaling domains, which increases the synthesis of cytokine

IFN-g, granzyme B, and other kinds of cytokines or chemokines

produced by Th1 cells. In addition, a single dose of MUC28z

CAR T-cells could significantly abolish TNBC cell proliferation

and increase survival benefits in xenograft models (32). Another

study revealed that 4-1BB or CD27 co-stimulation enhanced

NKG2D CAR T-cells involved in anticancer function in TNBC

tumor models (33). Another study showed that CAR T-cells

support HRG1b to successfully abolish breast cancer cell

proliferation through HER family receptors and deliver a

practical therapeutic approach to overcome cancer resistance,

specifically against HER2-based targeted therapy (34). Human

anti-HER2 CAR T-cells also exhibit desirable targeting,

triggering cell death in HER2 overexpressing breast cancer

cells (35). Furthermore, another biomarker, mesothelin,

identified by special CAR T-cells, has been reportedly as

promising in immunotherapy for breast cancers (36).
BA

FIGURE 1

Generation and administration of CAR T-cells in patients with cancer. (A) T cells are collected from patients’ blood via apheresis. They are
genetically engineered to express CAR and cultured ex vivo for expansion. CAR T-cells are then administered to patients. The cells identify their
target and kill the tumor cells expressing that target. (B) Illustration of basic structure of four generations of CAR T-cells. Created with
BioRender.com.
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3.1.3 Thyroid cancer
The first study on CAR T-cell therapy for advanced thyroid

cancer revealed the development of an intercellular adhesion

molecule 1 (ICAM 1)- specific CAR T-cell and its preclinical

efficacy (37). However, various factors may impede clinical

translation of anti-ICAM 1-CAR T-cells. While T cells

upregulate ICAM 1 expression and are followed by activation

(38), it is possible that anti-ICAM 1-CAR T-cells might target

each other, resulting in poor in vitro proliferation and

persistence in patients with thyroidcancer. Another condition

reported was elevated soluble ICAM 1 found in the serum of

patients with thyroid cancer (39), which might neutralize anti-

ICAM 1-CAR T-cells in the periphery before recognizing ICAM

1+ tumor cells. In the absence of a tumor-associated antigen

target (TAA), alternative technologies using antibody-based

CARs to mimic T cell receptor (TCR) recognition of specific

tumor-neoantigens, such as the complex of BRAFV600E

oncoprotein with MHC, could be further investigated (40).

The transgenic TCR tumor-infiltrating lymphocyte approach

requires tumor cells to maintain the ability to process and
Frontiers in Immunology 04
present antigens at the cell surface. Medullary thyroid cancer

(MTC) may be an excellent target for CAR T-cells therapies,

given that these tumors commonly express carcinoembryonic

antigen (CEA) and GDNF family receptor a4 (GFRA4). Indeed,
GFRA4-specific CAR T-cell strategies are currently under

preclinical development (41).

3.1.4 Brain cancer
Various clinical studies have been completed and are

ongoing using CAR T-cells in glioblastoma (GBM). The first

clinical trial on humans involving 10 patients with recurrent

GBM evaluated the effect of intravenously injected EGFRvIII-

CAR T-cells; while CAR T-cells expanded within the blood and

were trafficked to the tumor region, they found antigen loss in

five out of seven patients, and therefore, the tumor

microenvironment indicated higher expression of inhibitory

molecules, and the rate of occurrence of Treg cells was higher,

as indicated (42). Improve the CAR T-cell therapy requires

identifying TAA expressed with stability and specificity with

definite heterogeneity throughout the tumor region. An
TABLE 1 Ongoing and currently recruiting clinical trials involving CAR T-cell therapies for solid tumors (22).

Intervention Condition Location ClinicalTrials.gov
Identifier

CEA CAR T-cells Pancreatic Cancer Chongqing University Cancer Hospital
Chongqing, Chongqing, China

NCT04348643

CD276 CAR T-cells Advanced Pancreatic Cancer Li Yu
Shenzhen, Guangdong, China

NCT05143151

CT041 autologous CAR
T-cell

Pancreatic Cancer Anhui Provincial Cancer Hospital
Hefei, Anhui, China

NCT04581473

BPX-601 CAR T-cells Metastatic Castration-resistant Prostate
Cancer, Metastatic Prostate Cancer,
Metastatic Pancreatic Ductal
Adenocarcinoma,
Metastatic Pancreatic Cancer and
Metastatic Pancreatic Adenocarcinoma

Moffitt Cancer Center
Tampa, FL, USA

NCT02744287

Anti-hCD70 CAR
transduced PBL

Pancreatic Cancer National Institutes of Health Clinical Center
Bethesda, MD, USA

NCT02830724

CEA CAR T-cells Breast Cancer Chongqing University Cancer Hospital
Chongqing, Chongqing, China

NCT04348643

4S CAR T-cells Breast Cancer The Seventh Affiliated Hospital, Sun Yat-Sen University
Shenzhen, Guangdong, China

NCT04430595

CD44v6-specific CAR T-
cells

Cancers Which Are CD44v6 Positive Shenzhen Children’s Hospital, Shenzhen, Guangdong, China NCT04427449

Anti-hCD70 CAR
transduced PBL

Breast Cancer National Institutes of Health Clinical Center, Bethesda, MD, USA NCT02830724

AIC100 CAR T-cells Anaplastic Thyroid Cancer and
Relapsed/Refractory Poorly Differentiated
Thyroid Cancer

Weill Cornell Medical College
New York, NY, USA

NCT04420754

single dose of CAR T-
GFRa4 cells

Metastatic Medullary Thyroid Cancer University of Pennsylvania
Philadelphia, PA, USA

NCT04877613

EGFRv III -CAR
transduced PBL

Malignant Glioma National Institutes of Health Clinical Center, 9000 Rockville Pike
Bethesda, MD, USA

NCT01454596

anti-CD133-CAR vector-
transduced T cells

Brain Tumor Biotherapeutic, Department and Pediatrics Department of Chinese
PLA General Hospital Beijing, Beijing, China

NCT02541370
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appropriate target was identified for these criteria. A study

demonstrated in vivo therapeutic effects of intracranial delivery

of chondroitin sulfate proteoglycan 4 (CSPG4)-CAR T-cells in

nude mice transplanted with CSPG4-expressing glioma cells or

GBM neurospheres models (43). As the endmost CAR T-cell

product mixes with CD4+ and CD8+ CAR T-cells, this approach

was refined to distinguish the T cell subsets that arbitrate

antitumor activity. Another study revealed that the CD4+ CAR

T-cell subset, was more effective than CD8+ CAR T-cells in

orthotopic GBM mouse models and IL-13Ra2-CAR T-cells,

which possibly indicated that CD8+ CAR T-cells were rapidly

exhausted (44). Co-expression of the IL-8 receptor, CXCR1, and

CXCR2, enhanced CAR T-cell trafficking and was stably

retained at in the glioma tumor site in a mouse model (45).

Genetically engineered EGFRvIII-CAR T-cells co-expressing a

bispecific T-cell engager (BiTE) directed against EGFR (wild-

type) were established in GBM tumor models (46). Additionally,

various CAR target antigens in GBM tumors, including B7-H3

(47, 48), HER2 (49–51), and EphA2 (52), have been

demonstrated in advanced phase I clinical trials using HER2-

CAR T cells and in other preclinical studies (50, 53).

The development of a universal CAR T (UCAR T) cell,

which allows a tri-cistronic transgene to encode three CAR

molecules against HER2, IL-13Ra2, and EphA2, overcame the

interpatient variability and targeted 100% of GBM tumor cells

(54). In a different way to overcome antigen escape problems
Frontiers in Immunology 05
and tumor heterogeneity, a new CAR approach was designed

that employs a toxin as the targeting entity, which was developed

and tested in a murine glioma model. Chlorotoxin (CLTX)

directed CAR T-cellsshowed GBM cell binding affinity by

matrix metalloproteinase-2 and CLTX- CAR T-cells efficiently

limited tumor growth in mouse model, which addressed the off-

target effects (55) The ongoing and currently recruiting phase II

clinical trials (thyroid tumor: I clinical trials) involving CAR T-

cell therapies for solid tumors are listed in Table 1.
3.2 Hematologic malignancies

Hematologic malignancies, also known as blood cancers,

arise from the uninhibited proliferation of abnormal blood cells

and made up approximately 10% of all cancers in 2019 in the

United States (56). CAR T-cell therapies have shown significant

promise in the treatment of hematologic malignancies in recent

years (57–61), although the first insight into their efficacy of

CAR T-cell therapy was obtained from the clinical trials

involving solid tumors (62, 63). The response time for CAR T-

cell therapy is lower than that for other therapeutic strategies,

such as tumor vaccines and immune checkpoint blockade,

although this is not always true since, some of the CAR T-cells

persist with a memory phenotype and respond more quickly (64,

65). These efforts have resulted in three FDA-approved first-of-
FIGURE 2

T cell-mediated antitumor effects by chimeric antigen receptors (CAR). Engineered CAR T-cells can recognize tumor cells by CAR binding to
tumor-associated antigen (TAA), signaling activation and targeting the tumor cells by secreting granzymes, and perforins, and inducing TRAIL
and FasL expression. CAR T-cells can be used as an ideal platform to deliver immune checkpoint therapeutic antibodies, such as anti-PD1 and
CTLA-4 antibodies. CC-chemokine receptor 2; CD, cluster of differentiation; CTLA-4, cytotoxic T-lymphocyte associated protein 4; MHC, major
histocompatibility complex; PD-1, programmed cell death protein-1; PD-L1, programmed death-ligand 1; and TCR, T cell receptor. Immune
cells invade the tumor by activating proinflammatory cytokines and chemokines. Created with BioRender.com.
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their-kind therapies for treating refractory diffuse large B-cell

lymphoma (DLBCL) and acute lymphoblastic leukemia

(ALL) (66).

3.2.1 Hodgkin’s lymphoma
Hodgkin’s lymphoma (HL) is less common than other

hematologic malignancies, accounting for <1% of all cancers in

the United States (56). In 2020, 83,087 new HL cases and 23,376

HL-related deaths were estimated worldwide (67). HL is

characterized by Hodgkin Reed-Sternberg (HRS) cells

belonging to the B-cell lineage. HRS and anaplastic large cell

lymphoma (ALCL) cells highly express the cell surface marker

CD30 (68). While the FDA-approved antibody-drug conjugate

brentuximab vedotin is clinically effective in treating these

tumors by targeting CD30 (68, 69), the progression-free

survival (PFS) rate remains low at 5 years, suggesting that

improved targeted therapies could cure the disease by driving

tumor cells in long-term remission (70). CAR T-cell therapies

directed towards CD30 have shown durable antitumor response

in HL cell lines and mouse models (71, 72). Inducing expression

of CCR4 in anti-CD30 CAR T-cells promotes their migration

towards tumors in HL mouse xenografts (73). In phase I clinical

trials, antitumor responses have been observed in the presence

or absence of conditioning chemotherapy when patients with

brentuximab-refractory HL and ALCL patients were treated

with anti-CD30 CAR T-cells containing a CD28 (74) or 4-1BB

costimulatory domain (75).
3.2.2 Non-hodgkin lymphoma
Non-Hodgkin lymphoma (NHL) is more common than HL

and constitutes approximately ~4% of all cancers in the United

States (56). In 2020, 544,352 new NHL cases and 259,793 NHL-

related deaths were estimated worldwide (67). NHL can be

categorized as B-cell lymphoma (BCL) and T-cell lymphoma

(TCL). Most BCL cells express the B-cell differentiation markers -

CD19 and CD20, whereas some TCLs express the CD30

marker (76).

3.2.2.1 B-Cell lymphoma

BCL constitutes the majority (~85%) of NHLs (77). DLBCL

(26%), follicular lymphoma (FL; 13%), marginal zone

lymphoma (MZL; 7%) and mantle cell lymphoma (MCL; 3%)

are the main subtypes of NHL (76). CAR T-cell therapies

targeting these antigens have shown a high overall response

rate (ORR) and complete response rate (CRR) in NHL in clinical

trials (60).

In a clinical trial involving seven patients, the City of Hope

National Medical Center and Fred Hutchinson Cancer Research

Center researchers used electroporation to introduce the CD20-

specific CAR transgene into the T cells of patients with MCL and

refractory BCL (78). This resulted in either stable disease (n=4)
Frontiers in Immunology 06
or partial response (n=1) or complete responses (n=2) with

minimal toxicities (78). In another clinical trial published by the

City of Hope, patients with recurrent DLBCL and refractory FL

were treated with CD20- and CD19-specific CAR T-cells.

Although minimal toxicity was observed, the persistence of

infused cells remained low (79). The National Cancer Institute

(NCI) first reported the efficacy of CD19-specific CAR T-cells

incorporated with a CD28 costimulatory domain (FMC63-28Z)

in combination with chemotherapy and IL-2 administration in

the treatment of treating refractory FL and splenic MZL in a

clinical setting (58, 80). While patients did not suffer from

evident chronic toxicities, cytokine release syndrome (CRS)

was observed (58). In a pilot study conducted by Till et al.

(2012), patients with FL and MCL received CD20-specific CAR

T-cells with costimulatory domains via electroporation followed

by conditioning chemotherapy (81). Notably, patients showed

partial or complete response and the persistence of T cells in the

blood lasted for 9-12 months, which may be attributed to

multiple IL-2 treatments (81). Another clinical trial involving

the administration of anti-CD19 CAR T-cells in two children

with relapsed and refractory (R/R) pre-B-cell ALL resulted in

complete remission (82). Interestingly, one of the patients

relapsed due to the emergence of CD19-negative cells,

demonstrating a classic immune escape mechanism, indicating

that and other B-cell markers are needed to improve the efficacy

of treatment (82).

The NCI first reported successful administration of anti-

CD19 CAR with a CD28 costimulatory domain in patients with

DLBCL (83). Cyclophosphamide and fludarabine was included

in their chemotherapy regimen prior to CAR T-cell infusion.

The combination therapy worked well, driving refractory BCLs,

including DLBCL, into complete remission (83). Another

clinical trial demonstrated the efficacy of anti-CD19 CAR T

cells containing CD28 and TCR zeta domains with reversible

toxicities, when administered to children and young adults with

relapsed or refractory B-cell ALL (B-ALL) following the

aforementioned chemotherapy regimen (83, 84). Antitumor

responses have also been observed when anti-CD19 CAR T-

cells with a 4-1BB costimulatory domain were administered to

patients with NHL or B-ALL (85, 86). Fludarabine conditioning

chemotherapy proved effective in improving ORR (86). Clinical

trials involving anti-CD19-CAR T-cells have shown better

clinical responses in patients with ALL and chronic

lymphocytic leukemia (CLL) when combined with

cyclophosphamide conditioning (57, 87). Relapses were

observed due to the low in vivo persistence of CAR T-cells and

the emergence of CD19-negative cells as a mechanism of

immune escape (57, 87). Interestingly, reports also showed the

efficacy of anti-CD19 FMC63-28Z CAR T-cells alone in treating

patients with ALL, CLL, DLBCL, and MCL, in the absence of

prior chemotherapy (88). Graft-versus-host disease (GVHD)

was observed in one patient (64, 88). Anti-CD19 CAR T-cells
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therapies have shown promising results when used as adjuvant

treatments following autologous or allogeneic hematopoietic cell

transplantation (HCT) in patients with ALL or B-cell NHL, with

the former resulting in a higher ORR and 30-month PFS rate

than allogeneic HCT (89). Phase I and II trials of axicabtagene

ciloleucel, anti-CD19 CAR T-cells with CD28 costimulatory

domain, have demonstrated anticancer response in refractory

NHL when combined with cyclophosphamide and fludarabine

chemotherapy, with an ORR of 82% and complete response rate

of 54% in more than 100 treated patients (90). Similarly, anti-

CD19 CAR T-cells with a 4-1BB costimulatory domain in

combination with the aforementioned chemotherapy (90),

resulted in an impressive ORR of 80% and a complete

response rate of 60% in patients with lymphoma (91). Clinical

trials using this combination therapy in patients with DLBCL are

underway (92). While CD20-specific second-generation CAR T-

cells containing a 4-1BB costimulatory domain were able to

drive refractory DLBCL into partial remission when

administered with prior conditioning chemotherapy (93), a

phase II trial using the same CAR T-cells resulted in complete

remission in six out of 11 patients with NHL (FL, MCL, DLBCL)

patients (94).

Recent efforts in CAR T-cell development have targeted the

identification of novel B-cell surface markers to improve

selectivity of the therapy toward tumor cells, thereby sparing

normal cells and reducing the side effects of CART-cell therapy.

Three attractive targets, CD23 (present on CLL cells) (95), ROR1

(present on CLL andMCL) (96), and immunoglobulin kappa (k)
light chain (present on MCL, DLBCL, and some other NHLs)

(97) are being evaluated for their anticancer activity in

preclinical models since they are either not expressed or

present at low levels in normal cells. CD22 is another potential

target antigen expressed on B-ALL and other B-cell lymphomas

(98). Preclinical results have demonstrated potent antitumor

activity when at monoclonal antibody targeting a proximal

epitope on CD22 is used for CAR T-cell production (98).
3.2.2.2 T-Cell lymphoma

While TCL accounts for only a small proportion (~15%) of

all NHL cases, they are associated with a worse prognosis

compared to B-cell NHL (77, 99). Currently, therapeutic

options for the treatment of TCL are limited to allogeneic

HCT (100). Developing CAR T-cell therapies can be a

breakthrough; however, it is imperative to do so by identifying

antigen markers that are exclusively present on malignant T

cells. One potential target antigen could be CD30 since some

TCLs such as ALCL express it on their cell surfaces (68).

Although high cytotoxicity was observed, natural killer cells

have shown antitumor activity in preclinical T-cell ALL-derived

cell lines (101). This study suggests that CAR T-cell therapies

have the potential to treat complex, difficult-to-treat diseases.
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However, a better understanding of cytotoxicity management is

required to improve the effectiveness of these therapies.

3.2.3 Acute myeloid leukemia
In 2019, acute myeloid leukemia (AML) accounted for <2%

of all cancers in the United States (56). The disease is associated

with a poor prognosis owing to the limitation in finding a

suitable target that is only present in AML cells and absent in

normal hematopoietic stem cells (102). CD123, a hematopoietic

cell marker, has shown efficacy in preclinical models (102, 103).

A phase I clinical trial is currently ongoing to determine the

safety and efficacy of second-generation autologous or allogeneic

anti-CD123 CAR T-cells (with a CD28 costimulatory domain)

in combination with cyclophosphamide and fludarabine

chemotherapy (104). In addition to CD123, CAR-T cells

specific for CD33, another myeloid antigen, have also shown

promise in vivo for refractory AML (105). Higher expression of

CD33 on normal cells makes them a less attractive target for

treatment than CD123 (105). A phase I clinical trial, involving

anti-Lewis Y (LeY) CAR T-cells with a CD28 costimulatory

domain, demonstrated modest responses in two patients who

had received prior fludarabine chemotherapy (106). CAR T-cells

show durable persistence in patients, leading to mild toxicity

(106). Other potential CAR T-cell therapy targets, including

CD47, CD96, and CD44v6, are currently being investigated in

preclinical models (100).

3.2.4 Multiple myeloma
In 2019, 176,404 new multiple myeloma (MM) cases and

117,077 MM-related deaths are estimated worldwide (67). In the

United States, in 2019, MM accounted for <2% of all cancers

(56). MM cells express plasma cell surface antigens CD138 and

CD38 (107). A phase I clinical trial involving CD138-specific

CAR T-cells demonstrated efficacy with tolerable toxicities in

five patients with refractory MM, with 4 patients reaching a

stable disease state and one demonstrating a marked reduction

of MM cells in the peripheral blood (108). Another phase I trial

is ongoing to determine the dose-limiting toxicities associated

with anti-CD138 CAR T-cell therapy in relapsed or refractory

MM (NCT03672318).

B-cell maturation antigen (BCMA) is another surface

marker present in B, plasma and MM cells (109). A clinical

trial of anti-BCMA CAR T-cells with CD28 costimulatory

domain conducted at NCI demonstrated partial responses in

two patients and stable disease in 10 patients when treated with

low doses of cells in combination with chemotherapy (110).

High doses of CAR T-cells resulted in complete response in one

patient and partial response in the other (110). Patients also

experienced a higher degree of toxicity with increasing CAR T-

cell doses (110). Anti-BCMA CAR T-cells alone have also shown

efficacy in the absence of chemotherapy, leading to partial
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response in one patient and complete response in another, with

toxicity levels similar to those observed in the NCI trial (111).

MM cells demonstrate a classic immune escape strategy through

the emergence of BCMA-negative cells (111). The infusion of

low doses of anti-BCMA CAR T-cells with the 4-1BB

costimulatory domain after chemotherapy resulted in partial

response and mild toxicities in one patient, while high doses

resulted in partial or complete responses in 11 out of 15 patients

(112). A phase III trial is currently ongoing to determine the

safety and efficacy of bb2121 in combination with standard MM

treatment regimens and chemotherapy (Table 2). Another phase

I trial with anti-BCMA CAR T-cells called LCAR-B38M has

resulted in partial or complete responses with mild toxicities in

18 of the 19 treated patients (113). Anti-CD19 CAR T-cells

administered to a patents with refractory MM following

melphalan chemotherapy and autologous stem cell

transplantation resulted in a complete response (114).

Preclinical evaluation of other potential antigen targets for

CAR T-cell therapy such as CD38, CD44 isoform variant 6

(CD44v6), CD70, CD56, immunoglobulin k light chain and

signaling lymphocyte–activating molecule F7 (SLAMF7) is

underway (115).

Currently, several phase III clinical trials are ongoing to

determine the efficacy of CAR T-cells therapies targeting various

antigens in combination with chemotherapy in patients with

ALL, MM, AML and BCL (Table 2).

CAR T, chimeric antigen receptor-T; R/R, relapsed or

refractory; B-ALL, B-cell acute lymphoblastic leukemia; B-LLy,
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B-cell lymphoblastic lymphoma; BCL, B-cell lymphoma;

DLBCL, Diffuse Large B Cell lymphoma; MRD, minimal

residual disease; CLL-1, C-type lectin-like molecule-1; AML,

acute myeloid leukemia; MM, multiple myeloma; NHL, non-

Hodgkin lymphoma; BCMA, B-cell maturation antigen.
4 Side effects of CAR T-Cell therapy

CAR T-cell therapies are known to cause severe side effects

in various malignancies including CRS, GVHD, tumor lysis

syndrome (TLS) and immune effector cell associated

neurotoxicity syndrome (ICANS) (82, 116–119). CRS is

activated by a massive increase in serum cytokine levels

followed by T-cell activation (58, 65, 120) and is accompanied

by nausea, vomiting, headaches, fever, myalgia, anorexia,

coagulopathy, hypotension, renal dysfunction, and pulmonary

edema (118). Severe CRS has been reported following by the

administration of anti-CD19 CAR T-cell therapies in patients

with NHL (86). A study conducted by Grupp et al. demonstrated

the potential of tocilizumab, an anti-IL6 receptor antibody, in

rapidly eliminating CRS (82).

Neurological toxicities may lead to B-cell aplasia, confusion,

unresponsiveness, and seizures (118, 121), especially when anti-

CD19 CAR T-cell therapies are administered in patients with

lymphoma (86, 89). However, the mechanisms underlying these

toxicities remain unknown (119). Notably, CRS and NS rates
TABLE 2 Ongoing and currently recruiting phase III clinical trials involving CAR T-cell therapies for hematologic malignancies (22).

Intervention Condition Location ClinicalTrials.gov
Identifier

Anti-CD19 CAR T-cells with concurrent BTK inhibitor for BCL BCL Union Hospital, Wuhan, Hubei, China NCT05020392

CAR-transduced autologous T cell intravenous infusion in subjects with R/R
DLBCL with chemotherapy

R/R DLBCL Multi-center study NCT03391466

Anti-CD19 CAR T-cells with chemotherapy or blinatumomab in adults with
B-ALL

B-ALL Multi-center study NCT04530565

BiRd regimen combined with BCMA CAR T-cell therapy in patients with
MM

MM The First Affiliated Hospital of Soochow
University
Suzhou, Jiangsu, China

NCT04287660

VRd regimen combined with autologous BCMA CAR T-cell therapy in
patients with MM

MM Multi-center study NCT04923893

Autologous CAR T cell therapy targeting BCMA MM Multi-center study NCT04181827

Efficacy and Safety Study of bb2121 Versus Standard Triplet Regimens in
Subjects with R/R Multiple Myeloma (RRMM)

MM Siteman Cancer Center, Saint Louis, MO, USA
Hackensack University Medical Center, NJ,
USA
Sarah Cannon Research Institute Center for
Blood, TN, USA

NCT03651128

Intravenous autologous CD19 CAR T-Cells for R/R B-ALL R/R B-ALL UKM Medical Centre
Bandar Tun Razak, Kuala Lumpur, Malaysia

NCT03937544

Tisagenlecleucel in adult patients with aggressive B-cell NHL B-cell NHL University of Chicago Medical Center,
Hematology & Oncology, IL, USA
Sarah Cannon, Research Institute, TN, USA

NCT03570892
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were higher in patients with hematologic malignancies than in

those with solid tumors (60).

GVHD is often experienced by patients following the

infusion of allogeneic lymphocytes from HTC donors, because

of the response elicited by non-cancerous cells (122). Allogeneic

anti-19 CAR T-cells cause chronic GVHD but no acute GVHD

in patients with various B-cell lymphomas (118). The lack of

GVHD may be attributed to the low persistence of CAR T-

cells (76).

TLS is characterized by hyperkalemia, hyperuricemia,

hypocalcemia, and hyperphosphatemia (118). Severe TLS has

been observed in patients following infusion of anti-CD19 CAR

T-cell therapies in various studies (59, 64).

Other less common side effects of CAR T-cell therapies

include hypotension (87), pulmonary toxicity (123),

hemorrhagic events (86, 93), and even death in rare cases (124).

Strategies to eliminate CAR T-cells once the desirable response is

achieved, are urgently required. Several studies have reported the

use of biodegradable CAR T-cells, addition of an EGFR on the T-

cell surface to be targeted by anti-EGFR antibodies, RNA

electroporation (125, 126) or suicide gene incorporation (using

target epitopes from CD34/CD20/caspase 9) (102, 103, 127–131).

Although these approaches may work well, they should be used

with caution since, the antitumor response achieved in patients

may be affected in the absence of CAR T-cells (76).
5 Current challenges in CAR T-Cell
therapy

The major challenges in the field of CAR T-cell therapy are

to improve the in vivo persistence of CAR T-cells and identify

ways to mitigate therapeutic toxicity. In addition, many

unknowns in the field remain to be investigated, such as the

mechanism of target-cell death, optimal dose needed for

maximum efficacy, duration of ex vivo T-cells expansion, and

efficacy of single vs multiple infusions of CAR T-cells.

CAR T-cells must persist and remain functional for a long

time to prevent relapse. Long-term persistence of anti-CD19

CAR T-cells has been demonstrated in patients for many years

after infusion (65, 82, 132). The limiting factors for in vivo CAR

T-cell persistence may include ex vivo conditions in which T cell

expansion occurs, stability of transgene expression, and immune

responses developed against the transgene (133). Similarly,

severe toxicities associated with CAR T-cell therapy may be

due to the disease burden (84), high-dose chemotherapy

regimen (87), high-dose CAR T-cell infusion (86), and as peak

levels of serum cytokines and C-reactive protein (83, 86).

Determining the mechanism underlying target cell death,

which may be caused by signaling domains associated with

antigens or TCR complex chain, is crucials (134). The fate of
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the residual natural TCR remains unclear. T cells can also

mediate target-cell death via granzyme release, cytokine

release, and other immune effectors.

Responses to different doses of CAR T-cell therapy vary on a

patient-by-patient basis. Some patients can greatly benefit from

small doses, while others may not show any effect after infusion

of a large dose. Therefore, it is challenging to determine the

optimal T-cells dose for individual patients. Other important

factors that may modulate this response are disease burden and

toxicity levels (65, 82). A few studies recommend infusion of less

than 108 CAR T-cells following lymphodepletion in clinical trials

to achieve a higher complete response rate (60, 135). Although

infusion of multiple small doses of CAR T-cells has not shown

any toxicity, it is still unknown whether single or multiple

infusions lead to optimal efficacy remains unknown (59, 136).

The duration for which T cells need to be expanded in

culture before infusion remains unclear. Since a less

differentiated and more proliferative phenotype (such as T

memory stem cells) is associated with better responses in

preclinical models (137, 138), long-term ex vivo T cell

expansion may not yield optimal results. Several crucial details

regarding T-cell trafficking after infusion are currently

unknown. Homing and trafficking of molecules on tumor

vessels play a key role in modulating T-cell recruitment into

the tumor microenvironment (139), thereby influencing the

response in patients (140).
6 CAR T-Cell-derived nanovesicle
therapy

Extracellular vesicles (EVs) are nano-sized membrane

based-vesicles secreted by almost all cells and consistof

exosomes (small EVs), microvesicles, apoptotic bodies and

larger vesicles. EVs are capable of carrying various biological

cargoes such as lipids, proteins and nucleic acids and resembles

of their origin cells compositions (141–145). They are involved

in local or distal intercellular communication by interacting with

or delivering biologically active cargoes to recipient/target cells

(146, 147). Immune cells such as dendritic cells, natural killer

cells, macrophages, B- cells, and T-cellshave been shown to

release EVs and are capable of modulating immunoregulation,

tumor microenvironment and EV-based immunotherapy for

cancers (148–152).

As EVs are mirror images of their parent cells in terms of

their composition, CAR T-cell-derived EVs may substitute CAR

T-cells and overcome some limitations. For example, CAR T-

cells can proliferate in an uncontrolled manner thus inducing

cytokine release syndrome (58, 123), which can lead to

complications and even death (153),whereas EVs are non-

proliferative biological nano-materials. Unlike cell therapies,
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EVs may not cause immune rejection (154). Immunotherapies

can be hampered by tumor microenvironments; however, EVs

are not influenced by the tumor microenvironments (155, 156).

Recent studies have reported the use of CAR T-cell derived

EVs (exosomes or EVs) in cancer therapies (157–159).

Exosomes derived from CAR T-cells (CAR-T exosomes) have

shown high levels of cytotoxic molecules, such as perforin and

granzyme B. CAR-T exosomes inhibit the growth of human

breast tumors. Moreover, an in vivo preclinical model showed

that the administration of CAR-T exosomes is safer than CAR-T

cell therapy (157). Another study compared the penetration and

cytotoxic activities of stimulated Anti-HER-2+ CAR T-cells and

their CAR-T EVs. CAR-T EVs contain lower interferon gamma

levels than CAR T-cells. Granzyme B levels were approximately

20-fold higher in CAR-T EVs than in EVs from unstimulated

CAR T-cells. Anti-HER-2+ CAR-T EVs targeted HER-2

expressing cells. CAR T-cells showed more rapid cytotoxicity

than their EVs (159). HEK293T cells were transduced with

CD19 CAR plasmids, and their exosomes (Exo-CD19 CAR)

were used to treat CD19 B-lineage leukemia. The results showed

that Exo-CD19 CAR treatment induced cytotoxicity in CD19-

positive leukemia B-cells but not in CD19-negative cells (158).

These studies support the therapeutic use of EVs derived from

CAR T-cells as a cell-derived nanovesicle-based therapeutic

approach against tumors (Figure 3).
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7 Strategies to overcome current
clinical challenges associated with
CAR T-Cell therapies

CAR T-cell persistence is major challenge faced by the CAR

T-cell research community. Some of the strategies that can

improve T cell persistence include administration of cytokines

such as IL2, IL7, and IL15, and upregulation of proliferative or

anti-apoptotic signals (87, 160, 161). In contrast, some studies

have found that skipping IL-2 during CAR T-cell production

resulted in higher ORR in patients with solid tumors and

hematologic malignancies (60, 135).

Optimization of the CAR design is equally important for

better persistence and overall treatment efficacy. Second-

generation CARs have been shown to improve persistence

compared to first-generation CARS;however, it remains unclear

whether third-generation CARs are better at improving

persistence than those in the second-generation CARs (81, 162).

Among the different costimulatory molecules, CD137 and 4-1BB

seem to work better than CD28 molecules in enhancing

persistence and tumor trafficking, thereby improving the

antitumor response in preclinical models (163, 164). Changes in

the hinge and transmembrane regions of CAR regulate cell death

and cytokine production (98, 165). A fully human CAR construct
FIGURE 3

CAR-T EV-based therapy for cancer CAR-T EVs containing catalytic proteins (perforin and granzyme B). CAR-T EVs’ interacting and internalizing
into cancer cells and leading to apoptotic blebbing and apoptosis. Created with BioRender.com.
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(HuCAR-19), designed to reduce immunogenicity and improve

persistence (76), has shown an 86% ORR in patients with NHL in

a first-of-its-kind clinical trial (166, 167). Clinical trials using two

fully humanized CAR constructs are currently underway in

patients with CD30+ NHL and HL as well as in those with

CD19+ ALL and NHL. Preclinical studies have suggested an

improved antitumor response when pharmaceutical agents and

conditioning chemotherapy are administered in combination with

CAR T-cell therapy (86, 168).

Tumor cells modulate the antigen expression on their cell

surface to facilitate immune escape (57, 82, 87, 111). Therefore,

CAR T-cells can no longer recognize and kill these cells. The

efficacy of CAR T-cell therapy can be enhanced, and toxicity can

be minimized by incorporating molecules specific for two or

more target antigens, as demonstrated by some preclinical

studies (169, 170). CAR T-cell therapies in conjunction with

immune-checkpoint blockade are currently being investigated in

patients with refractory or relapsed NHL (171).

Therefore, safer and cheaper gene transfer approaches are

needed to reduce the overall cost of CAR T-cell therapy. While

non-viral approaches, such as Sleeping Beauty, are inexpensive

compared to lentiviral/retroviral vector-mediated gene transfer,

there is a growing body of clinical evidence using the latter

approach (172, 173).

Finally, CAR T-cell therapies have also been applied much

later during the course of disease progression usually following

chemotherapy, hematopoietic stem cell transplantation, or other

treatments. The tremendous potential of applying CAR T-cell

therapy at the beginning or earlier during the treatment course

was unraveled and the strategy revealed higher success rates and

reduced toxicity associated with anticancer treatments (174).

Early administration of the therapy earlier may also give us

access to a higher proportion of naïve, unexposed T-cell

populations to facilitate the production of CAR T-cells.
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