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Abstract

Mutations in CuZn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) and are found in 6% of ALS
patients. Non-native and aggregation-prone forms of mutant SOD1s are thought to trigger the disease. Two sets of novel
antibodies, raised in rabbits and chicken, against peptides spaced along the human SOD1 sequence, were by enzyme-linked
immunosorbent assay and an immunocapture method shown to be specific for denatured SOD1. These were used to
examine SOD1 in spinal cords of ALS patients lacking mutations in the enzyme. Small granular SOD1-immunoreactive
inclusions were found in spinal motoneurons of all 37 sporadic and familial ALS patients studied, but only sparsely in 3 of 28
neurodegenerative and 2 of 19 non-neurological control patients. The granular inclusions were by confocal microscopy
found to partly colocalize with markers for lysosomes but not with inclusions containing TAR DNA binding protein-43,
ubiquitin or markers for endoplasmic reticulum, autophagosomes or mitochondria. Granular inclusions were also found in
carriers of SOD1 mutations and in spinobulbar muscular atrophy (SBMA) patients and they were the major type of inclusion
detected in ALS patients homozygous for the wild type-like D90A mutation. The findings suggest that SOD1 may be
involved in ALS pathogenesis in patients lacking mutations in the enzyme.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

syndrome characterized by adult-onset progressive loss of

motoneurons in the cortex, brain stem and ventral horns of the

spinal cord. Approximately 10% of ALS patients are familial

(FALS) [1] and in 12–23% of these the disease has been linked to

mutations in the gene for CuZn-superoxide dismutase (SOD1) [2].

SOD1 is ubiquitously expressed and the mutations confer an

unidentified toxic property on the enzyme [3,4,5]. SOD1

mutations have also been found in apparently sporadic ALS

(SALS) patients and overall, they are detected in about 6% of all

ALS patients [6]. The cause(s) of the disease in the remainder is

largely unknown. In several other neurodegenerative conditions

such as Alzheimer’s, Parkinson’s and Creutzfeldt-Jacob’s diseases,

proteins that are mutated in some of the familial patients are also

thought to be involved in the pathogenesis in patients lacking such

mutations [7]. Could wild-type SOD1, by analogy, be involved in

ALS patients lacking SOD1 mutations?

The toxic property of mutant SOD1s has not been identified, but

there is evidence to suggest that it is related to structural instability

and noxious effects of non-native, misfolded and aggregation-prone

conformational species of SOD1 [8,9,10,11,12]. The 146 ALS-

associated mutant SOD1s identified to date [6] cover a spectrum

from extreme instability to near wild type-like stability in vivo in

humans [4,9,13,14]. The most wild type-like mutant SOD1 (D90A) is

found at normal levels in the CNS of ALS patients homozygous for

the mutation [15]. There are indications that wild-type human

SOD1 can also be toxic. Overexpression in transgenic mice leads to a

substantial late loss of neurons in the spinal cord ventral horns [16,17]

and exacerbates disease caused by mutant SOD1s [17,18]. Post-

translational modifications of wild-type SOD1, e.g. by oxidative

insults, can destabilize the enzyme [19] and induce neurotoxic

properties [20]. Crosslinked SOD1 can be detected in extracts of

spinal cord tissue from both carriers of SOD1 mutations and SALS

cases, but not from controls [21]. Thus, there is circumstantial

evidence to suggest that the wild-type SOD1 has the potential to exert

ALS-causing noxious effects similar to those of mutant SOD1s.

To explore this idea further, we produced two sets of antibodies

(in rabbits [Ra-ab] and chicken [Ch-ab]) directed against peptides

spaced along the sequence of the SOD1 molecule. These were

used to look for evidence of SOD1 alterations in ALS patients

without SOD1 mutations. By biochemical methods we showed

that these antibodies were specific for denatured SOD1. Using

both histopathological and biochemical methods, we examined

different areas of the CNS from a large number of sporadic and

familial ALS patients and in two motoneuron disease patients with

spinobulbar muscular atrophy (SBMA). The main novel finding is
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that these antibodies detected inclusions, which are considered to

be hallmarks of disease caused by mutant SOD1s, in all these

patients but rarely in controls with other and without neurode-

generative diseases.

Results

Inclusions containing misfolded SOD1 in motoneurons
are a feature of both sporadic and familial motoneuron
disease

Using the set of rabbit antibodies raised against peptides in the

SOD1 sequence, we found small round inclusions in spinal cord

motoneurons of all the 29 sporadic and 8 familial ALS patients

lacking mutations in the SOD1 gene and in the 2 SBMA patients

(Figures 1A, B, D, E and N) and (Supporting Information Figures

S1B, E, H and K, and S2A]. These inclusions were somal and in

many cells they were particularly abundant in the axon hillock

(Figures 1B and S2A). They were relatively homogenous in size

and measured 0.5–3 mm. The proportion of motoneurons

exhibiting such inclusions varied from only a few to most of the

motoneurons, and they were seen in all spinal cord cross-sections

investigated (Table 1). Small granular SOD1-immunoreactive

inclusions were also seen in neurons of Clarke’s nucleus in 22 of 23

SALS and in 3 of the 5 FALS patients in which the nucleus of

Clarke was available for study, and in both SBMA patients. In

hematoxylin/eosin-stained sections, some Lewy body-like hyaline

inclusions were seen in motoneurons, and in a few patients a small

proportion of such structures were immunoreactive for SOD1. No

correlation between the disease duration and amount of inclusions

could be seen in those patients from whom reliable data on

duration were available. Other pathomorphological observations

in the patients are reported as in Supporting Information (Results).

In most of the control patients, the motoneurons lacked

granular SOD1 staining (Figure 1J and K). In 3 out of the 28

control patients with other neurodegenerative diseases (1 with

Huntington’s disease [HD]; 1 with Parkinson’s disease [PD]; 1

with Alzheimer’s disease [AD]), and in 2 of the 19 control patients

without neurological disease, a few granular SOD1-immunoreac-

tive inclusions were seen in some motoneurons (Figure 1C and L).

The abundance of inclusions was, however, smaller than in any of

the ALS patients (Table 1). Also, two of these control patients

showed a few small granular SOD1-immunoreactive inclusions in

the neurons of Clarke’s nucleus. In control patients, no granular

SOD1 inclusions were seen in cortex or hippocampus (AD

patients), striatum (HD patient) or mesencephalon (PD patients).

SOD1 inclusions are partially colocalized with lysosomes
To gain insight into the subcellular localization of the granular

inclusions, we used double-labeling immunohistochemistry with

the 57–72Ra-ab anti-SOD1 antibody and antibodies directed

against marker proteins for lysosomes, mitochondria and en-

doplasmatic reticulum. Using confocal laser microscopy, we could

show a partial colocalization of SOD1 inclusions with the

lysosomal marker cathepsin D in all patients studied (Figure 1O).

Colocalization was found in about 25% of all lysosomes, while the

proportion of all granular inclusions colocalizing with the

lysosomal marker was less than 25%. We could not detect any

colocalization of the SOD1 inclusions and the endoplasmic

reticulum markers KDEL and GRP-78, the mitochondrial

markers mitochondrial Hsp70 and mitochondrial marker, clone

SPM198 or in inclusions containing TAR DNA binding protein-

43 (TDP-43), the autophagosomes marker MAP1LC3A or

ubiquitin (Figures. S1 and S2).

Antibody specificity; why have the SOD1 inclusions not
been observed before in ALS

In most previous studies, antibodies raised against whole SOD1

have been used [22,23,24,25,26,27,28]. We compared a set of 4

such antibodies with our rabbit anti-SOD1 peptide antibodies for

reactivity against denatured and native SOD1 in an ELISA

(Figures 2 and S3). As seen in Figure 2A, the 4–20Ra-ab, 57–

72Ra-ab and 131–153Ra-ab antibodies reacted strongly with

denatured SOD1, but hardly at all with native SOD1. Similar

results were found for the other rabbit anti-SOD1 peptide

antibodies (Figure S3). Among the antibodies raised against whole

SOD1, our in-house rabbit antibody (Rabbit-1) reacted equally to

denatured and native SOD1 in the ELISA. The sheep antibodies

from the Binding Site and Calbiochem were a little and clearly

more, respectively, active versus denatured than against native

SOD1 (Figure 2B). The monoclonal mouse antibody was almost

completely specific for native SOD1. Most of the antibodies were

also immobilized on Sepharose and tested for their affinities for

native and denatured SOD1 in solution (Figures S4 and S5). The

outcomes were in principle identical; the antipeptide antibodies

bound denatured SOD1 but lacked affinity for native, whereas

antibodies raised against whole SOD1 bound both native and

denatured SOD1.

For comparison purposes we tested dilution series of the set of 4

antibodies raised against whole human SOD1 on sections from 4

patients with abundant small granular inclusions. Using the antibody

with the highest relative reactivity for denatured SOD1 (the

Calbiochem antibody) (Figure 2B), granular inclusions could

sometimes be discerned against the background staining of cytosolic

SOD1 (Figure 1F). Thus, the failure in previous studies to detect the

granular SOD1 inclusions might be explained the masking effect of

staining of the abundant native SOD1 in the motoneurons.

To demonstrate the specificity for SOD1 in the histopatholog-

ical studies, the antibodies were preincubated with denatured

SOD1 (not shown) or the immunizing peptides in increasing

concentrations. This resulted in gradual and finally full disappear-

ance of immunoreactivity (Figure S2D, E and F). An antibody

raised against keyhole limpet hemocyanin, the carrier protein to

which the peptides were coupled for immunization, gave no

specific staining. The antibodies stained inclusions of human

SOD1 in transgenic mice (Figure S2G), but did not stain tissues

from normal control or SOD1 knockout mice (Figure S2H and I).

The rabbit peptide antibodies showed very high specificities for

SOD1 as analyzed by western immunoblots of human spinal cord

extracts (Figure 3). In western blots of extracts of murine spinal

cords, there was strong staining for human SOD1 in wild-type

human SOD1 transgenic mice, variable weak staining of murine

SOD1 (cross-reaction) and no discernable staining in SOD1

knockout mice (Figure S6).

To further validate the finding of SOD1-staining inclusions in

ALS, antibodies were raised in chicken against three of the SOD1

peptides. The antibodies showed high specificities for SOD1 in

western blots (Figure S7). Immobilized on Sepharose they

efficiently bound denatured but not native SOD1 (Figure S4).

Histopathologically, they all stained granular inclusions in

motoneurons of ALS cases in a fashion indistinguishable from

that of the rabbit antibodies, and there were no immunopositive

inclusions in controls (Figure S7).

SOD1 inclusions are hallmarks of ALS patients carrying
SOD1 mutations

Inclusions containing SOD1 are considered hallmarks of ALS

caused by mutations in the enzyme [22,28,29]. Using the present

SOD1 Inclusion in ALS Patients
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anti-peptide antibodies, SOD1-immunoreactive inclusions have

previously been demonstrated in patients carrying the G72C and

A4V mutations [30], and in a case carrying the G127X C-terminal

truncation mutation [9]. With the latter, the 4–20Ra-ab anti-

SOD1 antibody allowed visualization of the inclusions, but not the

131–153Ra-ab anti-SOD1 antibody, which is directed against a

sequence absent from the mutant protein. In most patients

carrying SOD1 mutations, the inclusions tend to be larger and

both skein- and Lewy body-like [9,30,31] (e.g. Figure 1H), but

small granular SOD1-immunoreactive inclusions were also found

in the patient with the G127X mutation (Figure 1I). Importantly,

in patients homozygous for the wild type-like D90A mutant

SOD1, the majority of the SOD1-immunoreactive inclusions were

of the small granular type (Figure 1G).

Biochemical analysis of SOD1 in ALS patients and
controls

Homogenates of tissues from the temporal lobe, the precentral

gyrus and from the cervical and lumbar spinal cord ventral horns

of 5 SALS patients, 4 FALS patients and 5 control patients were

examined by western blot using anti-SOD1 peptide antibodies.

The denatured SOD1 monomer was seen as a single band of the

appropriate molecular weight in all samples (Figure 3). There was

no evidence of smearing or accumulation of SOD1 protein in the

loading wells, nor were there any other alterations detected with

the three antibodies used that could correlate with disease.

The activites of SOD isoenzymes were analysed in 15 different

parts of the CNS from controls, SALS and FALS patients (Tables

S1 and S2). SOD1 showed throughout the highest activity, and

there were no significant differences in this enzyme between the

groups. The SOD1 activities in the areas mainly afflicted by ALS,

the spinal cord ventral horns and the precentral gyrus, were

intermediate among gray matter areas. Using the specific activity

of human SOD1 [32], the concentration of the enzyme was

calculated to be 2 mM. Ventral horns were found to contain about

60 mg protein per g wet weight. SOD1 thus accounts for about

0.1% of the tissue protein.

Discussion

In this report we describe a small round inclusion characterized by

its immunoreactivity with anti-SOD1 antibodies and having a size of

approximately 0.5–3 mm in SALS and non-SOD1 FALS patients.

The inclusions occurred in large spinal cord neurons such as

motoneurons and Clarke’s column neurons. We found the inclusion

in all 37 ALS patients we examined, as well as in the 2 SBMA

patients, but only in 5 of 47 controls; and in those, to a much lesser

extent. Inclusions containing SOD1 are considered to be hallmarks of

ALS caused by mutations in the enzyme [9,22,28,30]. Accordingly,

using the present anti-SOD1 peptide antibodies on sections from such

ALS patients, both larger skein- and Lewy-body like inclusions and

the small granular inclusions were found.

The peptides used for antibody production cover more than

80% of the SOD1 sequence. Some of these sequence segments are

hidden in native SOD1, whereas others are partially exposed on

the protein surface. The longest continuous exposed stretches are

found in the 24–39, 57–72 and 80–96 segments. Even so, all anti-

peptide antibodies failed to recognize native SOD1, suggesting

that the primary affinity is to epitopes in non-native configura-

tions, i.e. to bind the antibody the peptide segments need to be

Figure 1. Micrographs of spinal cord motoneurons showing SOD1-immunoreactive inclusions. Using the 4–20Ra-ab, 57–72Ra-ab, and
131–153Ra-ab anti-SOD1 peptide antibodies (0.64, 5 and 0.75 mg/ml, respectively) numerous small granular inclusions could be seen in tissues from
sporadic (SALS) and familial (FALS) patients lacking mutations in the SOD1 gene (A, B, D, E, J-L, N and O). Note that the lipofuscin do not stain in B. As
a rule motoneurons from the controls lacked inclusions (J, K), but in a few cases were a small number of granular inclusions observed (arrows in C, L).
Using a sheep anti-SOD1 antibody against whole SOD1 (Calbiochem), SOD1-immunoreactive inclusions could sometimes be discerned against
background staining in ALS patients with abundant small granular inclusions (F). In patients carrying the D90A mutation, small granular inclusions
were the major type of inclusion (131–153Ra-ab antibody, 0.75 mg/ml) (G). Using a mutation-specific antibody (10 mg/ml) both larger skein and LBHI-
like inclusions (H), as well as small granular inclusions (I), could be seen in an ALS patient carrying the G127X mutation. Sections double-labeled with
the the lysosomal marker cathepsin D (M and O; red fluorescence) and the 57–72Ra-ab anti-SOD1 antibody (N and O; green fluorescence; 5 mg/ml).
The merged picture of the green and red channel scans shows a partial overlap of green and red fluorescence indicating colocalization of SOD1 and
lysosomes (O). Scale bar = 30 mm (in A–D, H, I), 18 mm (in E–G), 7 mm (in J), 8 mm (in K, M-O) and 11 mm (in L).
doi:10.1371/journal.pone.0011552.g001

Table 1. Immunohistochemical findings.

Patients SALS FALS SBMA Controls Controls

Neurodegen. Non-neurol.

Number of patients with inclusions

Cervical spinal cord 27 (27) 7 (7) 2 (2) 2 (26) 0 (18)

Thoracic spinal cord 24 (24) 5 (5) 2 (2) 0 (1) 0 (17)

Lumbar spinal cord 17 (17) 4 (4) 2 (2) 1 (3) 2 (19)

Proportion of motoneurons with inclusions

Cervical spinal cord 2 (1–3) 3 (1–3) 1,21 0 (0–1) 0 (0)

Thoracic spinal cord 2 (1–3) 2 (1–3) 2,21 0 (0) 0 (0)

Lumbar spinal cord 2 (1–3) 2 (1–2) 2,21 0 (0–1) 0 (0–1)

Findings of the immunohistochemical investigation with regard to the 4–20Ra-ab and 131–153Ra-ab anti-SOD1 peptide antibodies. Data for number of patients with
inclusions refer to number of patients with inclusions (total number of patients). Data for proportion of motoneurons with inclusions are shown as median (range)
referring to a four-tiered semi-quantitative scale (0 = no neurons with inclusions; 1 = ,25% of the neurons showing inclusions; 2 = 25%–75% of the neurons showing
inclusions; 3 = .75% of the neurons showing inclusions).
1Individual values of the two SBMA patients.
doi:10.1371/journal.pone.0011552.t001
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flexible or distorted away from their native geometries. The anti-

peptide antibodies showed uniform high affinities for denatured

SOD1 in vitro (Figures 2 and 3; Figures S3, S4 and S7), and they all

stained SOD1 in the inclusions (Figure 1; Figures S1, S2 and S7).

This suggests that the SOD1 detected was in a non-native state,

and either conformationally heterogeneous or disordered (allowing

induced fits). An earlier study [33] using an antibody directed

towards a peptide in the SOD1 dimer interface, however, failed to

detect SOD1 inclusions in non-SOD1 FALS cases.

The 146 mutations in SOD1 so far associated with ALS

probably cause disease by essentially the same mechanism [6]. The

levels of mutant SOD1 in spinal ventral horns of patients carrying

SOD1 mutations vary from equal [15] to around 1% of controls

[9]. The lowest levels are found in the C-terminal truncation

mutations [9]. These lack a b-strand in the b-barrel core of the

subunits and the stabilizing C57-C147 disulfide bond and

therefore cannot adopt native folding. Cytotoxic conformational

species of SOD1 common to all ALS types are hence likely to be

misfolded, and may exist in very low concentrations.

Consequently, the amounts of misfolded SOD1 in the granular

inclusions are also likely to be minute and difficult to detect against

the background native cytosolic SOD1. The present success is based

on a combination of two factors: the use of anti-peptide antibodies

specific for non-native/misfolded SOD1, and screening with a set of

such antibodies covering the major part of the SOD1 sequence.

Previous studies on ALS patients lacking SOD1 mutations have

resulted in detection of occasional Lewy body-like structures staining

for SOD1 [22,27,28,29] as we also found, or failure to detect any

inclusion staining [23,25]. In these studies, antibodies raised against

whole SOD1 were used, which might explain the different outcomes.

SOD1-containing inclusions, as well as detergent-resistant

aggregates of SOD1, are also found in ALS animal models in

which mutant SOD1s are transgenically overexpressed

[9,11,12,34,35]. Whether the inclusions/aggregates or some

precursor non-native/misfolded form of SOD1 is responsible for

the toxicity is still a matter of debate [12,36,37]. Evidence of

noxious effects in the spinal cord can be seen relatively early

[38,39,40,41], whereas the inclusions and aggregates accumulate

in the terminal symptomatic phase of the disease [11,12,35]. The

inclusions are perhaps terminal markers in cells compromised by

long-term assault from cytotoxic SOD1 species.

By confocal microscopy we found no evidence for colocalization

between the granular SOD1 inclusions and markers for the major

somal compartments endoplasmic reticulum and mitochondria

(Figure S1). This suggests that the SOD1 inclusions are mainly

cytosolic. There was, however, a partial colocalization with

cathepsin D, indicating that the inclusions become targeted for

degradation via the lysosomal pathway (Figure 1O).

The selective vulnerability of motor areas to the toxic effects of

mutant forms of the ubiquitously expressed SOD1 is a

conundrum. Compared to other organs in the human body, the

levels of SOD1 in the CNS are relatively low [42]. Here we have

shown that SOD1 levels in motor areas are only intermediately

high compared to other gray matter areas (Table S1). Overall,

SOD1 is moderately expressed and we found no differences in

amounts of SOD1 between ALS patients and controls.

To conclude, we have found that granular inclusions containing

misfolded SOD1 as a rule exist in motoneurons of both sporadic

and familial ALS patients lacking SOD1 mutations. Although the

importance of SOD1 inclusions for the pathogenesis of ALS is

unknown, the findings provide circumstantial evidence that the

wild-type SOD1 protein may participate in the pathogenesis of

ALS. The presence of the inclusions also in familial cases and in

the two SBMA patients suggests that in motoneuron disease

induced by mutations in other genes, SOD1 may still be involved

in downstream events.

Figure 2. Relative reactivities of antibodies towards native and denatured SOD1. ELISA plates were coated with either native (filled
symbols in green) or denatured (unfilled symbols in red) SOD1, and were either reacted with antibodies raised against peptides (A) or whole SOD1
(B). Threefold dilutions were made from a high antibody concentration giving an A490 of 0.70–1.6 with either native or denatured SOD1. (A) Reactivity
of the 4–20Ra-ab (native = m, denatured = n), 57–72Ra-ab (native SOD1 = , denatured SOD1 = ‘‘) and 131–153Ra-ab (native SOD1 = .,
denatured SOD1 = ,) anti-SOD1 peptide antibodies. The highest concentrations were 0.1 mg/ml, 0.03 mg/ml, 0.1 mg/ml, respectively. (B) Reactivity of
antibodies raised to whole SOD1: Rabbit-1 antibody (native SOD1 = , denatured SOD1 = ‘‘); a sheep antibody from Calbiochem (native = m,
denatured = n); a sheep antibody from The Binding Site (native SOD1 = ., denatured SOD1 = ,); and a mouse monoclonal antibody from Sigma
(native SOD1 = &, denatured SOD1 = ). The highest concentrations were 0.6, 10, 20, and 10 mg/ml, respectively. The data presented are means of
4 wells for each point.
doi:10.1371/journal.pone.0011552.g002

SOD1 Inclusion in ALS Patients

PLoS ONE | www.plosone.org 5 July 2010 | Volume 5 | Issue 7 | e11552



Materials and Methods

Antibodies
The anti-SOD1 antibodies used were polyclonal rabbit

antibodies raised against keyhole limpet hemocyanin-coupled

peptides corresponding to amino acids 4–20, 24–39, 43–57, 57–

72, 80–96, 100–115 and 131–153 in the human SOD1 sequence

or corresponding chicken antibodies raised against peptides

corresponding to amino acids 24–37, 57–72 and 131–153. They

were purified on a Sulfolink coupling gel with the corresponding

peptide coupled [12]. An antibody against a neopeptide in G127X

mutant SOD1 was similarily prepared [9]. The other antibodies

used are presented in Table S3.

Tests of the anti-SOD1 antibodies by ELISA
ELISA plates with 96 wells (Maxisorp, Nunc A/S, Roskilde,

Denmark) were coated overnight at 4uC with 100 ml of 2 mg/ml

native human SOD1 (Sigma, Schelldorf, Germany) or human

SOD1 that had been denatured with 4 M guanidinium chloride

and 5 mM of the chelator diethylenetriaminepentaacetic acid

(DTPA). This resulted in a complete denaturation of the SOD1

(Figure S7). After washing and blocking, primary antibodies were

added and incubated at 23uC for 90 min. Finally, peroxidase-

labeled secondary antibodies were added followed by development

in substrate (1,2-phenylenediamine and H2O2) for 6 min, and the

absorbance was read at 490 nm. Complete reactions in wells

without SOD1 coating were used as blanks and the ELISA

readings were subtracted. For the peptide antibodies, the

subtractions amounted to an A490 of 0.015–0.020. Secondary

antibodies alone gave negligible reactions in wells coated with

SOD1.

Subjects
Tissues were collected at autopsy from patients prospectively

enrolled at the Department of Neurology, Umeå University

Hospital. All patients fulfilled the El Escorial criteria for ALS [43].

Figure 3. Analysis of SOD1 by western immunoblot. Homogenates of tissue from the temporal lobe, the precentral gyrus, and the spinal cord
ventral horns from 5 control patients, 5 SALS and 4 FALS patients were analyzed by western immunoblots, using the 4–20Ra-ab, 57–72Ra-ab, 100–
115Ra-ab and 131–153Ra-ab anti-SOD1 peptide antibodies. Analyses of lumbar spinal cord ventral horns are here shown as examples. All figures
depict the same set of extracts and short, intermediate and long exposures are presented. Upon long exposure a weak band at about 28 kDa was
seen with the 4–20Ra-ab anti-SOD1 antibody in one of the five SALS samples. The band was probably unspecific since it was not seen with the other
antibodies. The intensity was estimated at ,0.5% of the SOD1 band.
doi:10.1371/journal.pone.0011552.g003
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This group consisted of 16 patients with SALS (mean age 7069

[49–83] years) and 6 patients with FALS (mean age 6364 [55–68]

years). All 22 ALS patients were genotyped for SOD1 mutations as

described previously [4], and none were found.

Furthermore, a retrospective search for clinicopathologically

confirmed cases of ALS from the hospital records yielded 2 FALS

patients (aged 33 and 49 years) and 13 SALS patients (mean age

70610 [55–88] years), from whom material was subjected to

histological study. No statistically significant differences between

prospectively and retrospectively collected patients with the same

type of ALS were found, and the materials were combined in the

final analysis, giving one group of 8 FALS patients (mean age

58612 [33–68]; years) and one group of 29 SALS patients (mean

age 7069 [49–88] years). From the hospital records two cases with

SBMA (aged 52 and 76 years, respectively) were found. The

diagnosis was verified by the presence of the trinucleotide repeats

in the androgen receptor. For comparison, spinal cord tissue from

two patients with SOD1 gene mutations (D90A and

G127insTGGG [G127X]), respectively, was also subjected to

histological study.

Control tissue from 28 control patients with other neurodegen-

erative diseases (mean age 74619 [2–92]; 15 with Alzheimer’s

disease; 7 with Parkinson’s disease; 3 with multiple sclerosis; 1 with

frontotemporal lobar degeneration; 1 with tuberous sclerosis; 1

with Huntington’s disease) and from 19 control patients without

neurological disease (mean age 69617 [37–91] years; the patients

died from heart conditions or pneumonia) were used. Of these, 7

patients with neurodegenerative diseases and 3 without neurode-

generative diseases were prospectively enrolled and the rest

collected from archival material.

The study adhered to the tenets of the Helsinki Declaration.

Information about the study was given orally and in written format

to next of kin, and in most cases also to the patient. Informed

consent was obtained from next of kin from all patients

prospectively enrolled in the study, the oral consent was then

noted in the hospital files. The procedure was approved by the

Ethical Committee of Umeå University which also approved the

use of retrospective archival material from the hospital laboratory

of clinical pathology.

Microscopy
For the prospectively collected material, tissue samples were

taken from the cervical, thoracic and lumbar regions, and for the

retrospective material the tissues available mostly consisted only of

blocks from the cervical and/or thoracic parts of the spinal cord.

Tissue samples were also taken from hippocampus, ventral

cingulate gyrus and frontal cortex, middle and superior temporal

gyrus, striatum and mesencephalon. Tissues for histopathological

studies were immersion-fixed in 4% paraformaldehyde in 0.1 M

Na phosphate, pH 7.4. The immunohistochemical and fluorescent

microscopy procedures are described in detail in Supporting

Information (Material and Methods).

Western blot
Tissues were homogenized as described in Supporting Infor-

mation (Material and Methods) and were without prior centrifu-

gation diluted 1:1 in SDS-PAGE loading buffer, heated for 5 min

at 95uC and separated on 12% Ready Gels (BioRad, Hercules,

CA, USA). Probing and detection were done as previously

described [42,44].

Statistics
Statistical analysis was done using the STATISTICA data

analysis software system (version 7.1; StatSoft Inc., Tulsa, OK,

USA) or SPSS (version 15; SPSS Inc., Chicago, IL, USA). The

nonparametric Kruskall-Wallis statistics (when comparing three

groups) and Mann-Whitney statistics (when comparing two

groups) were used for the morphological comparisons. In

estimation of staining, the numbers given are median and range.

When comparing SOD activities, analysis of variance (ANOVA)

was used.

Supporting Information

Figure S1 Confocal micrographs of sections from the lumbar

spinal cord of SALS patients. The sections were double-labeled

with the 57-72Ra-ab anti-SOD1 peptide antibody (green in B, C,

E, F, H, I, K and L) and antibodies against either the endoplasmic

reticulum marker GRP 78 (red in A and C), the mitochondrial

marker mitochondrial Hsp70 (mHSP70; red in D and F), TDP-43

(red in G and I) or ubiquitin (red in J and L). Micrographs of the

green channel scan showing small granular SOD1-immunoreac-

tive inclusions (C, F, I and K). Corresponding SOD1-immuno-

reactive inclusions have been marked by yellow arrowheads in K

and L. Micrographs of the red channel showing skein-like

inclusions (J and L). Merged pictures of green and red channel

scan not showing any overlap of green and red fluorescence, and

thus not detecting any localization of small granular SOD1-

immunoreactive inclusions in the endoplasmic reticulum and

mitochondria or in TDP-43 or ubiquitin-containing inclusions,

respectively.). Scale bar = 14 mm (in A-C), 9 mm (in D-F), 5 mm (in

G-I), and 8 mm (in J-L).

Found at: doi:10.1371/journal.pone.0011552.s001 (6.03 MB TIF)

Figure S2 Micrographs depicting SOD1- or TDP-43-immuno-

reactive inclusions in spinal cord motoneurons (A-C), the effect of

preincubation of the primary antibody with the peptide used as

immunogen (D-F), SOD1-immunohistochemistry of murine

ventral horns (G-I), and absence of SOD1-immunoreactivity in

a patient with frontotemporal lobar degeneration (J, K). Sections

from a SBMA patient with abundant inclusions in lumbar spinal

cord motoneurons were stained with the 4-20Ra-ab anti-SOD1

peptide antibody (0.64 mg/ml) (A) or the anti-TDP-43 antibody

(2 mg/ml) (B). Section from a FALS patient with abundant

inclusions in lumbar spinal cord motoneurons. The section was

stained with the anti-TDP-43 antibody (2 mg/ml) (C). In B and C

typical skein-like inclusions are seen. Sections from a SALS

patient with abundant inclusions in lumbar spinal cord

motoneurons (D-F). The sections were stained with the 4-20Ra-

ab anti-SOD1 peptide antibody (0.64 mg/ml). Several small

granular inclusions in the soma was seen when the antibody was

preincubated only with diluent (D). The small granular inclusions

were only weakly detectable when the antibody was preincubated

with an intermediate concentration of the immunizing peptide

(1.4 mg/ml) (E). No SOD1-positive structures were detected when

the antibody was preincubated with a high concentration of the

immunizing peptide (0.14 mg/ml) (F). Sections of murine lumbar

ventral horns stained with the 4-20Ra-ab anti-SOD1 peptide

antibody (0.64 mg/ml) (G-I). The mouse transgenically overex-

pressing G93A mutant human SOD1 showed abundant staining

for SOD1 (G). No staining for SOD1 was seen in the C57/Bl6

control mouse (H) or the SOD1 knock-out mouse (I). Sections

from a patient with frontotemporal lobar degeneration showing

no inclusions in either in lumbar spinal cord motoneurons (J) or

in the anterior cingulate gyrus of the frontal lobe (K). The

sections were stained with the 4-20Ra-ab anti-SOD1 peptide

antibody (0.64 mg/ml). Confocal micrographs of sections from

the lumbar spinal cord of SALS patients. The sections were

double-labeled with the 57-72Chi-ab anti-SOD1 peptide anti-
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body (green in L, N) and an antibody against autophagosome

marker MAP1LC3A (red in M, N). Note absence of staining of

MAP1LC3A. The scale bar = 30 mm (in A-J), 90 mm (in K) and

20 mm (in L-N).

Found at: doi:10.1371/journal.pone.0011552.s002 (8.65 MB TIF)

Figure S3 Relative reactivities of antibodies towards native and

denatured SOD1. ELISA plates were coated with either native

(filled symbols in green) or denatured (unfilled symbols in red)

SOD1, and were reacted with antibodies raised against peptides as

described under Material and Methods. Threefold dilutions were

made from a high antibody concentration giving an A490 of 1.0–

1.7 with denatured SOD1. Reactivity of the 24–39Ra-ab (native

SOD1 = , denatured SOD1 = ‘‘), the 43–57Ra-ab (native =

m, denatured = n), the 80–96Ra-ab (native SOD1 = .,

denatured SOD1 = ,), the 100–115Ra-ab (native SOD1 = &,

denatured SOD1 = ) anti-SOD1 peptide antibodies. The

highest concentrations were 0.1, 0.03, 0.03 and 0.03 mg/ml,

respectively. The data presented are means of 4 wells for each

point.

Found at: doi:10.1371/journal.pone.0011552.s003 (0.12 MB TIF)

Figure S4 Immunocapture of native and denatured SOD1 with

immobilized antibodies. Antibodies immobilized on Sepharose

were incubated for 1 h in pH 7.0 PBS containing 5 mg/ml of

SOD1 that was either native (A, B) or had been denatured by

exposure to guanidinium chloride and a chelator followed by

dialysis (A, C). Following washes the bound SOD1 was analysed

with western immunoblots. The amount of SOD1 in the

incubations was in all cases more than 10-fold the maximal

binding capacities of the antibodies. The native SOD1 solutions

were incubated twice with the immobilized antibodies, with the

intention to capture any traces of denatured SOD1 in the

preparation with the first, to make the second more representa-

tive for the reaction (of the antipeptide antibodies) with native

SOD1 (A, B). Note that among the antipeptide antibodies, only

the rabbit (Ra-ab) and chicken (Ch-ab) 131-153 antibodies bound

detectable amounts of native SOD1 (A, B). The amounts were in

both cases more than 1000-fold lower than the amounts of

denatured SOD1 bound. The C-terminal end is the part that

folds last in SOD1 (Nordlund A, Oliveberg M (2006) Proc Natl

Acad Sci U S A 103: 10218-10223) and the binding might be

explained by partial unfolding caused by thermal fluctuations.

The chicken (Ch-ab), sheep (Sh-ab; Calbiochem) and rabbit-1

(Ra-ab) antibodies versus whole SOD1 captured equally large

amounts of native SOD1 in the two sequential incubations (B) as

analyzed by a CCD-camera (ChemiDoc XRS, BioRad Inc.), data

not shown.

Found at: doi:10.1371/journal.pone.0011552.s004 (0.82 MB TIF)

Figure S5 Analysis of denatured and native SOD1 by

hydrophobic interaction chromatography. Denatured SOD1

was prepared for the ELISA and immunocapture experiments

by exposure to 4 M guanidinium chloride and 5 mM of the

chelator DTPA followed by dialysis with PBS containing 1 mM

DTPA. 250 ml of native or denatured SOD1 dissolved in PBS

pH 7.0 at around 2 mg/ml were applied to 1 ml Octyl-

Sepharose CL-4B (GE Biosciences) in columns. After 5 min,

non-bound SOD1 was eluted with 2.5 ml of the PBS. Following

washing with 10 ml PBS, SOD1 bound to the Octyl-Sepharose

was eluted in 2.5 ml of PBS containing 4% SDS [8]. The initial

SOD1 solutions (total), together with the non-bound and bound

fractions were analysed by western immunoblotting using the

23-39Ra-ab anti-SOD1 peptide antibody. Native SOD1 is very

hydrophilic and does not bind to the column [8]. Denatured

SOD1 exposes hydrophobic internal structures, and the

preparation used for the ELISA and immunocapture experi-

ments (Figure 2, Figure S2 and S3), was found to bind

quantitatively to the column.

Found at: doi:10.1371/journal.pone.0011552.s005 (0.61 MB TIF)

Figure S6 Comparison of reactivities of antipeptide antibodies

versus SOD1 in human and murine spinal cords. Equal

amounts of extracts from ventral horns from a SALS and a

FALS case and spinal cords from a SOD1 knockout mouse, a

C57Bl6 control mouse and a wild-type human SOD1 transgenic

mouse were examined by western blots using the 4–Ra-ab, 57–

Ra-ab, 131–Ra-ab and 131–Ch-ab antibodies. In none of the

cases was any reaction seen with proteins in the knockout

homogenate, demonstrating the specificity of the antibodies.

The 131–153 sequence is equal in human and mouse SOD1 and

similar reactions are found in the extracts from the ALS cases

and the control mouse. The other two antibodies showed lower

cross-reactivities with murine SOD1 as expected.

Found at: doi:10.1371/journal.pone.0011552.s006 (1.80 MB TIF)

Figure S7 Confocal micrographs of sections from ventral horns

of SALS patients and neurological control patients, and analysis of

SOD1 by western blot. The micrographs depict the findings of the

three different chicken antibodies (24-37Ch-ab, 58-72Ch-ab, 131-

153Ch-ab, respectively; green fluorescence). In the SALS patients

small granular inclusions were seen with all three antibodies. In

the neurodegenerative and non-neurological control patients no

inclusions were seen in motoneurons. Homogenates of tissue from

the spinal cord ventral horns from one control patient, one SALS

and one FALS patients were analyzed by western blots, using the

24-37Ch-ab, 57-72Ch-ab and 131-153Ch-ab anti-SOD1 peptide

antibodies. Short, intermediate and long exposures are presented.

Weak nonspecific bands at about 51, 41 and 32 kDa were seen

with the 24-37Ch-ab anti-SOD1 antibody. Since they were not

seen with the other antibodies they are probably not related to

SOD1 and thus unspecific. The total intensities were estimated at

approximately 3% of that of the SOD1 monomer. The scale bars

are 18 mm.

Found at: doi:10.1371/journal.pone.0011552.s007 (4.17 MB TIF)

Table S1 SOD1 activities in different CNS areas from controls

and ALS patients.

Found at: doi:10.1371/journal.pone.0011552.s008 (0.04 MB

DOC)

Table S2 SOD2 and SOD3 activities in different CNS areas

from controls, SALS and FALS patients.

Found at: doi:10.1371/journal.pone.0011552.s009 (0.05 MB

DOC)

Table S3 Antibodies used in morphological studies.

Found at: doi:10.1371/journal.pone.0011552.s010 (0.05 MB

DOC)
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